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Good Science is Abductive,

Not Hypothetico-Deductive

Abduction

A century ago, Charles Peirce (1839-1914) introduced the term abduction to de-
note a type of practical inference that he viewed—rightly—as importantly distinct
from classically conceived deduction (logical entailment) and statistical induction.2

This is our creation of explanations for observed phenomena, a mode of reasoning
that not merely expands upon the information at hand (“ampliative” inference),
as statistical generalization to relative frequencies in populations also does, but
hypothesizes why these observations have their distinctive character. And these
explanations invoke concepts other than the ones used to describe the observa-
tions explained. Thus from the Hartshorne and Weiss (1934) collection of Peirce’s
papers:

Abduction consists in studying facts and devising a theory to explain
them. (1903; Vol. 5, p. 90).

Abduction is the process of forming an exploratory hypothesis. (1903;
Vol. 5, p. 106).

Abduction must cover all the operations by which theories and con-
ceptions are engendered. (1903, Vol. 5, p. 414).

And most provocatively,

The great difference between induction and hypothesis [that is, abduc-
tion] is, that the former infers the existence of phenomena, such as
we have observed in cases which are similar, while hypothesis supposes
something of a different kind from which we have directly observed, and

1(Ed.) In the earlier part of the paper, not included here, WR discussed the Hypothetico-
Deductive and Bayesian approaches to scientific inference. He now turns to the third option,
Explanatory Induction, which he refers to here using C. S. Peirce’s term “abduction.”

2Peirce attributed this term to a Latin translation of Aristotle’s Prior Analytica, lib. 2, cap.
25 (Moore, 1984, p. 108). Peirce also refers to abduction as reasoning by “hypothesis” and, less
often, “retroduction.”
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frequently something which it would be impossible for us to observe
directly. (1857; Vol. 2, p. 388.)

Peirce returned repeatedly to this theme without, however, developing details
on how to do it. And he urged that abduced hypotheses be appraised by follow-
up tests of their additional implications insomuch as they generally remain far
from a sure thing given just the observations that originally invoke them.3. So it
might be argued that Peircian abduction was but a softer, more tolerant precursor
of Popper’s fiercely astringent hypothetico-deductivism, which insisted both that
there is no such thing as a “logic of discovery” (i.e., that hypothesis creation is
purely a psychological phenomenon governed by no principles of rationality) and
that hypotheses never gain credibility save through verification of their deductive
consequences. But unlike Popper, Peirce would have welcomed the prospect that
some abductions have determinate forms which transmit conviction. I shall argue
that such inferences are the machinery of knowledge acquisition in both technical
science and everyday life.

Be that as it may, the notion of “abduction” remained quietly where Peirce
left it for the first half of this century during which our discipline’s method ortho-
doxies were codified. But the massive mid-century swing of philosophic zeitgeist
rejecting positivistic epistemology included an awakening of philosophers’ desire
to acknowledge abduction somehow. Hanson’s Patterns of Discovery (1958) was
warmly received as something of a breakout despite its arguing merely that our
observations are impregnated with theory from the outset while endorsing a view
of abduction as the intuitive onset of not wholly implausible conjectures, without
concern for any identifiable principles that might govern these. And philosophers
have also become increasingly inclined to speak sagely of “inference to the best
explanation” since Harman (1965) introduced this phrase as a new take on Peir-
cian abduction, even though neither Harman nor, until quite recently, anyone else
had much to say about which hypotheses are explanatory or what conjectured
explanations qualify as decent much less best. However, artificial intelligence
(AI) work on problem solving expressly identified as Abduction (see especially
Josephson & Josephson, 1994) has begun to put algorithmic muscle into the “best
explanation” slogan. Meanwhile, Simon (1973) argued in explicit opposition to
Popper that there does indeed exist a logic of scientific discovery, and has since
developed programmable details within his own AI framework for problem solving
(Langley, Simon, Bradshaw, & Zytkow, 1987). And in Rozeboom (1961), follow-
ing my personal epiphany on deriving theory from data during graduate work on

3Thus in the 1903 lectures: “[Abduction’s] only justification is that from its suggestion deduc-
tion can draw a prediction which can be tested by induction.” (Hartshorne & Weiss, 1934, Vol. 5,
p. 106)
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the behaviorist What is learned? problem,4 I pointed out specific logical forms
by which discerned data regularities are intuitively transformed into explanations
thereof. Originally, I called this “ontological induction” because it creates con-
cepts of entities (attributes and events) distinct from the ones described by the
data statements. But later, in a user-friendlier and more mature statement of the
position (Rozeboom, 1972), I renamed it “explanatory induction” to stake out the
seminal role I claim for it in real-life knowledge acquisition.5 Although differing
considerably in detail, all these revisionist views of scientific inference fit nicely
within the broad tent of Peircian abduction. Even so, the version I have called
explanatory induction has a tightly operational focus warranting recognition as a
distinct species within Peirce’s genus.

‘Abduction’ is at risk of becoming a buzzword in AI circles; and the extent to
which psychology’s research methods can profit from study of AI data-processing
algorithms claimed to be abductive is problematic. A salient case in point is the
sector of AI problem solving covered by Josephson and Josephson (1994), which
has a considerable history of papers with ‘abduc’ in their titles. This has focused
on deriving from a plurality of observations on a single individual— notably, med-
ical symptoms and lab workups in the studies published, but also potentially data
clusters such as features of a crime scene, or of a handwriting sample, or of style in
artwork of uncertain authorship, etc.—the best diagnosis of that individual’s con-
figuration of underlying conditions responsible for those symptoms. But the extant
AI algorithms that accomplish this are preprogrammed with “domain knowledge”
containing all the explanatory if/then laws posited to produce symptoms of the
sort to be interpreted in particular cases. Algorithms that can do this effectively
in difficult cases may well have applied value as expert systems; but they tell us
nothing about how to conceive and acquire confidence in the explanatory laws they
presume. (Elsewhere in the AI literature, programs can be found that profess to
abduce laws as well; but the versions I have seen use a production logic more
suited to fantasizing than to scientific inquiry.) In contrast, Simon and colleagues
have said nothing in print about “abduction” or “inference to best explanation”;
but their induction modeling has attempted to reconstruct discovery of laws and
concepts that were historically important achievements in physical science. These

4What came as revelation to me was realization that although non-mentalistic S-R mediation
mechanisms could in principle account for a certain prospective transfer-of-training phenomenon
that commonsense would take to manifest a mentalistic “idea” mediating between external stimuli
and behavior, this phenomenon would demand explanation by a certain structure of mediation
with indifference to whether that structure has a mentalistic, S-R mechanistic, or some other
embodiment. (See Rozeboom, 1970, pp. 120–122).

5My original label proves to be the superior version in that I now want to emphasize that sta-
tistical induction, too, verges upon explanation when it reaches beyond population frequencies to
underlying probabilities. However, I also submit that probabilities, though undeniably theoretical
entities, are not themselves explanatory mechanisms but only supervene upon those.
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prestigious scientific successes are paradigm examples of the inferences I have called
explanatory induction; and I welcome Langley et al’s (1987) progress in simulating
these as support for my still-minority thesis that interpreting observations in this
fashion is the engine of advance in epistemically praiseworthy scientific belief.

Explanatory induction, or “EI” for short (not to be confused with the “AI” of
artificial intelligence), has two special epistemic merits typical neither of abduc-
tion in Peirce’s broadly inclusive sense nor of output from the artificial intelligence
programs that have been labeled abductive by their creators: Not merely do ex-
planatory inductions call explanations for observations to mind in the first place
by decently determinate inference forms, they also yield confidence in their conclu-
sions that in favorable circumstances can approach the vivid strength of perceptual
beliefs. So why has this essay’s title paid explicit homage generically to abduction
rather than specifically to EI when the latter is its real focus? Three reasons: First,
good science does indeed profit from broadly abductive (imaginative) speculations
so long as results from innovative research provoked by these are not interpreted
by blue-sky HD reasoning. Second, ‘abduction’ is a word that for better or worse
is bound to become increasingly prominent in discussions of scientific method;
so you may as well get familiar with it. And third, it is clumsy style to use an
eight-syllable phrase in slogans or titles when three syllables will do.

Explanatory Induction (EI): Examples

Suppose your hand calculator—call it cp for “this calculator at present”—is acting
strangely: Whenever you enter numeral 8, its rightmost display cell responds with
6, and the same occurs when the result of a calculation should show 8 in that dis-
play position. Your conclusion is immediate and assured: Something is wrong with
CP. Were you to observe further that cp responds to entry of any digit other than
5, 6, or 8 with a non-numeric shape in its rightmost display cell never containing
an upper-right vertical stroke, you would probably conclude more specifically that
the upper-right pixel at end of cp’s display isn’t working. But even if no digit
other than 8 manifests a problem in this display position and you know nothing
about cp’s display mechanism, you are still confident that some feature of cp has
changed for the worse even though all you yet know about this altered condition
is that it makes cp show 6 in its rightmost display cell under input circumstances
that formerly would have put ‘8’ there. In either case, you have committed an act
of explanatory induction on these observations from which you would have been
incapable of abstaining. You have inferred that cp is in some state that degrades
the desirable input/output relations it sustained previously. And you do not take
this state to be an ephemeral manifest property that cp has just at moments when
depression of a key co-occurs with a display inappropriate to that key, but which
vanishes when no key is pressed or when key entry and consequent display are
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in agreement (e.g., when entry and right-most display digit are both 5). Rather,
you feel sure that it is an enduring property, one that is responsible for some key
presses eliciting incorrect responses and persists in cp even when this is resting or
giving correct responses.

What you know about a properly working cp is even more richly endowed
by EI. First, even if you had never received instruction in how to use cp beyond
its on/off switch and advice that pressing cp’s keys (which we will describe as
“entries” corresponding to the keys’ assorted labels) generally alters cp’s display,
you could still have become confident, through observations on cp’s display changes
following key entries, of many generalities having form

(1) Whenever cp is in condition C and then receives sequence K of key entries,
its display at end of this input sequence is R,

wherein C specifies, among other observable preconditions, cp’s display at start
of entry sequence K and some information about cp’s recently prior entries. In
practice (and you really have acquired such beliefs about hand calculators), these
generalities would for the most part accrete silently in your “background knowl-
edge” while entering your conscious judgment as particularized anticipations of
how cp’s display should respond to a possible key-entry sequence initiated here
and now. And the salient point to take from this is what you thereby believe about
cp at various stages in a sequence of its key entries.

To become aware of beliefs that in your normal use of cp are too fleetingly
transient to reach foreground attention, suppose that your execution of some cal-
culation with cp is interrupted by a phone call. On return, you observe that cp’s
current display is 5 and, instead of hitting cp’s clear-all key to start afresh, you
wonder what its display would become were you to enter a few more digits, say
9, 3, 9, followed by a function key such as the one labeled ‘=’. You realize that
you can’t predict cp’s future display just from the present one and your choice
of input starting now, but can do so if you remember enough of your transaction
with cp just prior to breaking for the call. And if you are fairly sure that your last
function-key entry was × while cp’s display then was 1.2, you can anticipate with
some confidence that were sequence 939= now to be entered, cp’s display imme-
diately following the = entry would be the product of numbers 1.2 and 5939 or,
more precisely, a digital representation of that which after some paper-and-pencil
scratching you can identify in advance as digit string 7126.8. But your success in
predicting cp’s displays in this situation isn’t the point here. What matters are
your beliefs (a) that cp’s display R at times t′ later than the present t will be
lawfully determined in part by its sequence of key entries between t and t′; (b)
that the present state of cp at t also makes a large difference for R at t′; and (c)
that although this state of cp so crucial to its subsequent display is ephemeral
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and not directly observable, its functional character—that is, its distinctive role in
production of cp’s behavior—can be inferred from past input to cp and described
by the conditional

(2) If the symbol string that starts with cp’s current display excluding terminal
dot and thereafter describes the next sequence K of cp’s key entries represents
a number r, and entry of K is immediately followed by one of function keys
+,−,×, ÷, or =, then cp’s resulting display will be standard notation for the
number that equals 1.2-times-r,

to which in afterthought you append some auxiliary if -clauses constraining the
size of r and how roughly cp is handled. Idiom urges that (2) be simplified to

(3) cp is currently disposed to respond to any input number with the product of
that with 1.2,

and may even tempt you to say, more metaphorically than EI approves, that cp

remembers 1.2 and is in the mood to multiply. Metaphor aside, the idiom of
(3) makes it easy for you to acknowledge that when cp is working properly, it is
capable of passing through many transitory states, each describable by a covert
conditional—“covert” in that it is an if/then only implicitly—of form

(4) cp is disposed at time t to respond to input of any number r with s⊙ r,

where s is a real number and ⊙ is one of binary operators +, -, ×,÷. Since at most
one completion of schema (4) is true of cp at any particular time t, (4) in effect
identifies a two-dimensional array of attribute alternatives which we might call cp’s
“op(eration)-states.” From there, your theory of how the s and ⊙ facets of cp’s
op-state at any given time have been brought about by input is a straightforward
inference from your generalizations of form (1).

In resurrection of the positivist program early this century for clarifying sci-
ence’s theoretical concepts, one might argue that cp’s op-state at any time t is
nothing more than some logical construction out of cp’s key entries prior to t. But
your intuitive EI leap from observations on cp to beliefs such as (4) about cp’s
op-states insists that its property described by (4) is a contemporary event which,
though due to and predictable from input/output events in cp’s past, is distinct
from those and mediates whatever causal influence those may have on cp’s next
response.6 Of course, this interpretation of (4) could be wrong. But for better or
worse it is the conclusion that EI delivers here.

6To be sure, if you had the flu on this date last year, then it is a property of you-today
that you had the flu a year ago. But we view such temporal displacements of natural events as
linguistically contrived epiphenomena that supervene on the world’s causal unfolding. (If you
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The op-states of cp inferred by EI in this example are atypical of EI discovery
both in their extreme ephemerality and in the accuracy with which cp’s op-state
at any given time can be predicted from its prior input history. But they usefully
demonstrate the compulsive power with which explanatory inductions can occur.
Given enough observations on cp to convince you that the form-(1) generaliza-
tions you have taken from these will continue to fit future observations on cp, it
is psychologically impossible for you not to advance from there to indicative and
counterfactual conditionals like (2) that in turn are arguably equivalent in mean-
ing, or nearly so, to dispositional claims of form (3). These moves are far from
epistemically unproblematic; but insomuch as they are as natural as breathing and
nearly as indispensable, prudence advises us not to disown them but to develop
expertise in their technical management.

I have taken pains to describe cp’s op-states as “dispositions” because that
is the established label for an enormous variety of qualities ascribed to things in
everyday life: the sourness of lemons vs. sweetness of sugar, your uncle’s stinginess
vs. the generosity of your aunt, the fragility of chalk vs. the durability of wood,
the stickiness of honey and adhesives vs. the slipperiness of teflon and wet ice,
and so on for thousands of adjectives in ordinary language. Whatever may be the
nature of what we attribute to the individuals said to be that way, it is deeply
ingrained in our language that these are dispositions, or “tendencies” if you prefer;
and over many decades of philosophers’ efforts to reduce their aura of mystery (see
Tuomela, 1977, for a collection of modern views) it has been more or less agreed
that these are essentially the same as what we attribute by claims of form

(5) If S(x), then (probably) R(x),

or variations and elaborations (e.g. conjunctions) thereof. In this, ‘x ’ is place-
holder for names of whatever entities we may wish to characterize this way, ‘S(x)’
describes an input condition that can be imposed on x, and ‘R(x)’ describes a
response of x that may, though need not, be some display by another object to
which x is coupled in some fashion specified in ‘S(x)’. (That is, R(x) can be a
meter reading.) Also, the conditionality expressed in (5) is understood to tolerate
occasional failure of response R given input S. That is, whatever we mean by (5) in
its disposition-demarking sense, not only does truth of ‘R(x)’ not suffice for (5) to
be correct, it is also allowed that (5) might hold in some instances even when ‘S(x)’
is true while ‘R(x)’ is false. In particular, when x belongs to a set X of entities
that we think are alike in respect to (5)—notably, when X comprises a succession

have persisting health problems today, this may well be due in part to your bout of flu a year ago
through the iterated dynamics of certain body changes initiated at that time; but it is surely not
brought about by your having today the property of having had flu a year ago.) This may only
exhibit the naivete of our causality intuitions; but it’s still the way to go until the error of those
becomes more apparent.
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of an enduring thing’s temporal stages over some limited time interval, or stages
of different things that appear to be interchangeably similar in many ways—we
are disposed to accept (5) if, among the members of X whose S and R conditions
have been observed, R is considerably more prevalent among X s that have been
Sd than among those that have not. Indeed, in such cases we find ourselves talking
about different degrees of the If-S-then-R disposition (which is thereby converted
from an inferred state to a dimension of inferred states) such that the strength of
this common to the members of an X presumably homogeneous in this respect is
measured by the contrast of R’s relative frequency among X -members who have
been observed in condition S to its relative frequency observed among X -members
lacking S.

Ordinary-language versions of such dispositional concepts usually specify their
input/output conditions so vaguely and so categorically (that is, treating S and R
as sloppy condition-present/condition-absent dichotomies) as to be nearly useless
for scientific research save as targets of replacement by more precisely defined and
more finely graded input/output alternatives. Sometimes such improvements can
be viewed as more accurate diagnoses of roughly the same underlying attribute di-
mensions detected crudely by their ordinary-language precursors. But more often,
invention of new measuring instruments—devices or special environments whose
carefully controlled coupling with objects that interest us scarcely ever occurs
naturally—afford display of precisely defined dimensions of quantifiably graded
response alternatives that initially provide conception, and thereafter finely dis-
criminating detection, of our studied objects’ underlying properties beyond the ken
of everyday experience. These previously hidden properties have now become vir-
tually observable even if not quite so manifest as the input/output conditions from
which we infer them. And data on patterns of co-occurrence among these newly
discernible attributes may—or may not—lead us through iterated explanatory in-
ductions to understanding of even deeper levels of inner mechanisms responsible
for these subjects’ overt behavior.

Psychology has had its full share of instrument-grounded disposition concepts,
though apart from physiological psychology the “instruments” have largely been
special stimulus settings with constraints on subjects’ movements therein rather
than the meters, gauges, chemical reagents, and other sensor devices familiar in
everyday life through spillover from the physical and biological sciences. Indeed,
much of educational psychology and personality assessment has been grounded on
subjects’ reactions to numerous brief test items—paradigmatically, choice among a
small number of alternative answers to a written or sometimes spoken question—
that are collected into “scales” on which the subject receives a numerical score
summarizing responses to the items comprising that scale. Much has been written
and still more remains to be said about the technology of such questionnaires,
especially about the rationale of item grouping which in practice often illustrates

8



EI at work on a deeper level with techniques of factor analysis. But we cannot
address that here. The point to be taken is that educational and psychological
measurements of this sort are classic illustrations of explanatory-inductive con-
cept formation accompanied by collection of data on the variables so inferred,
even though their attendant circumstances seldom warrant trust at the higher
confidence levels of which EI is capable, such as when these same subjects’ body
weight is measured by a balance or torsion scale, or their temperature by a ther-
mometer. Each item’s definition (standardized manner of stimulation and method
of scoring) creates conception of a mini-tendency to get one score rather than
another if so stimulated. High EI confidence that mini-dispositions so conceived
genuinely exist requires subjects to show consistent differences in their responses
to each item over repeated testings, which in practice is seldom demonstrated
firmly. But there also exist other patterns of manifest intrasubject consistency
in response to a battery of test items that urge inference to relatively enduring
“traits” of tested subjects. These are measured, though with less-than-perfect ac-
curacy, by subjects’ composite scores over selected subsets of the test items and
are inferred to dispose not merely subject-distinctive patterns of response to these
particular test items but also—which may or may not be later confirmed—to other
input conditions as well. (See McCrae & Costa, 1995.)

In practice, we seldom have much interest in dispositions identified by just
one dimension of response to just one specific stimulus setting. But EI kicks
in hard when we have observed a cluster of dispositions expressible in ideally
simple cases by a plurality of sentences having form ‘When a thing of sort B is
disposed to Ri when Sid’ then almost always it is also disposed to Rj when Sjd.’
(The Si envisioned here are a considerable diversity of conditions that can be
imposed on B -things, each Ri, is a response made possible by input condition Si,
and B is some background condition—often conceived only vaguely by reference
to a few paradigm examples—under which this consilience of mini-dispositions
seems dependable.) In such cases, EI waives the mini-dispositions in favor of a
single theoretical property τ whose presence/absence in a thing of kind B can
be diagnosed in diverse known ways (whether the thing does Ri in response to
Si for several different Si-tests) and is moreover expected to partake in yet-to-
be-discovered lawful relations with other observable and EI-inferable variables as
well. Actually, finer details of these Si/Ri tests (notably, when some of the Ri are
graded response alternatives) usually yield conception of this τ as a theoretical
variable taking a considerable range of alternative values over things of kind B.

Such “cluster concepts” (as some philosophers have called them) of classic
simplicity abound in chemistry, mineralogy, and medicine wherein the “natural
kind” of a chemical or mineral or, in medicine, the presence/absence of a particular
disease condition is diagnosed by a battery of such tests. A powerful case in point is
the chemical contrast originally conceived as acid vs. alkali vs. salt. Partington’s
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(1935/1965) history of chemistry lists dozens of different tests described by Robert
Boyle (a 17th Century founder of modern chemistry) wherein a sample x of some
to-be-appraised material X is brought into contact with a sample s of some test
material Si. For suitably chosen Si, changes in the appearance of s resulting from
this contact reliably forecasts, for many other identified materials Sj what changes
in samples of Sj will result from their contact with samples of material X. (Many
though by no means all of these test outcomes are changes in s’s color that depend
in part on the chosen Sj . Another especially important response in some tests is
s’s dissolution in liquid x.) Early chemists did not learn about acids and alkalis
by first speculating that such theoretical properties might exist, next deducing
observable consequences of this hypothesis, and finally confirming those predictions
as a triumph of hypothetico-deductive science. Rather, the alkali/salt/acid notions
and their eventual refinement into a continuum of pH levels were an explanatory
induction from observed patterns of reaction such as collated by Boyle. Or so I
submit.

Another good example from everyday life is your learning in childhood about
hot. When in the kitchen, or near a fireplace, or perhaps in a family workshop,
you had repeated experiences wherein touching a certain object resulted in your
immediately feeling acute discomfort followed a little later, if your touch was firm or
prolonged, by blistering of your skin at the point of contact. You easily convinced
yourself that an object which so affected you when touched would do so every time
you touched it for a short duration thereafter, though usually not after some longer
lapse of time. So you concluded—not by deliberated reasoning but by wired-in
cognitive compulsion—that some things at certain times have an If-I-touch-it-I’ll-
get-hurt property. And additional fooling around or watching others deal with such
objects also taught you that a thing having this touching-it-hurts-me property is
also featured by If it is touched by a plastic object the plastic will melt, and by If
fat is spilled on it the fat will sizzle and likely catch fire, and by If a scrap of paper
is held against it the paper will turn curly brown and maybe burn, and by If a pan
of water is put on it and it stays able-to-hurt-me long enough, the water will boil.
Indeed, you learned that any one of these if/thens holding for an it-now pretty well
guaranteed that the others were true of it-now as well, whence you concluded—
again by innate urge though not quite so compulsively as before—that all these
simultaneous if/thens probably manifest a single underlying condition that you
came to think of as “hot” because you also learned that a nearby grown-up’s
shouting ‘hot’ when you were reaching for something also dependably indicated
that your target was in this danger state. From there, you went on to discover that
a thing’s glowing red often signaled that it was hot, that devices your folks called
“thermometers” can finely discriminate differences in hot that you could previously
distinguish only coarsely, and so on for a large repertoire of beliefs about gradations
of hot so securely rooted in your direct observations that even today you may have
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trouble recognizing that these beliefs constitute a theory about a nonphenomenal
Heat variable (degrees of hotness) known to you, via explanatory induction, only
through its causes and effects. Indeed, commonsense is inclined to hold that heat
is observable, just not quite so directly as some attributes we perceive.

There is one more real-science example of explanatory induction that I consider
especially luminous, namely, the discovery and measurement of electrical voltage
and resistance. I have cited this briefly in Rozeboom (1984, p. 220f.), but its
prominence in Langley et al. (1987) encourages a more articulate review here as
well. To highlight the EI essence of this achievement uninhibited by strict historical
accuracy,7 I talk about a 19th Century German physicist named Fohm, who is a
mildly fictionalized version of the real George Ohm (1789-1854).

Fohm’s definitive studies of electrical circuits emerged from the then-novel in-
ventions of electric batteries and galvanometers. We know galvanometers today as
magnetized needles whose rotation around a mounting pivot diagnoses the strength
of a magnetic field induced by a nearby flow of electrons. But Fohm conceived of
these just as detectors of a “strength of magnetic action” variable.8 Batteries, or
better, battery setups, were for Fohm special temperature-controlled assemblages
of physical materials having two poles designed for attachment to wires, metal
bars, or other physical objects which we shall call “loads,” and were such that
when a load bridged the gap between a battery’s poles (circuit completion), the
needle of a galvanometer held near the load showed some deflection from its resting
position. Let us augment the “load” notion to include stipulation of two specific
points (terminals) on the object to which a battery’s poles are to be attached, so
that different terminal placements on the same wire/bar/whatever define different
loads, just as different temperature distributions over the same battery assemblage
count as different battery setups.9 Fohm found that when each of several different
loads Li completed the circuit separately with several different battery setups Sj ,
holding a particular prepared galvanometer G standardly close to Li during its
attachment to Sj rotated G ’s needle a consistently distinctive distance dij from its
resting position.10 And when studying his collection of dij readings, he discerned
that a positive real number ri could be assigned to each load Li and a pair of non-
negative real numbers vj , sj to each battery setup Sj , such that for a constant of

7Partly because the source material I have been able to consult is rather sketchy, but also
because real Ohm’s first report republished in Magie (1965) does not exhibit the EI nature of his
research quite so cleanly as certain modifications of his procedure allow.

8See Magie (1965, p. 470)). Ohm and his contemporaries had already begun also to think of
this observational procedure more theoretically as measuring a “current” of flowing electric fluid.

9The “thermo-electric” battery setups favored by real Ohm comprised a bar of uniform metallic
composition with its poles maintained at different temperatures by iced vs. heated water. This
temperature disparity was an important determinant of current production.

10Real Ohm’s galvanometric response measure was Coulomb’s more sophisticated amount of
torque required to counterbalance the current-induced disturbance.
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proportionality g which could be set equal to 1 by choice of G ’s scale unit, the
errors of approximation

(6) dij ≈ g ×
vi

ri + sj
(g = 1)

over all Li/Sj combinations were negligible. (Henceforth, we will treat (6) as an
exact equality.) These v, r, s assignments are not unique, insomuch as multiply-
ing all the ri and sj by an arbitrary constant and all the vj by another can be
compensated for by a corresponding change in G ’s scale unit. (Tinkering with
G ’s calibration is fair play in any case, because G ’s responsiveness is affected by
its construction and positioning in the circuit’s vicinity, and is best construed to
measure current strength only up to a constant of proportionality.) But the ratios
among the ri and sj , and separately among the vj , are fixed by Equation 6; so by
choosing a particular load L1 battery setup S1, and galvanometric procedure G as
reference standards, Fohm was able to stipulate a unique, reproducible assignment
of the v, r, s numbers in circuit experiments like this.

It is instructive to note that when Equations 6 are error-free, their right-
hand terms can be determined from the data as follows: First stipulate reference-
standard values for r1 and v1, say 1 for both. Then s1 is computable directly from
d11 as s1 = v1/d11−r1 = 1/d11−1 from which, for every other load Li, we can com-
pute ri = 1/di1−s1. Now choose an offset load L2 whose now-identified resistance
r2 differs from r1. Then for every other battery Sj , d2j/d1j = (ri + sj)/(r2 + sj)
so si = (d1ir1 − d2ir2)/(d2i − d1i) and hence vj = d1j(sj + r1). Thus the di1
for all loads Li alternatively in circuit with reference battery S1, together with
the d1j and d2j over all batteries alternatively in circuit separately with reference
load L1 and its offset L2, collectively suffice to compute all the vj , ri, sj and, from
there, to reproduce all the other dij . (The v, r, s assignments so identified are
relative not only to choice of L1 and S1, but to galvanometer setup G as well.
Dealing with variation in G is an additional facet of EI-grounded circuit theory
that we needn’t pursue here. Neither does it matter that modern data analysis
would fit the v, r, s assignments by more advanced methods designed to minimize
approximation errors.)

Fohm described ri and sj as measures of the “resistance” of circuit components
Li and Sj respectively,11 while vj , measured Sj ’s “excitatory force” (later called
“voltage”). Fohm further observed that the dij readings for particular load/battery
pairs were essentially constant over repeated test occasions except for some initial

11Initially, real Ohm took the ri in equations (6) to be lengths of the copper wires he first
used for loads in this experiment. But he also reported that when brass wire was substituted for
copper, one inch of brass was current-wise equivalent to 20.5 inches of copper, showing that what
plays the r -role in Ohm’s law is not length of load but some other variable that is a function
mainly of length among loads sufficiently alike in other respects. How soon thereafter the r -term
in (6) became explicitly recognized as load resistance I do not know.
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variation that might have been due to exceptionally cold weather on two deviant
days. From there, Fohm and his successors were able to work out deeper laws
governing voltage and resistance. Thus when load Li, is a metal wire or other
elongated object of homogeneous material with terminals at ends of its long axis
and constant cross-section perpendicular to that axis, Li’s resistance equals its
length divided by its cross-section area times a constant, specific to Li’s type of
material though also influenced by the load’s temperature, which may be called the
“conductivity” of that material. Eventually, it was possible to assemble electric
circuits comprising one or more current drivers and multiple loads joined by weblike
interconnections and, using detectors of current flow (amperage), voltage drop, and
resistance calibrated from these instruments’ responses to standardizing circuits, to
confirm empirically the final theoretically polished version of Ohm’s law, namely,
that current flow through any load in an arbitrarily complex circuit equals the
voltage drop across the load’s terminals divided by its resistance. Also confirmed
was that a load’s resistance is a property that, within limits, persists throughout
its participation in a variety of circuits.

You will observe that Ohm’s law and its extensions are replete with implied dis-
positional concepts that are not simple surface-level if/thens. Intensity of electric
current was initially disposition to affect devices having an identified disposition
to respond to magnets, but later became more richly theoretical than that. And
voltages and resistances are dispositions to affect current only interactively, so that
initially some of these required simultaneous diagnosis in the fashion of Fohm’s ex-
periment even though once that was accomplished it became possible to construct
standardized meters able to diagnose new voltages and resistances just by a direct
meter reaction. From there, a material’s conductivity is uncovered as a parameter
in how the resistances of loads composed of that material vary as a function of
their shape, size, and terminal placement; while in all likelihood (though I have
no knowledge of this) the influence of temperature on conductivity has material-
specific parameters diagnostic of still deeper attributes of materials.

Three major features of EI-driven theory development are prominent in this
example. First, the numbers inferred to measure dispositions affecting observed
performance protrude in frugal description of provocative patterning discovered
in data collected under systematically varied conditions of observation. Pairing
each of nS battery setups with each of nL loads repetitively on m occasions yields
nS ×nL ×m galvanometer readings that are reproducible under (6), with scarcely
any error, just from 2nS numbers {vj} and {sj} assigned to the batteries plus nL

numbers {ri} assigned to the loads. To appreciate the sense in which these v, r,
s parameters characterize a pattern in Fohm’s ns × n data points {dij} (whose
constancy over repetitions is an additional facet of the pattern that we shall ig-
nore), observe that the method of computing these assignments described previ-
ously defines an algebraic function f of five arguments such that, for any fixed
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choice of reference battery S1, reference load L1, and offset load L2, data points
di1 over all the nL loads in circuit just with S1, together with d1j and d2j over all
the nS batteries in circuit just with L1 and L2, yield prediction of all remaining
(nL− 2)× (nS− 1) data points by formula dij = f(di1, d1j , d2j , d21, d11). Although
this function f is easy enough to program for computer computation, it looks
like gibberish if written out as a single algebraic formula. Nevertheless, it makes
precise a pattern of interpredictive redundancy within data array {dij} that when
we comprehend its strength overwhelms us with conviction that these observations
have common sources which plainly cannot consist in some of the G-readings being
causes of others.12 And once we appreciate the lucid elegance with which Equation
6 describes this data pattern by decomposing the surface-level f -interrelations into
components associated with separable circuit parts, with the directionality in this
decomposition portraying all the observations dij as similarly dependent on vari-
ables over these circuit parts whose values are estimated by the v, r, s parameters,
this parsing of the data pattern demands as much a realist interpretation as do the
patterns other scientists see on the output screens of telescopes, bubble chambers,
and electron microscopes.

Second, the new variables defined by EI-provocative decomposition of a data
pattern generally project generalizations broader than orthodox statistical gen-
eralization. The loads (and similarly the batteries) in Fohm’s experiment were
temporal continuants (enduring things) from which only occasional time slices
(temporal stages) were in circuit with a battery. So the ri value computed for load
Li in its temporally extended entirety actually assigned the same resistance rating
to each of Li’s time slices that were in a circuit from which a galvanometer read-
ing was taken. The empirical within-load constancy of this rating under repeated
assessments urges provisional inference that within limits not yet clear, ri is Li’s
resistance (a) at every moment t at which Li completes a galvanometer-monitored
electric circuit even with battery setups not used previously, and (b) also at mo-
ments when Li is not in a circuit at all. (Projection (a) is an empirical prediction;
(b) is an instance of believing that dispositions persist even when not manifest.)
And the force of projection (a) for anticipating future observations is not predic-
tion that the past relative frequency of some observed attribute will tend to recur,
but a set of conditional predictions about the behavior of new circuits containing
Li in which the conditionals’ antecedents hypothesize information about the other
circuit components.

Third, once data obtained under tightly controlled conditions have made such
a pattern evident, it can generally be found, by systematic variation of condi-
tions previously held constant, that this pattern’s local parameters covary with
other features identified (often as dispositions) in more elaborate patterns whose

12A thought problem for you: Why don’t you consider it even remotely plausible that some of
these G-readings, or the current strengths that dispose them, could cause the others?
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additional parameters disclose still more source variables. Thus had Fohm’s exper-
iment suffered large temperature fluctuations from one circuit reading to another,
or (contrary to physical possibility as we know it) his loads asynchronously changed
their metallic composition every few hours, it would have been nearly impossible
for him to discern any lawfulness in his data. But once pattern (6) was perceived
under tight constraints and confirmed by replications, it become straightforward
to study how resistance varied as a function of conditions previously held con-
stant and discover conductivity in the parameters thereof associated with a load’s
material.

Explanatory Induction: Overview Principles

The generic character of explanatory induction can be summarized as follows:

1. For a scientific data collection to have any interpretive significance, it must
exhibit some regularity that cries, or at least softly pleads, for generalization
to other events.

2. When a generalizable regularity observed in local data is described with
quantitative precision (generally an idealized pattern qualified by goodness-
of-fit ratings), its description includes certain parameters that we suspect
depend in part on local conditions that will change when the form of this
regularity recurs for data of this sort in other situations.

3. When parameters of a local-data pattern are found to vary with changes in
local background constraints that have been selectively relaxed with some
care, that dependency will likely manifest a pattern having parameters of
its own, and so on for an iteration of parameters disclosed by constraint
relaxations.

4. When working observed pattern parameters into stories about what seems
to be responsible for what, stories that we need to guide our predictions of
new events from our accumulated experience with these phenomena, we are
often compelled—willingly—to treat those parameters as estimated values
of hidden variables13 that we know only through the data regularities they
dispose. However, data patterns are often not so clear as we would like;

13Source variables inferred from covariations have become commonly known in the factor-
analytic/structural-modeling literature as “latent variables” or “latent factors.” This label is
somewhat misleading, insomuch as “latent” ordinarily connotes inactivity, whereas were hidden
variables inactive we could not detect them. But once we do detect them, they are not really
hidden anymore either. What we need here, but have not yet found, is a deft adjective connoting
“observed only indirectly.” (All observations are indirect to some degree, but some rather more
so than others.)
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even when strong they may be frugally parameterizable in more ways than
one; and systematically controlling or passively observing additional factors
ignored previously may change the pattern’s gestalt.

To illustrate this last point, which is important, consider the research of Rohm,
an alter ego of Fohm whose experiments more closely resemble those of real Ohm.
Initially, Rohm used a single battery setup S1 and, repeatedly over several days,
took the G-readings of S1’s circuit completions with eight copper wires {Li} having
the same rectangular cross-section but large differences in length. Each load’s G-
ratings were averaged over repetitions of Li’s circuit with S1 to define mean datum
di for this load. And when each di was inverted to yi = 1/di and plotted against
wire length xi over all these loads, it was plain that y was a linear function of x
with a positive slope b and additive constant a. Rohm next observed G-readings
on circuits of S1 four brass strips with the same cross-section but differing in
length, and found the dependence of y on x in this set of brass loads to be again
linear with the same additive constant but a different slope. Next, he changed
the battery setup to S2 and found the same linear data pattern as before within
each same-metal group of loads, but with the pattern’s a and b parameters both
altered by the battery shift. However, the proportionate change in b under shift
in load-metal with the same battery was constant across batteries; so Rohm was
able (the algebra is simple though not entirely obvious) to summarize all these
results by a law just like Equation 6 except that Fohm’s r was replaced in Rohm’s
version by m × x for a numerical constant m specific to the load’s metal. Rohm
could have viewed m at this point as measuring a conductivity property of metals.
But he aborted that conception when his study of varying the cross-sectional
areas w of his loads showed that m × x equaled cx/w for a deeper numerical
parameter c that differed across load metals. Rohm’s c is the same conductivity
coefficient that Fohm discovered when, after identifying load resistance, he looked
for determinants of r. But Rohm’s pattern parameters did not explicitly exhibit
r at this stage of his research. Only later, when he varied loads over irregular
shapes and odd terminal positionings did Rohm perceive that it was most insightful
and computationally universal to characterize loads by their r -terms in pattern
parameterization (6). That a load’s resistance could also be estimated from its
physical dimensions and the conductivity of its metal in the restrictive case of
cylindrical loads with terminals at their ends had importance for practicalities of
electrical transmission but mattered little for basic circuit theory.

Explanatory inductions are thus provisional conclusions that may well become
revised, expanded, or superseded altogether by more intricate configurations of
factors, hidden or manifest, as more of the total pattern enters our ken. But that
does not mean that explanatory inductions are usually wrong, anymore than it is
wrong to say that John weighs 150 lbs. when his exact weight is 153.2 lbs. Human
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cognitions seldom if ever match reality exactly. But not all cognitive inaccuracies
are equally fallacious. Getting things roughly right is often all we need for the
purpose at hand; and assertions that are somewhat vague or not entirely correct
can still be vaguely or approximately true.14 Just like material technologies, our
conceptual resources and the beliefs these enable are constantly evolving, due in no
small part though by no means entirely to science’s explanatory inductions. But
modern replacement of slide rules by electronic calculators doesn’t show that slide
rules didn’t do good work in their day; and neither does the likelihood, that much
in our contemporary repertoire of EI-driven theoretical constructs will eventually
grow obsolete, at all impugn their value in affording the truest account of natural
reality currently available to us.

Epilog on Practicalities

As you have observed, this essay has not attempted to advise you on specific
statistical techniques to favor when personally analyzing and interpreting data.
Rather, it has surveyed three major contrastive outlooks15 on the logic of scientific
reasoning with intent to promote certain attitudes that should make a difference
for what you do in research practice. In broadest outline, I encourage:

1. Feel free to draw upon imaginative speculations when planning a research
study or soliciting support for its execution, but resist with all your might,
so far as supervisors, grant appraisers, and journal editors allow, actually
interpreting your resultant data as a binary pro/con vote on some hypoth-
esis proclaimed in advance. As a corollary, shun null-hypothesis tests while
appreciating that the statistical models these exploit readily avail you of
conclusions vastly more informative than pass/fail grading of H0.

2. Sniff at Bayesian confirmation models with cautious welcome, like a guard
dog appraising strangers in the company of his master. You will seldom
be positioned to revise any of your unconditional beliefs in accord with its
quantitative ideal, nor would trust in the outcome be wise if you could. But
when working toward a deliberated conclusion of some importance to you,
the quality of your reasoning may well profit from a dry-run attempt to sim-
ulate Bayesian derivation of this conclusion from beliefs in which you feel
considerable conditional/unconditional confidence, so long as you translate
Bayesian conditional-Crs into probabilistic if/thens that you can verbalize.

14Failure to develop accounts of truth and reference that allow semantic aboutness relations to
be matters of degree rather than all-or-none remains a large blemish on modern philosophy of
language.

15(Ed.) The three outlooks are Hypothetico-Deductive, Bayesian, and Abductive. See Note 1
above.

17



And although I have not developed the point, there are special contexts of
data interpretation, notably ones involving inference to and from probabilis-
tic generalities, where the Bayesian model offers guidelines through the fog
in which commonsense intuition abandons us.

3. When analyzing data, try to summarize these as conforming to some pre-
dictive regularity describable by a small number of parameters within an
orderly form such as exemplified by algebraic equations of modest complex-
ity. (By “predictive” I mean that under this regularity, appreciable parts of
the data array can be reproduced with decent accuracy from its remainder.)
When circumstances permit, it is desirable to perceive this local data pat-
tern as a fragment of patterning more strongly evident, and perhaps more
intricate, in the collation of your results with findings by other studies varied
in their conditions of observation. And when interpreting that pattern, view
these parameters at least provisionally as measuring features of your data’s
underlying sources. Moreover, when seeking to replicate this pattern—an
exceedingly important phase of research practice—under variation in the
background constraints whose local constancy has enabled this pattern to
become detectable, expect these parameters to emerge as variables that are
predictively interrelated with other variables whose local constancy has also
been relaxed.

Unpersuaded? Then let me offer another triplet of recommendations, not par-
ticularly rooted in what has gone before but focused on how to choose statistics
for analysis of sample data.

The statistical relevance precept: Make sampling statistics your ser-
vant, not your master. When designing an experiment, or analyzing data already
in hand, first of all ask yourself what summary features of these results you would
most desire to learn, or would like to see replicated if you have noticed them al-
ready, were this data array’s sample size so large that any statistics you choose
to take from it have essentially zero sampling error. Next, compute the values of
these statistics for your sample data and think on how you would provisionally
interpret them, either in cognitive inferences or in decisions to act, were you confi-
dent that they were population values. Finally, work out some conception of how
this putative knowledge of your target population is degraded by the sampling
error that statistical theory warns must in fact contaminate your sample statistics
to some degree, and think through how that should attenuate your interpretation
of these results.
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Comments. This precept is neutral on conflicting philosophies of inference. It
is your right to highlight a statistic because its value is predicted by a hypothesis
this experiment is designed to test, or even, if you insist, to collapse its continuum
of metrical alternatives into two or three categories. But if your primary interest
shifts adventitiously to a feature of your results not anticipated by any statistical
model you had intended to apply (e.g., when a bivariate relation’s trend that your
preplanned model describes by a linear correlation coefficient appears strongly
curved in the data), that too is your right. The precept is also neutral on what
may be meant by your statistics’ “population values,” in particular whether these
(a) are abstractions from your data variables’ joint frequency distribution in a
larger totality of real individuals sampled by your subjects, or (b) are features
of a probability distribution over these variables, conditional on a complex P of
background properties common to your subjects, that is indifferent to how often
P is realized. (These construals of “population” don’t really need airing just yet;
but your elementary statistics training has so often encouraged you to presume
the first view that a caution against complacency in your understanding of this
notion seems warranted.)

The precept’s second admonition is more devious. It doesn’t urge you to draft
the journal article or lab report you would produce were your sample size truly
enormous, but invites you to try on a frame of mind that frees your statistical
thinking from enchantment by the sampling-theoretic tail that far too often wags
the data-interpretive dog. Your struggles to master the technicalities of textbook
statistics may well have depleted your zeal to question which outputs of their
procedures are what you want to learn from your data, especially if you rely on
data-analytic computer programs that squeeze numbers out of your raw input by
routines whose documentation of algorithm or motivation you do not fully com-
prehend. Someone has judged these outputs relevant to questions they considered
worth asking. But which of them matter for your questions? (How long should
you treasure the t statistic computed for a mean difference in your data, or search
for meaning in the numerical values of ANOVA’s F ratios for a sample trend’s
main and interaction components in preference, say, to graphic comparisons of
group means?) You have nothing to gain from concern for a statistic’s sampling
uncertainty (save to oblige colleagues who want it) if you have little idea of what to
do with its population value were you to know that. Beyond that, if the statistics
you have selected do indeed seem right for your intended interpretation, how pre-
cise a determination of their population values would your interpretation be able
to exploit? (Might information just that they lie in one broad region of possible
values rather than another be all the detail that you can use?) The point of asking
is not to justify a needlessly sloppy report, nor even to take comfort in current
tolerances for imperfect accuracy, but to think on this experiment’s position in the
larger scheme of work underway on its topic. If you don’t know how interpretation
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of your chosen statistics could profit from learning their precise population values,
shouldn’t you be trying to develop a conception of your inquiry’s target that does?

The precept’s third admonition prompts two closing considerations, one tactical
and the other strategic. Tactically, left to your own devices you would undoubt-
edly be at a loss to put much precision into your spread of subjective uncertainty
about the population values of statistics you have sample-estimated. But through
the logic of deriving particularized if/thens and consequent since/therefores from
probabilistic generalities, sampling-theoretic confidence intervals for your sample-
statistics’ population values give you near-unconditional posterior credibilities
which, after some fine-tuning for which you may feel need,16 may well be about
as good as your rationally disciplined uncertainty about population statistics can
get. To be sure, such posterior statistical confidences are conditional on the ideal-
ized premises of the statistical model under which they have been computed. And
my fine-tuning qualification acknowledges the broader point, about inference to
particulars from probabilistic generalities, that the strength of your c-is-B belief
channeled from your c-is-A conviction through the if/then conduit set up by your
confidence that Pr(B | A) ≈ r may well be modulated by other things you also
believe about object c. Alternatively, if fine-tuned confidence intervals are not
to your taste, you can estimate Bayesian posterior credibilities for your statistics’
population values by computational procedures detailed in the technical literature.
Except when confirming results from previous samples from what you are confi-
dent is the same population, this should seldom differ enough from your spread of
uncertainty framed by confidence intervals to make any practical difference.

Strategically, however, efforts to be precise in our uncertainty about a sample
statistic’s population value are often pointless. The reason is a dirty little secret:
We seldom have much clue to the identity of this population or for that matter any
good reason to think of it as unique. According to statistical theory, probabilities
in a mathematically structured system thereof are always conditional on one or
another configuration P of population-defining properties variously described as
preconditions, background constraints, local constancies, or other phrases similarly
connotating limitation. In principle any simple or complex property can play this
role: Whenever we envision a probability distribution {Pr(Ai)} over an array A
= {Ai} of attributes, we can always think of some constraint P such that each
Pr(Ai) is really Pr(Ai | P ), whereas for any A in A the restriction of Pr( ) to
PrA = Pr( |A) defines what can be treated as an ostensively unconditional prob-
ability distribution over the more restricted population P·A. When the probability
calculus is applied to sample data comprising an array of attributes distributed
over a set s of subjects, its “population” provision is interpreted as some conjunc-

16Notably, when the interiors of some confidence intervals include regions of the real-number
continuum wherein the statistic at issue cannot lie, for example, negative values for variance
ratios.
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tion P of properties, common to all the members of s,17 which statistics jargon
treats as a population from which s is a “sample.” But enormously many different
populations are sampled by s: In addition to common properties {Pi} expressible
by various logical compounds of the predicates used to describe subjects in our
data records, the members of s share numerous additional properties {P ′

j} that we
could have put on record but didn’t, and uncountably many more {P ′′

k } that we
couldn’t have ascertained at all, especially the ones of which we currently have no
conception; and every conjunction Pi ·P

′

j ·P
′′

k of these is also a population sampled
by s. So when we talk about population values of statistics computed from the
s-data, which population do we have in mind? This wouldn’t matter if our sample
statistics at issue had the same population value in each of these, but of course
that is wildly untrue. Is there something sufficiently distinctive about one of these
to qualify it as the population relative to which s-sample statistics have population
values? The most logical candidate, the conjunction of all s-shared properties, is a
nonstarter; for that includes being a member of s, leaving no room to generalize.
Another contender, motivated by sampling theory’s yen for “random” sampling,
is the P from which s’s sampling is most nearly random. But even if we had a
concept of random sampling that is not largely vacuous,18 it would not define an
effective criterion by which we can plausibly judge, from all we know about some
other individual i not in s, whether i too is in this population most randomly
sampled by s.19

17“Common to all” doesn’t preclude fine differences in what is said to be in common: For
example, the members of a group of preschool children all share the property of being younger
than six years (or some other upper bound) even when their exact ages are all different.

18The problem with this notion is not so much random as its coupling with sample. A random
variable is just a scientific variable (dimension of attribute alternatives) over whose values we
have posited a probability distribution conditional on some background condition. And in its
original conception, a “random sample” is a set of things picked from a larger set S of real
objects by a procedure under which each subset of S of given size has the same probability of
selection. But what could it mean to sample randomly from a population-defining property that
is indifferent to the prevalence or identities of its instances? The best prospect for extending the
original selection-from-S sense of this to an open population P is to say that a set s of P -things
is a “random” sample from P if the procedure by which s has been picked imposes an additional
constraint C such that the probability distribution in P ·C of certain distinguished variables has
special stipulated features (e.g., equiprobability of all their values). But this prospect is highly
programmatic: It would at best yield many different types of random sampling whose motivation
remains obscure; and in any case, to my knowledge neither this nor any other approach to defining
random samples from open populations has been advocated in the statistical literature. Old-style
random sampling from extant totalities continues to have applications value—for example, in
demographic surveys, quality-control batch testing, and assigning research subjects to treatment
groups—but its scope is quite limited.

19For simplicity, I have put the population problem in terms of properties common to all indi-
viduals in a data collection’s subject sample s. But preconditions of generalization also come in
more complicated versions that incur correspondingly more complicated indeterminacies of pop-
ulation identity, especially when distributions of independent variables and statistics conditional
on particular values thereof are at issue. To a large extent these can with some artifice be treated
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Let’s approach this problem from another direction. Given our sample statis-
tics and an inventory of all the properties we know to be shared by our sample
subjects s, how do we judge whether a statistic’s value computed from the s-data
should well-approximate the value of that same statistic in another group s′ of
individuals whose scores on the relevant variables are still unknown? In prac-
tice, we base such judgments on the similarity of properties shared in s′ to the
ones shared in s. But we don’t include all the latter in this appraisal because
in the first place we don’t know most of them, and secondly don’t think that all
the ones we do know are relevant. We believe—never mind why, though there
is much to say—that some s-shared properties made a difference for the s-data’s
statistics whereas others didn’t matter, and that if s′ too shares all the former
then, regardless of what happens in s′ on the latter, the statistics observed in s
should well-approximate the corresponding statistics in s′ so long as sample sizes
are respectable. But we are also pretty sure that relevant/irrelevant here does not
coincide with known/unknown. So even if most of the known s-shared properties
are also common to s′, statistics from s may not generalize to s′ very well if s′ lacks
some of the s-shared properties relevant to those statistics, whereas these statistics
may generalize nicely to an s′ lacking some s-shared properties if those happen to
be irrelevant. How we manage to learn which features of our data’s background
constancies make a difference, and what differences they make, are matters for
a treatise on experimental design, not closing thoughts. The closing point to be
taken here is simply that it makes little sense to fret over how closely our sample
statistics approach their population values until we have made an honest effort to
say what population, and to identify that in terms of properties we have reason to
believe really matter. Meanwhile, you can’t go wrong by heeding Steiger’s Maxim:

An ounce of replication is worth a ton of inferential statistics. (Steiger,
1990, p. 176).

as special cases of the simple version. For example, each value of an independent variable is a
property common to a subset of s that samples a subpopulation of any population sampled by
s. And by viewing s as a single entity of which our individual sample subjects are parts, we can
include holistic properties of s, such as the frequency distribution of an independent variable, in
the defining features of a population of sets from which s is a sample of size 1. Even so, these more
elaborate sample features contributing to population indeterminacy warrant explicit recognition
because they underlie important operational issues of research design, notably an experiment’s
“controls.”

22



References

Hanson, N. R. (1958). Patterns of discovery. Cambridge: Cambridge University
Press.

Harman, G. (1965). The inference to the best explanation. Philosophical Review ,
74 , 88–95.

Hartshorne, C., & Weiss, P. (Eds.). (1934). Collected papers of Charles Sanders
Peirce (Vols. 1–5). Cambridge, Mass.: Harvard University Press.

Josephson, J. R., & Josephson, S. G. (1994). Abductive inference. Cambridge,
England: Cambridge University Press.

Langley, P., Simon, H. A., Bradshaw, G. L., & Zytkow, J. M. (1987). Scientific
discovery. Cambridge, Mass.: MIT Press.

Magie, W. E. (1965). A source book in physics. Cambridge, Mass.: Harvard
University Press.

McCrae, R. R., & Costa, P. T. J. (1995). Trait explanations in personality theory.
European Journal of Personality , 9 , 231–252.

Partington, J. R. (1935/1965). A history of chemistry (Vol. 2). London: Macmil-
lan. (Originally published 1935)

Rozeboom, W. W. (1961). Ontological induction and the logical typology of
scientific variables. Philosophy of Science, 28 , 337-377.

Rozeboom, W. W. (1970). The art of metascience, or, What should a psychological
theory be? In J. R. Royce (Ed.), Toward unification in psychology. Toronto:
Toronto University Press.

Rozeboom, W. W. (1972). Comments on professor Wilson’s paper. In J. R. Royce
& W. W. Rozeboom (Eds.), The psychology of knowing. New York: Gordon
& Breach. (pp. 390–398)

Rozeboom, W. W. (1984). Dispositions do explain; or, picking up the pieces after
Hurricane Walter. Annals of Theoretical Psychology , 1 , 205–223.

Steiger, J. H. (1990). Structural model evaluation and modification: An interval
estimation approach. Multivariate Behavioral Research, 25 , 173–180.

Tuomela, R. (Ed.). (1977). Dispositions. Dordrecht, Netherlands: D. Reidel.

23


