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ABSTRACT

In Rozeboom, 1993, I argued--primarily on the basis of experience with Hyball rotation--that
due to the problem of local optima in nonlinear optimization, analytic factor routines camnot generally
be trusted to converge to the axis positions that globally optimize their criterion measure. Here, I
present an 3djudication of this matter, using simulation data with complex source structures, for the
major variants of Orthomax, direct Oblimin, and Hyball. Sensitivity to start position--or, for
Orthomax, its lack--is well documented; but more importantly, present results include extensive
appraisal of these rotation method’'s comparative success in source recovery at varied grades of problem

difficulty, leading to some unequivocal recommendations on what to use when strong hyperplanes are the

goal of rotation.
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Preface

When devising analytic factor-rotation procedures, it is one thing to define a criterion
measure whose optimization defines the target of axis positioning, and something else again to program
routines that do in fact locate these optima for inputs to which the algorithm is applied. In
Rozeboom, 1993, I reported discovery that the output of my Hyball rotation program (Rozeboom, 1991la,
1991b) is significantly dependent on the initial axis positioning from which the algorithm iterates
successive improvements, and argued that the same should be expected from any rotation procedure whose
solution is a convergence of criterion-guided iterations. But my description there of an effective
solution to this problem was accompanied by little hard data on Hyball's sensitivity to start position
and none at all for other rotation methods. I have now completed an extensive simulation study of this
matter for three major families of analytic rotation, namely, Orthomax/Promax, direct Oblimin and, of
course, Hyball. Its findings are rather instructive.

The results reported here commence with tests of a spectrum of variants within each of the
Just-named rotation families for their success at source recovery when rotating extraction axes from
a standard start position. The best-of-breed then advance to a multifaceted examination of their
performance under Spin search, which is the technique described in Rozeboom, 1993, for prevailing over
the start problem. The most important facet thereof is appraisal of these methods’ respective source-
recovery success when Spin-search enables full realization of their criterion’s potential for
diagnosing best pattern. A second is establishing the extent to which the yield of each method is
indeed affected by variation in start position. A third that turns out to be minor, but might well
have proved otherwise, compares Serial vs. Parallel concatenation of planar rotations within the
solution iteration. A fourth reveals how results for each of the preceding facets vary as a function
of moise level in the source-patterns’ hyperplanes, that is, the degree of blur in the distinction

between salient and non-salient source loadings. Finally, there are provocative findings to discuss
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on the difference between each method's Spi.n-seaich solution judged best by the method’s optimization

criterion and the one that in fact most closely matches the source structure.

Setup
In order for the results tabled below to be meaningful, I must first clarify this study's
technicalities. Specifically, you need details on:
B Composition of the simulation data on which success at source recovery has been appraised.
B Computer implementation of the three tested rotation species.
B The contrast between Serial and Parallel iterated rotation.
B The nature of Spin search.

® The Divergence measure of pattern similarity.

The simulation data.

The test problems for this study were 100 standardized covariance matrices simulating the
correlations among NV = 25 data varisbles (items) having NF = 5 common factors. These were generated
by randomization within frame constraints by the production process described in Rozeboom, 199?. This
procedure starts by creating an MV-by-NF pattern template in which selected elements are tagged as
"salient." In the present study, as in Rozeboom 199?, the salient elements comprised all the 25
different ways to realize factor complexities 1, 2, or 3 on five factors. Thus, five items had just
one salient factor loading, 10 had two salients, and 10 had three; while 11 of the 25 loadings on each
factor were salient. Next, each of 100 raw source patterns was constructed by assigning random
numerical values to the template’s salient elements with uniform probability in size interval [.25,
1.0] and sign made negative with one of the four probabilities P = 0, .10, .20, .30. And nonsalient
loadings were assigned with uniform random probability between -W and +W for one of five hyperplane-
moise levels W = 0, .05, .10, .15, .20. Each of the 4Xx5=20 fully-crossed <P,W> combinations was
randomly realized five times, yielding a total of 100 raw source patterns. (Differences in P had no
discernable effect on source recovery by any of the methods tested, and will hereafter be ignored. But
as you might expect, W proves to be important.) Next, for each of the 100 raw patterns (R}, the to-be-

generated dataset based on R was assigned random item commmalities in the interval [.25, .80] together
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with a matrix G of semi-random factor correlations, enabling the refined source pattern A for this

St }
dataset to be derived by a esdwmwise rescaling A = DR of R that put the assigned commmalities on the

diagonal of common-parts covariance matrix G = ACA’ = DRCR'D.

Production of Gy made 8 of its 10 between-factor correlations nonzero by a collinearity-
shielded randomization eventuating in correlation highs averaging .52 over all the datasets,

and lows averaging —.32. For details of this procedure, see Rozeboom, 199?

From there, a simulation population P of 5,000 datascore records with composition Y = AF +U was
gererated in such fashion that in this P, scores on unique variables U = <u,...,u,s> were precisely
orthogonal to themselves ard to scores on the simulated source factors F = <f;,...,f5>, scores on F had
precisely the assigned correlations Cp; and the score distributions on F and U were approximately
Nommal with Diag[Gy] = I - Diag[Cg]. Thus classical factor model Cyy = AGgeA’ + Gy, with Gy diagonal
and item variances in Gy all unity, fitted P exactly. Finally, a subject sample of size NS = 400 was
randomly selected from P, the within-sample correlations among the 25 Y-variables were solved for five
principal factors (iterated commmalities), and this extraction pattern was archived along with the

population’s source pattern A and covariances Gy awaiting source-recovery tests.

Sample size NS = 400 was chosen in light of evidence (Rozeboom, 199?) that sampling
disturbance in the best possible solution for source pattern from item correlations at this
sampling level is modest but by no means negligible. In simulation studies, this limit on
recovery accuracy can be identified rather precisely by noting that any extraction pattern's
rotation most closely matched to source should differ at most trivially from the axes obtained
by its procrustes rotation to the source pattern as target. In the present study, RMS pattern
difference, mean congruence Divergence, and RMS factor-correlation difference between an
extraction pattern’s procrustes rotation and its source target averaged .050, 7.87°, and .047
respectively over all 100 datasets. (See below for clarification of these measures.) These
recovery limits were sturningly unaffected by hyperplane noise: The largest group-mean

deviations from these grand means at any W-level were .002, 0.16, and .008 respectively.
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The distributions of factor loadings that resulted from this production process, both in

populations and in samples, are detailed in Appendix C.

The rotation programs.

As ammounced above, the three species of faétor rotation appraised here are Orthomax/Promax,
direct Oblimin, and Hyball. The algebra of the first two of these is thoroughly covered in Harman,
1976, and Mulaik, 1972, while Rozeboom, 1991a, 1991b, amply details Hyball; so this needs only a bare-
bones review here. But I must also say something about how the present study has implemented
Orthomax/Promax and Oblimin computationally. For unless I can reassure you otherwise, you have every
right to wonder if certain disappointing performances reported here might be due more to programming
blunders than to method inferiority. Ultimately, you must simply take my word for it that I have done
considerable cross-checking and detailed verification/correction of computations having suspicious-
appearing output. But at least I can tell you the origins of my source code.

Note. When I describe the parameters that select variants of these rotation species, I shall
mot explicitly mention that an additional option common to all is Kaiser normalization, that is,
temporarily rescaling each data variable to have unit common-part variance during rotation. The
standard alternative to Kaiser normalization (NORM =1) is leaving the items’ variances at umity

(NORM = 0) so that their common-parts variances remain commmalities.

Orthomax is the family of orthogonal rotations whose most familiar variant is Varimax. Its
measure of the quality of loadings on each factor f; in a pattern matrix A is Q; = -a? e (a_g)z, where
& (r = 2,4) is the mean rth-povered loading in A’s jth colum, and parameter v is a mnon-negative
scalar selecting variants of which Quartimax (y = 0), Varimax (y = 1), and Equamax (y = NF/2) are most
distinguished. Orthomax seeks to maximize 5, that is, the mean of Q; over j=1,...,NF. However, for
uniformity with Oblimin and Hyball, whose quality measures are optimal at minimum, I shall define L.,
to be 1 -Q and treat this as a Loss measure which Orthomax seeks to minimize. (Q never exceeds 1, and

reaches this limit only when NORM =~ 1, y = 0, and every variable loads on just one factor.)
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Orthomax was executed in this study by code copied from IMSL with no significant

modifications. This updated my older version thereof that proved to contain a convergence-check error

invalidating my previous finding that Varimax seemed surprisingly sensitive to start position.

Promax (Hendrickson & White, 1964) has no pattern-quality measure of its own, but is
parasitical upon some other method to provide a base rotation A; of the input pattern which Promax then
refines by procrustes rotation to a target pattern derived by raising each element of A; to its Kth
power (K22 a method parameter) while retaining its sign. Although any rotated pattern A, can be
Promaxed, its creators intended Promax to be a fast oblique refinement of an orthogonal rotation like
Varimax preparatory to further oblique polishing by hand. So the present study tests Promax only with
Orthomax base.

The Promax routine applied here is my own programming; but its logic uses only simple code
techniques with which I have much experience. (That is, trust me.) Its version of procrustes is the
computationally easy one that first rotates to least-squares match with target without concern for the

rotated factors’ variances, and only afterward normalizes the latter.

Direct Oblimin is a prominent family of oblique rotations that attempt, roughly speaking, to
minimize a mean-shifted uncentered covariance between the magnitudes of loadings on the two factors in
each factor plane.! More precisely, (direct) Oblimin's measure of pattern quality in the plane of
factors <fy,fi> is Qy -;g—a—ﬁ - 7-(;?)(;2-), where ;? is as above, @ is mean af;af, over the items, and
scalar parameter y is in principle urbounded but in practice strongly recommended to be less than +.8
with nonpositive values preferred (Harman, 1976, p. 322). Oblimin’s Loss function Lopms Which its
computational routine seeks to minimize, is then mean Qi over all factor pairs j # k. Its most
distinguished variant is (direct) Quartimin, picked by v = 0.

Oblimin was executed in this study by modified IMSL code. In IMSL and other commercial
rotation software, Oblimin iterates a series of conditional optimizations in which some factor f; is
shifted in just the plane of <f;,f > for another factor f; to the position that minimizes Zy,,. (This
planar shift primarily changes the loadings on f,, but variance normalization also rescales the
otherwise-unaffected loadings on f;.) The IMSL code for this conditional (planar) optimization was

copied with no alteration beyond minor housekeeping adjustments. But present code for managing
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iteration of these planar improvements expanded considerably ypon its IMSL version: (1) Corvergence
of the rotation iteration was signalled by negligible change in factor position, the same as in Hyball,
rather than by negligible decrease in the Oblimin Loss measure.? (2) Oblimin rotation from cblique
start positions was enabled, as was also (3) rejection of rotations containing degenerately large
pattern coefficients or factor correlations. And (4), provision was made for iterating the conditional
optimizations in varied factor planes either serially, as standard for Oblimin, or in parallel as
standard for Hyball. This very same global-management code also iterated the Hyball planar

optimizations; so if any bugs survived its rather thorough vetting, they affected results from Hyball
as mxch as from Oblimin.

Since Hyball rotation is my own creation, I can advise you with authority that its code in
the present study was as good as it gets. But you still need a brief review of its logic. Hyball
attempts to optimize the strength of hyperplanes by maximizing the density of near-zero pattern
loadings while largely ignoring ones that appear to be salient. Its appraisal of a factor pattern A's
structural quality is grounded on a fulsomly parameterized hyperplane-misfit measure ¢(e) whose
argments e = |a;;| are the sizes of individual loadings in A, The value of ¢(e) starts at zero for
hyperplane ideal e=0, and rises with increasing e to a finite asymptotic limit whereby as e grows
large, ¢(e) becomes increasingly indifferent to change in e. The pivotal parameter in ¢ is hyperplane-
bandwidth BH; heuristically, item y; is in the hyperplane of factor £; just in case |a;| < BH. The
curvature with which ¢(e) rises as e increases from O to BH is determined by two parameters JA and OV,
while a third, JB, selects the speed of approach to asymptote for loadings larger than BH. (See
Rozeboom, 1991b, for details on these that you don’t really need here.) Finally, Hyball’s overall Loss
function %y, is a weighted average of ¢(|aj;|) over all the loadings in A, wherein the differential
severity of weighting is selected by a nomnegative parameter WSAL. Rozeboom, 1991b, describes the
weights picked by WSAL > 0 as "salience" weights in view of their character in planar rotations; here,
it suffices to say that the weight w;; assigned to ¢(|ay;|) in Ly, is the mean of |ay|"™% over all
k # j, this being simply 1 (no differential weighting) when WSAL = 0. When CV or JA is O with
WSAL = 2.0 and BH very large (say 1.0 or more), Zy; is almost though not quite identical to the

Quartimin variant of Zy,,. Hyball too attempts to minimize its £ by iterating conditionally optimal
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planar shifts; however, when cycling through all factor planes it standardly concatenates its planar
shifts in parallel rather than serially as clarified below. (Also unlike Oblimin, Hyball's immediate
appraisal of a planar shift ignores any configuration changes that this shift entails in other factor
planes. [For discussion of this point, see Rozeboom, 1991b, p. 194ff.] Also, Hyball planar rotations
igrore points that could be brought into the hyperplane under adjustment only by an extremely large
factor shift.) Finally, Hyball provides two modes of solution for its planar optima, SCAN (Brute-force

scanning) and STEP (polished Step-down regression). STEP is much faster than SCAN, but not quite so

accurate.

I have recently completed a massive appraisal of Hyball’s method parameters’ interactive
success at source recovery from the same simulation datasets used in the present study.
Although its quantitative findings are not now and probably never will be tidied for
publication, their qualitative summary has been included in the documentation that accompanies
my Hyball code package and highlights thereof should also be mentioned here. (1) SCAN is
distinctly superior to STEP, but only modestly so. Their difference is largest at
intermediate levels of hyperplane noise, and vanishes as hyperplanes become either very easy
or very difficult to discern. (2) The lowest admissible value, -1, of curvature-within-
hyperplane parameter CV is much inferior to CV = 0, which in turn is slightly inferior to ¢V
= 1. There are hints that even larger CV may be trivially better yet; but differences over
range CV 2 1 should be so minuscule that overriding Hyball’s default setting CV = 1 would seem
pointless. (3) Results for curvature-within-hyperplane intensifier JA urge non-negative
settings for this, but are ambiguous about its performance over range 0 - 6. On balance,
however, the nod goes to JA setting 1 or 2, with 1 perhaps slightly the better under SCAN.
(4) Variation in outlier-emasculation parameter JB over its three tested settings 2,4,6
affected performance only weakly. But in SCAN mode, JB setting 4 was distinctly superior to 6
and slightly inferior to 2; whereas under STEP, JB settings 4 and 6 were both modestly better
than 2. (5) Not surprisingly, the best setting for hyperplane-bandwidth parameter BH is
influenced--though less than you might expect--by the target hyperplanes’ diffuseness. For

the present ensenble of source patterns, BH in the range .15 - .25 is clearly preferable with
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BH = .20 (or theresbouts) probably the best default. (6) Results for weighting parameter WSAL
over tested settings 0, 1.0, 2.0 have surprised me. WSAL = 2.0 was substantially inferior
to the others under all examined conditions; and in STEP mode, setting O was mildly better
than 1.0. But in SCAN mode, WSAL = 1.0 outperformed WSAL = 0 consistently and appreciably.

(WSAL = 1.0 under SCAN also appears slightly better than WSAL = .5.) So I now recommend WSAL

= 0 under STEP but WSAL = 1.0 under SCAN.

Orthomax, Oblimin, and Hyball all seek to locate their £’s global minimum by iterating cycles
of planar rotations over all factor pairs <f;,fy> wherein f; is shifted to the position in the <f;,f>
plane that locally minimizes Z. In Serial iteration, the pattern/covariance change entailed by each
planar shift is unconditionally executed before moving to the next plane in the iteration sequence.
But how should factor pairs be ordered in that sequence? The standard <j,k> order within each cycle
has been to step j in an outer loop from 1 to NF while k goes from 1 to NF in an imner loop for each j.
However, when endeavoring my first primitive version of Hyball many years ago in considerable innocence
of analytic factor rotation's established technology,® I felt uneasy about prospects for bias and
misdirection in any routing scheme not responsive to the problem’s loss gradients. One would think
that ideally, at each step of the iteration the routine should ascertain for each <j,k> the £-decrement
that would result from optimal rotation of f; in the <f;,f;> plane in order to execute the planar shift
with the largest gain. Computationally, this always-best-gain routing would be prodigiously wasteful.
But an effective approximation to it utilizing the gain potentials from all planes simultaneously is
the following: First, given pattern A, on the factors F, reached after r rotation cycles, find for each
k # j the coefficient wy for the rotation of f; in plane <fy,fy> that locally optimizes the loadings
on f;. And collect these coefficients in a raw rotation matrix W whose Jjkth element is wy if j # k
or O otherwise.* Next, for some damping fraction § <1 (a control parameter), let the refined rotation
matrix be R = D(I+6W) where D is the diagonal matrix of scaling multipliers that normalize the
variances of rotated factors Fn4; =~ RF,. Then the pattern after r+l cycles of parallel rotation is
Ay - A,R'l.s This procedure is similar to the steepest-descent method of nonlinear optimization, and

insures that results would be unaffected by permutations of axes before or during the iteration.
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Oblimin can be programmed just as easily as Hyball to maximize its £ by Parallel rather than Serial
iteration; and the present study has afforded a splendid opportimity to appraise the difference in

yield between these two rotation styles over many varieties of oblique rotation.

Spin Search.

Hyball’s Spin-search erhancement (Rozeboom, 1993) effectively obviates the influence of start
position on rotation results while also identifying a plurality of axis positions that merit
interpretive consideration. Although I take considersble pride in this routine, its logic is child’s
play (at least for children with multivariate precocity) and can easily be made an option in any modern
rotation program. In the version of Spin search I now favor, the subroutine that controls this first
executes a series of Tries, each of which randomly shifts ("spins") whatever axis positions happen to
be current, rotates this Spin start to comvergence \mder the program’s current choice of method
parameters, and stores the resultant factor pattern in a buffer file. (The occasional Try that
sturbles into some degeneracy is re-started.) This continues until either MAXTRY Spin solutions have
been collected, or the last NUFF Tries have failed to improve on the Z-wise best result obtained
previously in this series. (In the present study, MAXTRY was set at 60 and NUFF at 30.) When Try
collection has ceased, the stored Try patterns are ranked for quality under the current paramerization
of £, and the NSAV best of them are copied in order of their appraised quality to a relatively
pemmanent log file. (In normal Spin search by Hyball, solutions sufficiently similar to better ones

already logged are not saved. But in the present study, all ranked Try results were saved for further

evaluation without similarity screening.)

Ihe Divergence measure of pattern similarity.

The present study compares rotated factor solutions to one another and to the source structure
by five measures of similarity applied after the comparison pair’s factors are matched to maximize
pattern agreement. These are (1) RMS (root mean square) difference between corresponding pattern
elements; (2) maximum difference over the entire pattern between corresponding elements;® (3) mean
(also minimm and maximum) congruence Divergence between the comparison pair’s matched pattern colums;

(4) RMS difference between the corresponding factor correlations (that is, the match on Gg); and (5)
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maximum difference between the corresponding factor correlations. Except for (3), all these measures
should be self-explanatory. But Divergence needs some clarification:

As a measure of -similarity between two order-N pattern colums x and y, RMS(x-y) suffers
interpretively from sensitivity to scale. Specifically, the RMS difference between c,x and cyy is much
influenced by the signs and sizes of scaling multipliers Cx,Cy; Whence x and y need some standardization
of orientation and norm (euclidian length) before their RMS difference has clear significance. This
standardization is nicely accomplished by the Congruence, Cng(x,y) = x'y/(X'xy’'y)¥, between x and y,
that is, the uncentered correlation between their corresponding elements. But Congruence, too, has a
large interpretive defect in its insensitivity to mismatch at the high end of similarity. Thus the
effect on Cng(x,y) of a given increment or decrement in RMS difference between standardized x and y is
comparatively large when Cng(x,y) is small, but decreases to vanishing as the Cng(x,y) level on which
this change is imposed approaches unity. This obfuscation can be nicely expunged, however, by
nonlinearly rescaling Congruence as Divergence, namely Div(x,y) =4 arcos(|Cng(x,y)|) with the angle
measured in degrees for greatest familiarity. The Divergence between conforming vectors x and y is
sinply the acute angle between their axes in the spatial model of a vector configuration. Appendix A
shows that when x and y have positive congruence and the same norm, their RMS difference is
approximately .017 XRMS(x) XDiv(x,y) with extremely high accuracy for Div less than 60°, and passably
close even for Div up to 90°. Moreover, when x is a colum of a source pattern or decent rotation
estimate thereof, it is reasonable to expect RMS(x) to lie roughly between .2 and .4, whence
100 xRMS(x-y) should generally be from .3 to .7 times as large as Div(x,y), the lower ratio for weak
factors and the higher one for heavyweights such as in the present study.

This idealized relation between RMS difference and congruence Divergence does not, however,
entail that for comparison of factor patterns these differ only by a scale shift. For under standard
variance normalization of items and factors, the nomm of a recovered pattern colum is affected not
only by the corresponding source loadings but also by inaccuracy in the factor’s recovered correlatiqns
with other factors. So Divergence is in principle a purer measure of pattern similarity than is RMS
difference, and in my subjective impression of the results reported below exhibits their regularities

more cleanly than does the latter albeit not enough to affect any of the conclusions that emerge.
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RESULTS

The preliminary phase of this study examined source recovery by a spectrum of method variants
in each rotation family from two standard start positions (no Spin search yet). Nine variants each of
Orthomax, Oblimin, and Hyball were picked by a generic parameter §§ that stepped from O to 4.0 in
intervals of .5 while selecting y = §§ for Orthomax, y = -§6 for Oblimin, and the assorted combinations
of BH and WSAL itemized in Table 1. Each §§-selected Orthomax variant was also refined by Promax at
each of power levels 2,4,6,8; while each §§-selected variant of Oblimin and Hyball was executed both
by Serial (S) and by Parallel (P) iteration. Moreover, each of these procedure combinations was
crossed with the two Kaiser-normalization alternatives and started both from the principal-factor
extraction pattern and from the input’s rotation by NORM-1 Equamax. (Why the latter rather than some
other Orthomax start will be apparent shortly.) Each of these 2x2x9x(1+44+2+2) = 324 rotation
variants was applied to each of the 100 extraction patterns recovered from the 100 simulation datasets,
and their accuracy at source recovery tabulated separately for each hyperplane-noise level (20 patterns
in each) as well as for all noise levels combined. The aggregate mass of these preamble statistics
verges upon overwhelming; and since the main show is yet to come, I will spare you the Maximm-error

appraisals and hyperplane-noise breakdowns beyond some fragments thereof in Table 1D that you can
ignore for now.

....................

Evaluation of these preliminary results in Table 1 can best begin with contrast dimensions
that show the least interaction with others, and then focus on the latter at levels of the former that
produce superior results.

Start position. One question decisively answered by Table 1 is whether start position
matters. It does indeed, at least for Oblimin and especially Hyball. Although some of the differences
for serial Oblimin are quite small, results are always better when start;d from the extraction axes’
Equamsx rotation than directly from the input position. So apart from the Orthomax variants, whose
performance as continuations of the same Orthomax begimning is not what interests us here, we may as

well focus on Table 1's Equamax-start sections when appraising the other contrasts.
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NORM. Table 1 shows Kaiser normalization to be largely a triviality. For Orthomax, NORM=1
has a small advantage across all variants examined. But for Oblimin, the tabled NORM differences are
negligible except for a tiny NORM-1 gain under serial iteration at the smallest y settings. Hyball on
the other hand prefers NORM=0 for benefits that are mimuscule for all but its least successful
variants. Table 1 carmot speak for all source structures; but to the extent that present results are
generalizable, it makes no real difference how we go on Kaiser normalization.

Parallel vs, Serial iteration. For Oblimin from extraction start, parallel iteration is a
disaster for all but the smallest y (= -§§); whereas for Oblimin from Equamax start, parallel is
persistently even if trivially better than serial at pattern recovery. (The preference order is
reversed, still trivially, for covariances.) And for Hyball, too, the persistent superiority of
parallel iteration is almost negligible. It appears, therefore, that my distrust of serial iteration
has been baseless. Even so, modest but instructive differences between parallel and serial iteration
will emerge from the main study.

Orthomax variants. Orthomax performance from extraction start is considerably influenced by
choice of vy (= §8). (For this comparison, Equamax start is a contaminant.) Quartimax (y = 0) was
poorest by far; but Varimax (y = 1.0), too, was appreciably inferior to the best results in a broad v
interval starting at or near Equamax setting y = 2.5. In a side study, I have also tested vy-range
4.0 - 13.0 in steps of 1.0 and from 10.0 to 90.0 in steps of 10.0. The scarcely noticeable error
decline as v increases beyond 2.5 bottoms out in the vicinity of 4.0 and slowly--very slowly--increases
as y becomes large, reaching about the same accuracy at y=90 as Quartimax. So present results support
past intimations (Harman, 1976, p. 299) that Equamax is the Orthomax of choice among name brands
thereof, but suggest that y=NF/2 may only be threshold to a band of mildly better v settings. Be that
as it may, Equamax's strong showing with the present data has motivated choosing this variant of
Orthomax to provide Table 1’s start alternative to extraction axes. (I have also run this analysis
from Varimax start; and as you can see from the fragment of those results includéd in Table 1D, Varimax
start was inferior to Equamax start, especially for Hyball.)

Promax variants. Table 1 indicates that although the accuracy of Promax pattern recovery

diminishes as its powering parameter increases, the superiority of power 2 over power 4 is trivial.
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But recovery of the source correlations is less tolerant: 4 is appreciably inferior to 2 in Table 1C,
and higher powers continue the decline. These differences were confimmed by a side study that tested
Equamax-based Promax under powers 2, 3, and 4 by Spin search. Powers 2 and 3 were indistinguishable
and only trivially better than 4 at pattern recovery, but there was a small but noticeable loss of
covariance accuracy with each power increment.

Oblimin variants. Under both NORM alternatives and from both start positions in Table 1,
performance of parallel Oblimin deteriorates as its Gamma parameter increases in negative size from
Quartimin setting v = 0. The same is true of serial Oblimin except for hints that v = -.5 and y = -1.0
may be as good as or even better than Quartimin in this case. These hints are not specious; for Spin

search has confirmed them. (Though essentially trivial, the improvement is reliable.)

In a side study, I have also examined Equamax-started Oblimin under positive Gamma in steps
of .1 from 0 to .8, steps of .5 from 1.0 to 4.0, and steps of 2.0 from 4.0 to 16.0. With
increasing positive -y, performance deteriorated from Quartimin scarcely at all until v passed
.5, at which point degenerate rotations began to occur. Almost all were degenerate for v
between .6 and 3.0, but the likelihood of that reverted to negligible when vy reached 4.0.
However, inaccuracy was then over twice that of Quartimin; and while success improved somewhat
as vy grew large, it never achieved the accuracy of Quartimin albeit under NORM=1 it came
reasonably close.

Hyball variants. Compared to my unmpublished study of Hyball’s control parameters whose
findings were briefly summarized above, the comparisons among Hyball variants in Table 1 are crumbs not
worth careful mastication. But since the numbers are there, you may as well note the following:
(1) All Hyball variants do substantially poorer from extraction start than from Equamsx start, some
startlingly so. (This is not typical of Hyball; it largely reflects the exceptional difficulty of
these source patterns.) (2) From Equamax start, the Hyball variant most resembling Quartimin (picked
by 66 =4.0) is distinctly the poorest tested here. But more provocative is that it is not quite so
good as Quartimin. I have been unable to identify precisely what difference in the solution process

gives Quartimin its edge. (3) Over Table 1's BH-crossed-with-WSAL Hyball variants, WSAL=1.0 is
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consistently best of the tested salience weights and, excluding special case §§ =4.0, BH= .15 is worst

of the three tested hyperplane-bandwidth settings.

[ Orthoblique. I have also tested IMSL code for Orthoblique rotation as, in effect, an
additional colum of the Table 1 layout with Equamax for the orthonormal component of its rotation and
gereric variant index 6§ calling its obliquity parameter C in steps of .10 from O to .80. From
principal -factors start (which Orthoblique’s theory presumes), the best setting of C was consistently
around .4, yielding accuracies very close to Equamax-based Promax at power 2 or, for pattern recovery
without Kaiser normalization, power 4. From Equamax start, Orthoblique becomes essentially an

orthogonal rotation (C doesn’t matter) with the same results as Equamax. )

Species comparisons. The Orthomax/Promax/Oblimin rotation variants appraised in Table 1,
supplemented by my qualitative report on Orthoblique, chart performance on nearly all rotation options
available in commercial miltivariate software packages. If your choices are restricted to the latter,
Table 1 says that you should prefer NORM-1 Equamax for orthogonal rotation, and for oblique solutions--
here is a big surprise--contiruation of Equamax by power-2 Promax. But Quartimin or perhaps even
better y=-1 Oblimin (under Serial iteration, since Parallel is not comrercially available) is
essentially as good as optimal Promax, especially if Quartimin/Oblimin is run from Equamax start with
Kaiser normalization. Of course, it remains to be seen if these comparisons generalize relisbly to
recovery of source structures with configurations substantially different from the present simulation
data. But Table 1 is a good provisional basis for choice among commercial rotation options.

On the other hand, if your yen for superior results is strong enough to motivate investing
the bargain price ($10) and modest effort to install and learn my Hyball package for DOS or UNIX
operation, you can appreciably improve upon the best Promax or Oblimin by use of Hyball from Equamax

start. Moreover, Hyball will also allow you to invoke Spin search, the benefits of which will be
examined next.

Optimization of Source-structure Recovery by Spin Search.

None of the performances recorded in Table 1 indicate source recoveries whose inaccuracies

would not seriously jeopardize interpretation. Indeed, the threat of this is considerably worse than
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the Table 1 mumbers make explicit. For a factor's interpretation is usually driven by its largest

pattern loadings, and the maximm error in a Table 1 pattern estimate is on average about three times

as large as its RMS error.

This is roughly what you would expect if signed pattern errors are more or less Normally
distributed around an expectation of zero, and was manifested quite consistently over all
method variants and hyperplane-noise levels in the present study. In some later Spin-search
runs, I have also collected the 95th within-pattern percentiles of error magnitudes, and find
their average for each rotation variant at every W-level remarksbly close to 2.0 times the

pattern’s RMS error, just as the Normal error model would predict.

Moreover, Rozeboom 199? reports evidence that for Hyball, at least, pattern-estimate error is
essentially urbiased and dependent at most trivially on loading magnitude. So when an estimated
pattern similar in size to the present 25x5 has an RMS error exceeding .15 or so, there is a good
chance that some of its most conspicuous loadings are imposters while a few that by rights should be
interpretively pivotal have dropped from sight. Is this the best that we can do when source structures
become complex? With any luck, the future will continue to provide advances; but one prospect for
improvement is already at hand: Spin search. To the extent that a rotation variant appraised in
Table 1 is sensitive to start position, its performance should be correspondingly evhanced by any
procedure that can locate and report its best local optima. But is Spin search really worth its
considerable increase in computation time? Consider the following results and decide for yourself.
The findings now to be reported were obtained by repeated runs of a program that for present
purposes I will call SPINTEST. Each SPINTEST run collected information on the performances of
(generally) six rotation variants, one §6-selection each of Orthomax, Promax, Oblimin, and Hyball with
both Parallel and Serial iteration of the last two. Under each selected Variant, SPINTEST rotated each
of the 100 input patterns by a series of Spin Tries--random axis ‘shifting followed by rotation to
criterion and temporary storage of the result--terminated either after 60 Tries or when the last 30
Tries failed to improve on the preceding best in this series. These collected Tries were then ranked

for quality on this Variant’s Loss measure, Rank 1 being the series’ solution identified as optimal by
this criterion.
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The Spin shifts commencing Tries were orthogonal for Orthomax, but generally oblique for
Oblimin and Hyball. Each ranked series for Promax was obtained by applying Promax to each

Spin solution in the 'correspcmding Orthomax ranked series.

In addition, the ranked collection from each Spin series was augmented by this Variant’s "Rank O"
solution obtained by ordinary rotation (no spin) after shifting the input axes to procrustes alignment
with the source pattern or, for Orthomax/Promax, after Equamax pre-rotation. (For Oblimin and Hyball,
this Rank-0 solution should closely approximate the best solution this Variant can find by Spin search;
for Orthomax/Promax, it is only a swrrogate near-best that discussion will ignore.) Finally, the
rarked Tries in each Variant's Spin collection for each input pattern were appraised for similarity to
one another and to the source structure, with accumilation of these appraisals in summary tables.
Comparisons to source used all five similarity ratings cited in the introduction, namely, RMS and
largest difference between matched pattern loadings, congruence Divergence between matched pattern
colums averaged over factors, and RMS and largest difference between matched factor correlations. For
brevity, I shall henceforth refer to these five appraisals of a solution’s success at source recovery
as Sim measures. Consistency comparisons of solutions within Spin collections examined only
divergence; but in addition to the mean colum divergence between compared Spin patterns, the minimm
and maximm of their matched-column divergences were also tabulated.

More specifically, the output of each SPINTEST run extracted the following information from
the results in each ranked Spin series. For each tested method Variant, means and standard deviations
on these performance appraisals were compiled separately at each hyperplane noise level (20 input

pattemns each) as well as over all combined.

1. Start-position sensitivity (Table 2). Present adjudication of this matter has sought to
determine (a) how similar on the whole are a Variant's rotations of the same input from independently
random starts; and (b) how similar among many Spin Tries of this Variant are the ones to which the
Variant's criterion gives highest preference. Although quantitative answers to these questions are of
necessity strongly conditional on the patterning latent in the particular factor solution being
rotated, much can still be learned in this respect from the present ensemble of source structures.

Question (a) is answered here by the minimm, mean, and maximm ("Min/Av/Max") colum Divergence
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between a Spin series’ first and last unranked Try pattemns. (Any other two Try selections unselected
for rank should do as well.) And question (b) was addressed by determining, for each of the ten Z-wise
best solutions in each rarked Spin collection, its Min/Av/Max Divergence from the collection's lower-
ranked solutions, including Rarnk 0. However, since no trends nor much difference in these measures
over ranks 1-10 was apparent to eye, they have been condensed in Table 2 into the mean Min/Av/Max

Divergence among all the Spin series’ solutions with ranks no greater than 10.

2. Accuracy of source recovery (Table 3). From each ranked Spin collection (one for each

Variant with each extraction pattern) seven not-necessarily-distinct patterns were selected for special
attention: (1) its deus-ex-machina Rank-0 estimate of the Variant's global optimm for this input;
(2) its Rank 1 genuine Spin solution, that is, the one judged optimal by the Variant's operational
criterion; and (3-7) for each of the five Sim measures, the Spin solution in this collection that was
in fact Best in its so-appraised match to source. Unlike Rank-0 and Rank-1 solutions, a Sim-wise Best
solution’s rank in its Spin collection is an additional recovery datum that proves to be of
considerable interest. For each Sim, SPINTEST compiled a subtable averaging over the 20 ranked Spin
collections at each W-level for each method Variant the Sim-wise accuracy of the Rark-0, Rank-1, and

Sim-wise Best solutions, as well as the rank-in-collection of this Best.

3. Special comparisons (Table 4). Since a Spin collection’s solution identified as optimal
by a method Variant’'s f-measure is not always its Try result that in fact most closely matches the
source structure in one or another distinguished respect, it is of interest to observe how closely the
first resembles the others. So SPINTEST has also extracted from each Spin collection the Min/Av/Max
pattern Divergences and RMS covariarnce differences among its Rank-1 solution and its Try results that
respectively differed least from source in RMS pattern error, mean pattern Divergence, and RMS factor-
covariance error. Low disagreement ratings here can result either from the same solution being picked
as best in these assorted respects or from close resemblance of different picks. Since much of the
information obtained on these special comparisons has rather limited value, only its more interesting
portions are reported below. (Actually, what Table 4 reports ig a small modification of the special

comparisons just described in light of findings on the original version. Details later.)
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Although I have run SPINTEST under many choices of its control options, the variant of each
rotation species on which I have focused, the only ones reported here in detail, are: Orthomax with
¥=2.5 (Equamax); Promax at power 2 from Equamax base; Oblimin with y=0 (Quartimin); Hyball in SCAN
mode with <JA, JB, BH, CV, WSAL> = <1, 2, .20, 1.0, 1.0>; and NORM=1 for all, since Orthomax and Oblimin
show a slight preference for Kaiser normalization in Table 1 while Hyball doesn’t care. Even though
each cell in SPINTEST’s printout gives the mean (and with a few exceptions the standard deviation) for
a particular aspect of some method’s response to the 20 input patterns at a given noise level, or 100
for all W-levels conbined, almost all these means are products of Spin search and perforce contain some
chance departure from their statistical expectations on this database. So when comparing one SPINTEST
mean to another, one would like some indication of their sampling error. Accordingly, the means
reported in Tables 2,3,4 are actually averages over the corresponding means in 10 repetitions of
SPINTEST on the rotation Variants indicated, followed in parentheses (except for Table 2) by 10 times
the standard deviation of those 10 means. Thus for any cell entry of form "m (s)" here, the estimated
sampling error of mean m is (s/10)(10-1)¥ = s5/30, whence m+ s/10 is an interval estimate for m's
expectation at confidence level 99%.

Once the meanings of their entries become clear, Tables 2-4 pretty well speak for themselves.
Even so, I had better walk you through their highlights. Let us start with Table 2's message on the
sensitivity of rotation results to start position, looking first at its "Unord spin" colums which tell
how much Divergence to expect between two arbitrarily selected Spin rotations by a given method of an

input pattern having the present study’s source structure at the indicated level of hyperplane noise.

Method differences in start sensitivity.

There are some very large contrasts among Table 2's Unord-spin ratings, the largest of which
distinguish Equamax/Promax from Quartimin and Hyball. Equamax (and as a consequence Promax) is not
merely insensitive to start position in the present inputs, it is astonishingly so. Pattern
differences no greater than the largest tabled entry for Equamax (on average, only 1.5° divergence

between most poorly matched factors at W-level .20) should be visible only in the patterns’ 3rd
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decimals; and most Equamax Spin rotations from the same input are much closer than that. I have also

confirmed that Varimax too is this consistent under Spin search, so we can expect the same of all

variants of Orthomax and other methods (notably Promax and Orthoblique) grounded on an Orthomax
criterion.

This high-grade identity of Equamax/Varimax output no matter where started seems almost too
ideal for belief. My own past observations of startlingly large Varimax sensitivity to start
position can be written off to the now-corrected code error confessed earlier. But that does
not account for Cattell & Gorsuch’s original (1963) discovery of such indeterminacy under
Varimax. And in a cheerful letter elicited by my Spin paper, Mark Foster (Research and
Evaluation, Colorado Division of Mental Health) has advised me that he and a colleague
reported similar findings in a paper presented to the 1971 Rocky Mountain Psychological
Association meeting (didn’t anyone care??). He also alerted me to a paper by Gebhardt, 1968,
who contrived a 12x4 factor pattern yielding two distinct Varimax solutions. When I tested
NORM-1 Varimax Spin search on the Gebhardt pattern I found not just two but six local optima,
all but one with mean divergence over 13° from one another and most over 20°, that randomized
starts can repeatedly recover. Yet extended Spin search of this same pattern by NORM-1
Equamax homed in on Gebhardt’s original with 100% consistency. I have also re-examined (after
bug extermination) Orthomax performance under Spin search on the classic nightmare of
Thurstone’s 26-variable Box problem (see Rozeboom, 1992, p. 587ff.) and find that in this case
it is Varimasx that always yields the same solution (though not a particularly good one) no
matter where started, whereas Equamax finds two that diverge widely on all three factors not
only from each other but also from the Varimax solution. Even so, one can evidently rotate

under Orthomax with high even if not altogether certain confidence that the solution returned
is globally optimal on Z,.

Whether we should want our rotation algorithms to be this Spin-invariant is an issue still
needing adjudication. But asset or drawback, Table 2 makes plain that it is not shared by Oblimin or
Hyball. Serial Quartimin’s start sensitivity with the present data is fairly mild. But it is still

large enough to range over solutions urging appreciably different interpretations of some factors. And
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results for parallel Quartimin as well as Hyball in both iteration styles are strongly affected by
start position. Here are some more specific contrasts worth noting in Table 2’s Unord-spin report for
Quartimin and Hyball: (1) Comparisons over the Min/Av/Max divergence measures reveal enormous within-
pattern variation in start sensitivity: Some factors (or more precisely the loading colums that
demark them) within a pattern recovered by an optimization routine are generally much less Spin-
invariant than others. Presumsbly this primarily reflects chance departures from expectation (the same
for all factors) under the frame parameters that constrained each dataset’s random production. But it
demonstrates how delicate are the conditions of decent factor recoverability. (2) Although start
sensitivity increases with hyperplane noise, the proportionate increase with each W-step is relatively
modest. (3) Parallel iteration yields greater start sensitivity than does serial iteration. Why this
difference is so much greater for Oblimin than for Hyball, I cammot explain. But its existence is part
of a story that will unfold as we continue.

The pattern of contrasts in Table 2's Ranks 0-10 colums is largely the same as in its Unord-
spin colums, but there are significant differences in detail. (1) When only a small rumber of L-wise
best rotations are retained from an extended Spin series, the chosen few--call these the Spin series’
Cream--are considersbly less divergent than are two solutions picked at random from the series. But
the Spin Cream of a method whose global optimm is unique and attainable from many diversified start
positions should contain scarcely any differences at all; so what is most striking about this part of
Table 2 is how much divergence persists even in the Cream of Quartimin and especially of Hyball.
(2) The effect of hyperplane noise on Cream divergence is quite small for parallel Oblimin and almost
negligible for serial Quartimin. In sharp contrast, Cream solutions from both parallel and serial
Hyball are nearly identical at the three lowest W-levels apart from some mild disagreement on the
worst-matched factors at W=.10; but as hyperplane noise increases beyond that, their similarity

deteriorates explosively on all but the best matched factors, which remain highly consistent even at
W=.20.

---------------------------------

---------------------------------

Table 2 makes clear that for Oblimin and Hyball, start position can strongly affect the factor

positioning these yield. Table 3 and its comparison to Table 1D, partly depicted in Figure 1, show
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what can be gained in accuracy of source recovery when the method’s top Spin Cream (Rank 1) is chosen
for interpretation. Several important conclusions emerge from Table 3, of which the most beguiling is

the least apparent andwiﬂ be taken up last.

Method differences in Spin achievement.

Start with Table 3’'s Rank-1 colums, which show for various conbinations of rotation method,
hyperplane noise, and Sim measure how well this study’s Z-wise best Spin solutions in fact recovered
the source structures. As a preliminary, note that Rark-1 Spin Cream from Hyball is consistently even
if minutely more accurate under parallel iteration than under serial, whereas under Quartimin the
reverse is true. That is, the operationally superior iteration style in each case is the one that is
standard in this method's distributed software. So hereafter, when I speak of comparisons imvolving
Hyball or Quartimin without explicit mention of iteration style, parallel Hyball and serial Quartimin
are to be understood.

The first salient point about method-conditional Rank-1 accuracy, detailed in Table 3 with
highlights in Figure 1, is the effect of hyperplane noise. For all methods on all similarity measures,
error increases monotonically (apart from a few minor inversions under Quartimin) with W-level. For
Equamax/Promax and Quartimin, the rate of increase is rather small. But it starts at W=0 for them
with recovery errors that are already too large for reliable interpretation of results. In marked
contrast, Hyball starts at W=0 with accuracy nearly at its procrustes-estimated theoretical limit, and
deteriorates with increasing W at a pace which at first is almost negligible but steepens sharply
beyond W= .10 until at W= .20 Hyball does no better--in fact, on some of the Sim measures considerably
worse--than Promax and Quartimin. This is more or less what could have been predicted, since £ .y, and
Lo Stress the largest pattern loadings while largely ignoring the small ones, and just the opposite
is true of Ly, under its recommended parameter variants. But so forceful a demonstration of payoff
from this shift in criterion logic is edifying. And its implications for applied factor rotation are
plain: For source structures of considerable complexity, neither Orthomax/Promax nor Quartimin can be
expected to find a positioning of axes in extraction space on which item weights match the source
pattern with better than crude accuracy no matter how sharp the source hyperplanes may be. But source

complexity is no impediment to near-perfect pattern recovery by Hyball so long as hyperplanes are
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sufficiently clean. Nevertheless, Hyball carmot dlscern the indiscernible; so as hyperplanes become
increasingly indistinct, Hyball's superiority over other rotation methods dwindles to nil. When
choosing axes for a factor space seemingly deficient in quality hyperplanes, present results suggest
that Equamax-based Promax may be our best choice of rotation method. But in that case we can't expect
to learn mich about the source structure no matter how we rotate.

A second foreground issue illuminated by Table 3’'s Rank 1 findings with an assist from
Table 1D is what top Spin Cream gains in recovery accuracy over simple rotation from Equamax start.
Several surprises lie in this. Most unexpected for me was the modesty of Spin’s superiority for
Hyball, since as reported in Rozeboom, 1993, my incentive for developing Spin search was difficulty in
achieving decent standard-start source recovery by Hyball from data with essentially the same structure
as the present W=0 datasets. (The error in my Orthomax code at the time had much to with that
ineptitude.) Indeed, one might wonder if the performance gain shown by the gap between Hyball’s solid
and dashed lines in Figure 1 is large enough to warrant the considerable time cost of Spin search. The
answer: Defiantly YES, at least in the final stages of choosing axes for interpretation and factor-
score estimation. Spin’s erhancement of Hyball's accuracy at the intermediate W-levels here, albeit
small, is far from trivial. And more strategically, although Equamax proves to give an excellent start
position for the present source structures, there are many other variants of Orthomax not to mention
other standardly available rotation methods that can also provide start positions probably surpassing
extraction start in many applications and perhaps improving at times upon Equamax as well. Why dither

over which one to use and risk a poor choice when Spin search obviates the start problem?

As mentioned earlier and documented in Table 1D, Varimax starts were appreciably inferior to
Equamax starts here, just as you would expect from the extraction-start Orthomax results in
Table 1. But extraction-start performance in Table 1 is not a fully reliable guide to best
choice of single-try start position for Hyball: I have also tested Equamax-based Promax(2)

for Hyball start, and find it to be slightly inferior for this to plain Equamax.

Arother large surprise in Table-3/Figure-1 is that Quartimin’s Rank-1 Spin Cream has
considerably less source-recovery accuracy than its rotations from Equamax start. Strange as this may

at first seem, it makes good sense when one reflects that for any £ a rotation method may elect to
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optimize, the rankings of alternative rotations on £ will correlate at best imperfectly with their
rarkings on match to source.” Thus some axis positionings may well be Sim-wise superior to the one
that globally optimizes Zﬁ and if the solution iteration is started near one of the former, it might
be trapped by a local optimum before it"s?razcuracy sinks to that of the latter. This appears to be what
has happened with Quartimin in the present applications: The axes at Zy,;,'s global optimm do not match
the source structure as well as do axes at some of Zy,'s local optima; and the Equamax solution is

gererally in the capture region of one of the latter.

An aside on Rank O results.

This imperfect correspondence between best on Z and best on Sim has other manifestations in
Table 3. Onme is in the Rank-0 results which, you may recall, are Sim ratings of rotations started at
the procrustes approximation to the source pattern. Earlier, I introduced these with the remark that
they should closely approximate the best solution that Spin search can achieve for the data and method
variant tested. This left ambiguous whether Z-wise best or Sim-wise best was envisioned, but neither
reading proves to be altogether correct. Although Table 3's Rank-0 means for Quartimin and Hyball are
almost everywhere superior to their Rank-1 counterparts, some dramatically so, these Rank-0 results are
not asymptotes to which Rank-1 accuracies would converge with sufficiently extensive Spin search. A
test of this possibility with extremely prolonged Spin search (NUFF =300, MAXTRY = 1000) achieved no gain
in Rank-1 accuracy though it did slightly improve the Bests. But more informatively, SPINTEST also
reports for each of its Spin collections the mmber of Tries therein having £ ratings lower than its
Rark-0 solution. And the means of these counts over all datasets for Qmin-P, Qmin-S, Hybl-P, and Hybl-
S were respectively 16.1, 22.5, 6.2, and 5.7. So regardless of whether Spin search hits upon the Rank-
0 solution, it generally finds several less accurate solutions that £ likes even better. Neither are
rotations from procrustes start generally the most accurate that Spin search can achieve: Comparisons
of the Rank-0 and Best colums in Table 3 show Quartimin and Hyball usually attaining better Sim
ratings by Spin search than by rotation from procrustes start. Only on the pattern-match Sims under
parallel iteration is this superiority order prevailingly reversed--trivially for Hyball, rather less

so for Quartimin. (No large insights are evident in these comparisons, but patterns of results deserve

notice even when of dubious importance.)
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The challenge of Sim-wise best Spin Tries.

If optimizing a rotation criterion £ does not generally find the very best approximation to
source availsble in the extracted factor space, we can scarcely expect a routine for optimizing £ to
find solutions superior to that as well. Yet Spin search makes that possible; and the three rightmost
colums in Table 3 attest that this possibility is eminently realizable in practice. The secret of
this legerdemain lies in accompanying report of the routine’s solution for the global optimm with a
ranked selection of the merely-local optima it has identified as well. For some of the latter may well
be appreciably better solutions than the one favored by Z.

There are, of course some formidable obstacles to utilizing these local optima effectively.
But before probing prospects in that regard, we should ask whether anything in them appears worth the
effort. Accordingly, consider the difference between the Rank 1 and Best colums in Table 3 for Hyball
and Quartimin. 1In all cases (or at least on average within W-level), the Spin rotations most
resenbling source on the Sim at issue surpassed the f-wise favored rotation in this respect. For
Quartimin, Best is substantially better than Rank 1 at all W-levels, even better than its Equamax
starts (cf. Table 1D). But that is only of incidental interest, since Quartimin is so far off pace in
the accuracy chase. Hyball is the method that matters here; and in Table 3 and Figure 1 it is plain
that Hyball's Best improves impressively on Rank 1 when hyperplane noise becomes troublesome.
Admittedly, the solution that is best on one Sim is not generally also best on the others. (More on
that below.) But wouldn’t you be delighted to rotate under expectation of source recovery tracked by
even one of the dotted lines in Figure 17

To make actual use of such Best rotations, however, we must first pick them out of their Spin
collections--vhich for empirical applications is a very nice problem indeed, insomich as their
L ratings do not suffice. I can think of one tactical and one strategic response to this challenge,
neither very promising for routine practice but both worth research attention. Tactically in empirical
applications, we can simply print out all patterns in our Spin Cream and spend considerable time
studying them for interpretability and graphic appeal. This has two evident drawbacks, however. One
is the formidable amount of work required to study the Cream in much depth. Happily, Table 3 indicates

that for Hyball (unlike Quartimin), Best tends to occur decently high in the Z-wise preference order
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for the present datasets even if its rank is quite variable. Even better, Hyball's standard operation
allows the user to filter out Spin Tries that diverge only trivially from lower-£ solutions in the Spin
series; and Tsble 3's rig"xtmost colum shows that when the present Spin collections are filtered to
include only solutions whose Max Diverg from each lower-ranked solution in the filtered series is at
least 5°, the mean and variability of the Best solution’s filtered rank for the most part become
comfortably small. And although this reduction is less than might be desired when hyperplane noise is
severe, SPINTEST also reports (in output not tabled here) that approximately a third of the Spin
solutions between Rank 1 and Best at the two highest W-levels are also Sim-wise better than Rank 1.
So for applications within generalization range of the present study, subjective evaluation of Spin
Cream in modest depth is likely to include the Best or at least some of the Better. Unhappily, the
second drawback to this tactic is our having little reason for confidence that even experienced
practitioners can discriminate Best from Pretty Good. Even so, when the factored items are drawn from
a domain supporting a credible theory, some solutions in the Spin Cream may make rather more sense than
others. In that case, one can favor Most Sensible over Lowest £ with reassurance that since Best is
probably not the latter it may well be the former.

Strategically, the disparity between Rank 1 and Best Spin solutions challenges us to seek
further improvement in our pattern-quality measures. Given that some version of Thurstonian simple
structure is for better or worse our best clue to the causal grain of common-factor space (perhaps not
everyone will agree), present results make clear that large advances in analytic implementation of this
notion beyond its first wave of development at mid-Century are not just possible but have already been
realized in %4y,. But surely your faith that current Ly is the best we can do lacks conviction. My
own efforts to find supplementary measures of pattern quality whose conjoining with iy can further
erhance source recovery have so far been a complete failure. (Additional measures, yes; helpful
conjoinings, no.) I have not abandoned this search, but am much in need of some fresh ideas on what

pattern features may be symptomatic of ideal axis positioning. I welcome your suggestions.

--------------------
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Some lesser findings on Spin-search.

Yore on profits and practicalities of replacing Rank 1 by Best. Even if there is no really
effective way in practice to move from lowest-Z to one or another Spin Best, one might still wonder how
much difference it would make for what we get were we able to replace the former by the latter. To
illuminate this, Table 4 shows W-stratified means on Min/Av/Max Divergence and RMS covariance mismatch

among Source, Rank-1, DivP (Best on divergence from source pattern), and RmsP (Best on RMS difference

from source covariances).

Table 4's original design, intended to reveal the similarities among Rank 1 and the
three most salient Best picks, had RmsP (Best on RMS pattern difference from source)
in the slot now occupied by Source. But RmsP proved to match DivP so closely that
clearly a Spin series’ solution that was Best on one of these two Sims was almost
always Best on the other as well. This was useful information; but once
established, it left Table 4 massively redundant. (It also explained why the
rightmost two colums of Table 3C are nearly indistinguishable from those of Table
3D.) Mearwhile, it became apparent that some breakdown of match-to-source finer

than in Table 3 was desirable. Hence Table 4's present layout.

I shall limit my comments on Table 4 to Hyball-P. (Hyball-S is nearly the same, and Quartimin doesn’t
really matter.) As preface, note that the operationally identifiable Rank-1 and the theoretically
preferable Bests are all (for Hyball) almost always identical at the two lowest W levels and still
differ but little at W=.10. So only the larger-W rows éf Table 4 have much to tell. These show first
of all that if we could replace Rank 1 with a Best, choosing DivP would not only substantially improve
match with source pattern but would also gain over half the improvement in covariance recovery afforded
by RmsC; whereas picking RmsC would gain scarcely anything on pattern match. So replacing Rrkl by
DivP, which may at times be feasible, is much preferable to replacing Rnkl by RmsC even if we had some
way to accomplish that.

Secondly, Table 4 agrees with Table 3 (as it should, since portions of the former are included in
the latter) that the pattern match of Rank 1 to Best for Hyball is superb at the three lowest W-levels,

with just a hint of hyperplane blur begimning to trouble the worst-matched factors at W-level .10,
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whereas this near-ideal agreement deteriorates sharply as W increases beyond that. But Table 4 also
apprises us that the large-W severity of mismatch among source, Rank 1, and the two Bests is not
distributed at all uniformly over these solutions’ pattern colums but is concentrated heavily in just
one or perhaps two pattern colums.® So Hyball's performance at the highest two W-levels is not really
as bad as Figure 1 makes it appear: If we could just ignore the one or perhaps two colums that are
grotesquely in error, what remains of the solution would be quite decent; and neither would patterrwise
Best improve much on Rank 1.

Since this nonhomogeneity of pattern-recovery error may well owe much to the randomization-
within-frame construction of the present source patterns, its generalizability to real data is
especially soft. Even so, it demonstrates just how diverse the interpretive quality of a rotated
pattern’s colums can be.® But how can we best distinguish good pattern colums from bad ones in
practice? Ultimately, this must be for experienced interpretation to decide. Yet Table 2 suggests a
possible computational assist. We saw there that some factors in the Spin Cream are much more start-
sensitive than others; and for each factor in each retained Spin solution, it is simple to record how
tightly it agrees with its best matches in the others. To test whether a particular factor’'s Spin-
invariance is usefully diagnostic of its pattern-recovery accuracy, I have persuaded SPINTEST to
compute for each method variant at each W-level the linear correlation of a Rank-1 factor’s divergence
from closest source factor with its mean divergence from its best matches in the Spin series over Ranks
2-10. For Hybl-P, these correlations at W from 0 to .20 were .06, .16, .39, .39, and .35,
respectively. The near-zero values at the two lowest W are neither surprising nor disappointing,
considering Hyball’s uniformly high accuracy there. But at the higher noise levels, where this -
aspirant predictor’s help would be much appreciated, the correlations are still too low to have much
practical value even if we could trust them to generalize. The admonition to take from this is that
although the relative Spin invariance of particular factors is probably not in general entirely
unrelated to their interpretive quality, it deserves only low weight when judging which pattern colums
warrant the most respect.

Sim similarities. It will probably have occurred to you that the assorted Sim measures used

in this study have seemed largely equivalent in what they tell, raising the question whether they are
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essentially interchangeable apart from scale. To appraise this, SPINTEST has also determined the Sim
correlations for each method variant (a) over all its Spin solutions at all W-levels combined and (b)
over just the first 10 in each of its ranked Spin series after filtering. Table 5 shows these computed
from raw moments accumulated over 10 SPINTEST runs. The correlations are mainly high, especially RmsP
with DivP and RmsC with MaxC; but not so high that any is fully replaceable by another. In particular,
the correlations between inaccuracy in recovering source-pattern and source-covariances are good but

not great for Hyball, and rather mediocre for Quartimin.

--------------------

The relation between pattern Sims and covariance Sims has considerable factor-analytic
importance if identifying factors by pattern is hoped to reveal their location as well. For high
accuracy of the item loadings recovered for a target factor is mathematically compatible with very
large errors in that factor’s recovered position in common-factor space as canonically defined, say,
by its covariances with the factored items' common parts. That is, the quality of some colum in a
factor pattern is no guarantee of similar quality in the corresponding factor-structure colum nor in
the factors’ estimated covariances with other distinguished dimensions of factor space. In particular,
we can seldom if ever maximize match-to-source of factor pattern and factor covariances simultaneously.
Yet doing better on the one should at least tend to improve on the other as well. Table 5 provides
useful information on the strength of that tendency, but only at the resolution of whole solutions.
To explore the within-solution relation of recovery accuracy on pattern vs. covariances for individual
factors, SPINTEST has also determined, for each method variant at each W-level, the correlation over
all pairs of different factors in the Rank-1 Spin solutions between the size of error in those factors’
covariance and their mean divergence from the source factors they respectively match. For Hyball-P,
these correlations at the assorted W-levels in ascending order were .10, .14, .45, .37, .24. (Hyball-P
was roughly the same, while both Quartimins and Promax started in the .30s at W=0 and fell off
appreciably after that. Although these correlations pooled raw moments over 10 SPINTEST repetitions,

they still contain considerasble sampling error which I have not tried to identify precisely but
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estimate to be in the vicinity of .05.) These mmbers point to a worrisome situation whose discussion

must be deferred to some other occasion.

The case for Parallel iteration.

So far, I have said little about output differences between Parallel and Serial iteration
(henceforth PI and SI, .respectively), suggesting by silence that there is little to choose between
them. That is not so. PI proves to have an advantage over SI that in principal is rather important
even though its gain in the present applications has been rather small. The effect is most conspicuous
for Qmin-P vs. Quin-S, but it is also relisble for Hybl-P vs. Hybl-S albeit considerably more subdued
there: Parallel iteration enables Spin search to return a broader diversity of local optima than does
Serial iteration, with the consequence that PI Cream is likely to enjoy lower Z-ratings than SI Cream,
and hence, insofar as £ is usefully diagnostic of the factor positions we hope rotation will attain,
should yield the interpretively better results.

That Parallel iteration has the greater start-sensitivity is loud and clear in Table 2. All
but one of the PI entries therein are larger than their SI counterparts, with the differences in Unord
Spin persisting unabated if not intensified in the Spin Cream. For Hyball, these contrasts are often
quite small; for Quartimin, they are enormous. I have not extracted the resultant quantitative Z-
rating differences (apart from sign, the mumbers wouldn't mean much); but their payoff is plain in
Table 3. Look first at its report for Quartimin. All solution-quality columns except Rank 1 show
greater accuracy for Qmin-P than for Qmin-S. And PI Bests better than SI Bests is just what should be
expected from PI's greater Spin diversity. Moreover, Quartimin’s prima facie paradoxical reversal of
PI/SI superiority on Rank-1 accuracy can also be attributed to the broader scope of Spin returns under
Parallel iteration. For if L, correspondence with match-to-source is so poor that its local optimm
closest on the iteration trajectory to Equamax start is generally Sim-wise better than local optima
with lower Z,, elsewhere, as argued earlier, we should not be surprised if Rank 1 accuracy deteriorates
even more as Spin search pushes closer to Zy,,'s global limit.

With a few trivial reversals, Table 3 shows this same pattern of PI/SI differences for Hyball,
except that the contrasts are mich smaller while as befits 4;,'s superior diagnostic accuracy, Rank 1

too is more accurate under Parallel than under Serial.
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Some mystery still persists in Table 3’s PI/SI contrasts, however. Their startlingly large
difference in Quartimin incidence of low-ranked Spin solutions that fail to pass filter is simply
another manifestation of Serial iteration’s narrower Spin reach. But the argument from Spin scope
doesn’t explain the large superiority of Qmin-P over Quin-S on Rank 0, nor why, unlike Qmin-S, Qmin-P’s
Rark 0 is always better than Spin Best on all the pattern Sims (but never on the covariance ones).
Neither is it plain why the unfiltered rank-in-series of Quartimin’s patterrsise Best Spin solutions
should be so much lower under PI than under SI. Possibly these are due to particularities of how Lenin'S
local minima are scattered in the present datasets. But alternatively, might they not manifest
intricacies of the solution mechanism which, were we to understand them, could enhance our proficiency

in design of nonlinear optimization routines? Probably not; but I'm only guessing.

SUMMARY

A great deal of information on the performance of extant factor-rotation routines have been
reported above, findings which if at all generalizable should have considerable value for guiding
method preferences in practice. But all present solution-quality measures are aspects of match to one
particular choice of axes in the dataset’s common-factor space, namely, the factors randomly generated
within the frame constraints detailed at this paper’s outset. And had some other recovery target been
stipulated, e.g. the population axes that minimize Zenin, Table 3 and Figure 1 would have looked very
different. So why should these results be expected to generalize when they don't apply to other
targets in the present datasets, and data in empirical applications will seldom have causal origins
structured like the present production process?

Although the factors persistently referred to as "sources" here are, arguably, gemuine causes
of the factored variables in this study, that is not the main reason for choosing them as recovery
targets on which to generalize. For those of us who believe that science advances far more
successfully through explanatory induction from distinctive data patterning than by hypothetico-
deductive tests of speculation (cf. Rozeboom, 1972, 1990), the features of an item configuration that
most forcefully dictate where to position axes in their common-factor space are strongly demarked
hyperplanes. This is not an abstract preference for an abundance of near-zero pattern loadings urged

by faith that nature is frugal in causal comection, nor reluctarnce to take issue with Thurstonian
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orthodoxy on simple structure. Rather, like other basic explanatory inductions, it is a perceptual
response to distinctiveness nearly at the level of animal instinct: When we study spatial models of
a factor pattern containing strong hyperplanes not yet aligned with the model’s provisional axes, we
can see the suckers as streaks or clusters in the pattern plots taunting us to capture them. To be
sure, irresistible item aligmments do not always exist in particular applications, and even when they
do considerable axis shifting may be needed before they begin to stand out in the pattem plots. But
despite their frequent elusiveness, quality hyperplanes take precedence over other desiderata in
inductivist search for interpretably distinctive pattern features simply because they grab attention
most compellingly, regardless of how we propose thereafter to explain them. (How often we explain them
correctly, or make proper allowance for the ease with which they can be artifactual, becomes an issue
only after they have been found.)

And this study’s disclosure of extant rotation methods’ capabilities to detect quality
hyperplanes within data that contain them is of course what we can expect to generalize. The factor
structure in each of the present datasets is best viewed as an ideal-cum-disturbances, where the ideal
is an array of data varisbles with perfect factor complexities at levels more realistic than the
independent clusters which have been traditional in simulation studies. In this ideal (before
disturbance), perfection consists of each item having purely zero loadings on all factors not declared
salient for it in its complexity specification, while the latter are "realistic" in that items are
included at all complexity levels up to 3/5ths of the maximum possible 5; specifically, 40% each of
levels 2 and 3 with only 20% of items having complexity 1. Despite the higher item complexities,
hyperplanes in this ideal structure are so perceptually intense that any inductivist would seize upon
them as orgastic revelation if encountered in empirical data. But of course real life is never that
tidy; so in most of the datasets studied here this ideal pattern has been degraded by randomly
scattering the raw pattern’s nonsalient loadings over a bounded interval centered on zero. This
changes the perceptually distinctive item alignments from precise planes to fuzzy-edged bands that do
mot clearly pick out one specific position within them as the inductively best hyperplane therein.

Given that strongest-hyperplanes detection is what this study has undertaken to test, the

population factor pattern/covariances here called "source structure" is clearly the proper target for
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appraising factor recovery from the W=0 population covariances (see Appendix B); and it remains so
when the factored item covariances are only sample estimates thereof so long as we view analysis of the
sample as an attempt to leﬁm the population structure. But are the present "source" factors also the
xaost appropriate targets in the W>O0 datasets? That depends on how we prefer to represent fuzzy bands
by zero-width idealizations thereof. Yet if the mumber of nonsalient loadings created in production
of "source" factors by randomization over interval 0+W had been very muich larger than the present 14
out of 25 per factor, the resultant source-factor hyperplanes would have been exactly centered in bands
of conspicuous item concentration. So the present source-factors’ small-sample approximations thereto
are surely the most appropriate targets for appraising hyperplane recovery pending consensus on a
compelling post-production criterion for strongest hyperplanes in the W>0 populations. (I would
volunteer Ly, -optimization as such a criterion did I not fear scornful accusations of cheating.)
That "accuracy" of rotation in this study’s report of results refers to detection of strongest
hyperplanes is an essential condition on this study’s claim to generalizability. The foremost finding
here is that all currently established methods of factor rotation are woefully inaccurate in locating
high-quality hyperplanes when items that embody them have factor complexities greater than the classic
indeperdent-clusters ideal, whereas Hyball rotation finds the hyperplanes of complex items very nicely
indeed so long as they are not too diffuse. The practical advice that would seem to follow is that all
commercial software for multivariate data analysis should henceforth include some version of Hyball
rotation among their factoring options--at the very least access to Ly @S an alternative to Ly, when
serially iterating planar rotations, and preferably some of Hyball’'s other advanced options as well,
notably Spin Search. However, this recommendation presumes that strong hyperplanes are indeed what
users often hope to achieve by factor rotation. Otherwise, some more traditional rotation method may
well be superior to Hyball for the purpose at hand. But what are some rotation goals that at times are
worth the price of inferior hyperplanes? Until these are identified and proved attainable more
successfully through some variant of the currently standard Orthomax/Promax/Orthoblique/Oblimin than
from any version of Hyball, preference for the former is appropriate only when the user’'s accessible

software has not been updated with a routine for Ly optimization.




-33-
Insomuch as present findings (2) demonstrate that all currently standard rotation methods are

decisively obsolete for rotation to best hyperplanes, but (b) are not relevant to these methods’

comparative merits at achievlng other pattern desiderata, review of present results on the varieties

of Orthomax/Orthoblique/Oblimin might seem to have little point. Even so, for the benefit of folk who

only have time to read summaries, this will head the following gist of what else has been learned from

this study about detecting the hyperplanes of items having factor complexities greater than the
independent-clusters ideal.

A.

Comparisons among established rotation varieties.

1.

Kaiser normalization is preferable for both Orthomax and Oblimin, but its benefits are quite
small, especially for Oblimin.

Among variants of Orthomax, Equamax is clearly superior to Varimax which in turn is even more
decisively superior to Quartimax. Variants of Orthomax with vy larger than Equamax setting
Y=NF/2 are perhaps better yet; however, the improvements over Equamax appear trivial, and
how well these comparisons generalize beyond the present NF =5 remains untested.

Promax does best under the lowest permitted setting, 2, of its powering parameter. And as
one would expect, the better the Orthomax pattern to which Promax is applied the better is
its result.

Direct Oblimin does better when started from Equamax pre-rotation than from the principal-
factors extraction pattern, with the difference becoming rather large as its variant parameter
7 becomes increasingly negative. However, its Quartimin variant y=0 is so close to optimal
that there is little point in fooling with other v settings.

Differences among the best variants of Promax, Orthoblique, and (direct) Oblimin were very
small though not quite negligible. Promax was best of all; however, this carmot be expected
to generalize to items with lower factor complexities insomuch as theory indicates that
Quartimin should be especially adept at locating independent clusters, possibly even as good

as Hyball in this highly special case.
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Sensitivity of rotation results to start position (trapping by local optima).

Varimax, Equamax, and presumably all other variants of Orthomax generally comverge to
essentially the same solution from all orthonormal start positions. This is known to have
occasional exceptions, but present evidence encourages us to expect it with high confidence.
In contrast, the sensitivity to start position of serially iterated Quartimin rotation, though
relatively mild, is still large enough to range over solutions urging significantly different
interpretations. And variation of results under randomization of start position is very large
indeed for parallel-iterated Quartimin and both iteration styles of Hyball. It is entirely
possible that the present datasets provide more opportunity for convergence to optima that
are merely local than typical of empirical applications; but it is nevertheless clear that
calls of Quartimin or Hyball should be preceded by rotation to a reliably good start position.
If Spin search is not feasible, Varimax or better Equamax is strongly recommended.

Spin search by a start-sensitive rotation algorithm Meth, that is, collecting a goodly rumber
of rotations from random starts which are then ranked on rotation criterion £, effectively
enables Meth to find the solution that globally optimizes Z,,. But this is a two-edged
sword: If L4 is an excellent measure of how well a rotation achieves its user’s desire,
as Ly, is of quality hyperplanes, the £, -wise best solution found by Spin search may well
be substantially superior to what is obtained from any standard start. But if £, is rather
poor at its intended task, as Zgy, is at hyperplane detection, its global optimum found by
Spin search may well be inferior to the solution at a local optimum that traps the iteration
when started at a good-quality pre-rotation such as Equamax.

The individual factors in a rotated pattern generally differ considerably both in their start-
sensitivity, which under Spin search is operationally identifiable, and in their recovery
accuracy, which is not. Unhappily, the former correlates too poorly with the latter to be

usefully diagnostic of it.

C. The glory of suboptimal factor rotation revisited.

| .
|

In Rozeboom, 1993, I argued--mainly on theoretical grounds--that start sensitivity is more

beneficial than detrimental in a routine for factor rotation, insomuch as some of the local
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minima which can trap it may well realize the user’'s rotation goal better than does the
solution at Z;,’'s global optimm. (Of course, exploitation of this prospect requires Spin
search. But that should be no problem: If mainstream miltivariate software proves slow to
provide this, you can easily acquire Hyball.) Present results show that this prospect is
indeed a practical reality. Spin collections from all the start-sensitive rotation methods
tested here included solutions that were appreciably more accurate in source recovery than
the solution rarnked tops on criterion; and for Hyball this gain was quite substantial for
pattermns in which diffuse hyperplanes largely defeated Hyball’'s special competence at
detection thereof. Admittedly, my comments a few paragraphs ago on idealizing fuzzy
hyperplanes may have left you with doubts whether this study's official source patterns are
truly the best targets for appraising solution accuracy in the W>0 datasets. But that
doesn’t really matter: The essential point, demonstrated here by superior source recovery
at some of the merely-local optima, is that the Cream of Spin search may well contain
solutions better than Rank 1 for one purpose or another. How well the present source patterns
can be recovered is certainly of legitimate interest, insomuch as they are as much like
gemuine causes of factored variables as artificial data can probably simulate; and if their
hyperplanes are not in perfect agreement with the population hyperplanes demarked as strongest
by one or another analytic measure thereof, that is only what we should expect from the
hyperplanes of empirical causes as well. Whether the information we hope to get from factor
rotation addresses causes or something else of which quality hyperplanes are imperfectly
diagnostic, subjective appraisal of the different solutions proffered by filtered Spin Cream
enables us to choose final axis positionings in which analytic ratings of hyperplane strength

are tempered by judgments of interpretive quality.




Acknowledgment

My insistence that Hyball’s demonstrable performance quality makes our current repertoire of
"established," "mainstream," or "standard" rotation methods largely cbsolete should in no way be taken
to suggest that Hyball's approach is lacking in tradition. As you are undoubtedly aware, analytic
rotation to optimize a strength-of-hyperplanes criterion was pioneered by Cattell & Muerle (1960) and
Eber (1966) using, however, a pass/fail hyperplane count whose sensitivity has proved wanting. The
more powerful appraisal of hyperplane strength by a graded measure of item fit that effectively ignores
outliers was first conceived by Katz & Rohlf (1974) in the form of an exponential function very similar
in character to many in the class from which Hyball control parameters allow selection. The Katz-Rohlf
function has not been included among Hyball’s options because it is much slower than and not quite so
accurate in source recovery as the best Ly, variants. But its proposal was a major advance in the

theory of hyperplane detection that well deserves respectful recognition.

APPENDIX A. RMS Difference vs. Divergence measures of vector similarity.

Iet x and y be two order-n column vectors. Then their root-mean-square difference, RMS(x-y),

and congruence Divergence, Div(x,y), are by definition respectively

RMS(x-y) = [nl(x-y)' (x-y)]¥ = [0l (x'x + y'y - 2x'y) ¥

Div(x,y) = cos!(|x'y(x'xy'y)¥|) = cos}(|rg|), Iy =ser X'¥/(x'xy'y)*

where ry, is the uncentered correlation between x and y, that is, the cosine of their vectorial angle.
Under two side stipulations on x and y, there is a remarkably simple relation between these two
similarity measures.

Specifically, presume (1) that x and y have the same orientation, that is Iy 20, and (2) that
x and y have the same euclidian norm s, that is x'x = s = y'y. (When x is, or estimates, some colum
of a conventionally scaled factor pattern also estimated by y, (1) can be assured by stipulation while
(2) should also be decently approximated.) Then rg = x'y/s* vhile RMS(x-y) = [mls2(2-2x'y/s)]*
= [(@7's?) « 2(1-15) ]¥ = RMS(x) +/2+ [1-cos(Div(x,¥)) ]*, since s* = x'x = n*RMS(x)? by (2) and Iy = | Il

= cos(Div(x,y)) by (1). Now, for any angle a in range 0° - 90°, [1-_cos(a)]" = ,012a to an extremely
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close approximation whose error is on the order of .005 when a<60° and for larger a increases only to

.080 even at a=90°. (I discovered this by brute-force plotting of paired values. It undoubtedly has

a good analytic proof m, however, has eluded me.) Hence given (1) and (2), since .012./2 =~ .017,
RMS(x-y) = .017 «RMS(x)  Div(x,y) .

When x is a colum of a conventionally scaled source pattern or decent estimate thereof, we
can bracket RMS(x) with plausible bounds as follows: Let the loading magnitudes in x be partitioned
into two groups, nonsalient (small) and salient (not so small). Then RMS(x)? is the sum over groups
g = <salient, ronsalient> of p,(1€+0Z), where p; is the proportion of loadings, and y, and o, their
magnitudes’ mean and SD, in group g. If we put the salient/nonsalient cut around .25 or .30, it seems
reasonable to eXpect gy generally between .10 and .40 for middle-sized patterns (or perhaps a bit
less for quite large ones), piq)ia between .5 and .6, 0y iay between .10 and .15, Upsariae Petween .10
and .15, and Opppariet between .05 and .10, yielding a rule-of-thumb anticipated range for RMS(x) of
.163 to .415. This in turn implies RMS(x-y) between .00028 and .0071 times Div(x,y). Or more simply,
multiplying pattern elements by 100 to reflect intuitive disregard of decimal points in two-place

pattern loadings, 100-RMS(x-y) should generally be from three-tenths to seven-tenths as large as
Div(x,y).

APPENDIX B. Recovery accuracies uncontaminated by sampling error.

The simulation data analyzed in this study have been corrupted from the structure of their
framework ideal in two rather different ways: First, the perfect (W=0) hyperplanes in the raw source
patterns were disturbed by varied severities of hyperplane noise. And second, constructing each
analyzed dataset as a random selection of only 400 records from population introduced sampling errors
into the factored item covariances that also degraded the best possible source recovery. Unlike the
first type of impurity, which is structural, the second can be eliminated in practice (even if only at
considerable cost) by collecting data from very large samples. So it is also of interest to see how
much of the recovery inaccuracy observed in this study is due to structural imperfection detached from
sampling error.
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To examine this, the SPINTEST runs whose accuracy reports are shown in Table 3 and Figure 1
were repeated with their sampled item covariances replaced by population values, yielding the Rank-1
source-recovery accuracies for Quartimin(S) and Hyball(P), together with Best on Hyball(P), plotted in
Figure 2 with solid lines. (For ease of comparison, the corresponding ;accuracies-i.n-sanple from Table
3 are also shown there with dashed lines. Note that Figure 2 omits comparisons on DivP to make room

for the MaxC comparisons squeezed out of Figure 1.)

.....................

You will observe that for Hyball, source recovery from the population data is nearly perfect
on all Sims, even MaxP and MaxC, at noise level W=0, and more generally improves upon the NS =400
results by an amount roughly constant over all W-levels except W= .20, at which the gain sharply
deteriorates. That elimination of sampling error cammot much improve Hyball detection of hyperplanes
weaker than its discrimination threshold is mot surprising. Rather more surprising is how much this
improves detection of difficult hyperplanes on which Hyball can get some purchase. In particular, the
MaxP and MaxC errors, which in Hyball recovery from the samples are large enough to be interpretively
disturbing even at W-levels 0 and .05, have subsided in population recovery to tolerable at W< .10 and
are substantially tamed even if still troublesome at W= .15. There is a clear practical admonition
in this: In applications where precise positioning of factor axes is important, data collection from
very large samples may indeed be cost-effective.

In contrast to Hyball’s pronounced gain from elimination of sampling error, the other rotation
methods studied here benefited considerably less from this. In particular, MaxP and MaxC remain

interpretively destructive in their solutions at all levels of hyperplane noise.
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APPENDIX C. Effects of sampling error and hyperplane noise on pattern loadings.

Because Hyball's performance in this study has been so strongly influenced both by
W-disturbance and sampling error, you should be interested in how these are manifested in the scatter
of source-factor loadings. Table 6 shows for each W-level (a) the distribution of loading magnitudes
over all factors in all 20 population source patterns at that W, with the subdistribution of loadings
generated as nonsalient separated from that of the salients; and (b) the same breakdown of loading
distributions in the sample data’s procrustes approximation to source, this being essentially the

closest match to the source pattern attainable in the sample.

Table 6 does not, however, tell how these loadings were jointly scattered in the factor
planes, lacking which information the Table 6 distributions do not make clear why W had so strong an
effect in this study. Although it is impractical to show representative samples of these planes here,
this can be partly accomplished by advising you that in each plane of every both source pattern and its
procrustes approximation, four items were constructed as salient on both factors, 14 as salient on just
one (divided egually between the two), and four were salient on neither. Also, the proportion of
negative(loadings in each plane deviated by chance from 50% with sampling error .13. The incidence of
negative salient loadings was about 15% over all patterns, broken down with 0%, 10%, 20%, and 30%
negatives in five datasets each at each W-level. For contemplating how these planar point scatters
make mischief for hyperplane recovery, it does no harm to treat all the salient loadings as positive.
(This is mainly because none of the rotation methods tested here is sensitive to item orientation. The

nonsalients’ zero centering and independence of the salients are also relevant, but fine details on

that aren’t worth your bother.)
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1. [ Question for referees: Does anyone care for clarification of this? ]

2. A later side study found differences in results under these convergence alterna-
tives to be negligible.

3. At the time, I had neither technical competence in this matter nor any desire to
play in its major league. But I needed a special rotation feature--the ability to hold
selected factor subspaces invariant during the rotation--that extant rotation programs
did not provide; and from there, as so often befalls, one thing led to another.

4. [W]sy is also zero if subspace constraints forbid movement of f; in this plane.
This is an important Hyball option that does not, however, arise in the present study.

5. I generally choose § to be .5 or .6. Small § needlessly retards solution speed,
while the more closely 6 approaches 1 the greater the risk of nonconvergence,
especially in STEP mode; but otherwise, results appear to be highly insensitive to
variation in §. In Table 1 and Hyball screen messages, 6 is called "DF”".

6. I have also generalized this to identifying the loading difference whose percentile
rank within the unsigned differences over the full array of loading comparisons is a
stipulated value P. Later, I shall mention an interesting finding for P=095.

7. 1If you view the notion of "targeted source structure" as ontologically dubious in
empirical applications, take this to envision whatever axis positioning you most
strongly desire to be your factor inquiry's payoff.

8. Because the Min and Max pattern-column divergences in Table 4 are in all W2 .15
entries nearly equal in their divergence from the corresponding means, with Max a tad
the larger, the mean divergences are also close to though a tad larger than the mean
divergences after exclusion of the best and worst matched factors.

9. OK, so you knew that already. No harm in noting it again.




TABLE 1

Table 1, p. 1

Source-recovery accuracies from standard start-positions of all studied rotation variants over 100 similation datasets.
Variant index &6 selected 7y = 66 for Orthomax, 7 = -3§ for Oblimin, and Hyball versions as follows:

BE BH BH BH
88 15 .20 .25 2.0
WSAL .0 .0 .5 1.0
WSAL 1.0 1.5 2.0 2.5
WSAL 2.0 3.0 3.5 4. 0%

Promax(K) is power-2 Promax based on variant-§§ Equamax.
Oblimin/Hyball suffixes (P) and (S) respectively demark Parallel and Serial iteration.

* Also JA = 0 to complete Quartimin approximation.
shared by all were SCAN mode, < JA, JB, CV> =
+ 60.0°, and convergence controls < DF, CLOSE, IMAX> = < .50, 1.0, 60 >.

Other Hyball parameter settings
<1, 2, 1.0 >, planar search window

A. Mean (SD) RMS DIFFERENCE from the source PATTERN over all hyperplane-noise levels

Extraction-axes start, NORM = 0

86 Orthomax Promax(2) Promax{4) Promax(6) Promax(8) Oblimin(P) Oblimin(S) Hyball(P) Hyball(S)

.00 | .233 (.04) .217 (.05) .212 (.05) .218 (.05) .225 (.05) .178 (.05) .156 (.05) .253 (.08) .254 (.09)

.50 | .220 (.04) .202 (.05) .,200 (.05) .208 (.05) .216 (.05) .202 (.08) .155 (.05) .229 (.09) .206 (.10)
1.00 | .201 (.04) .182 (.05) ,184 (.05) .195 (.05) .205 (.05) .230 (.08) .160 (.05) .186 (.09) .158 (.09)
1.50 .183 (.05) .163 (.06) .167 (.05) .180 (.05) .191 (.05) .258 (.06) .161 (.05) .203 (.09) .177 (.09)
2.00 .174 (.05) .153 (.05) .158 (.05) .172 (.05) .184 (.05) .279 (.05) .166 (.05) .179 (.08) .162 (.09)
2.50 .172 (.05) .150 (.05) .156 (.05) .169 (.05) .181 (.05) .292 (.03) .170 (.05) .156 (.08) .146 (.08)
3.00 .170 (.04) .148 (.05) .153 (.05) .167 (.05) .179 (.05) .284 (.03) .176 (.05) .174 (.08) .173 (.08)
3.50 .168 (.04) .147 (.05) .151 (.05) .165 (.05) .177 (.05) .297 (.03) .182 (.05) .161 (.08) .153 (.07)
4,00 .170 (.04) .147 (.05) .151 (.05) .164 (.05) .177 (.05) .302 (.02) .192 (.086) .174 (.05) .169 (.05)

Extraction-axes start, NORM = 1

66 Orthomax Promax(2) Promax(4) Promax(6) Promax(8) Oblimin(P) Oblimin(S) Hyball(P) Hyball(S)

.00 .224 (.04) .208 (.04) .203 (.05) .208 (.05) .217 (.05) .181 (.06) .145 (.04) .276 (.08) .276 (.08)

.50 .207 (.04) .187 (.05) ,185 (.05) .182 (.05) .201 (.05) .214 (,08) .151 (.0S5) .259 (.09) .248 (.09)
1.00 .183 (.04) .184 (.05) .166 (.05) .176 (.05) .187 (.05) .245 (.08) .148 (.04) .236 (.10) .211 (.09)
1.50 .166 (.04) -145 (.04) .149 (.05) .161 (.04) .172 (.04) .273 (.05) .155 (.04) .218 (.09) .202 (.09)
2.00 .160 (.04) .138 (.04) .142 (.04) .154 (.04) .166 (.04) .287 (.04) .167 (.05) .194 (.09) .181 (.09)
2.50 .159 (.04) .136 (.04) .141 (.04) .153 (.04) .165 (.04) .292 (.04) .176 (.05) .181 (.08) .158 (.08)
3.00 .156 (.03) .133 (.04) .137 (.04) .150 (.04) .162 (.04) .295 (.03) .185 (.05) .174 (.08) .168 (.08)
3.50 .156 (.03) .133 (.04) .136 (.04) .150 (.04) .162 (.04) .298 (.03) .188 (.05) .170 (.08) .152 (.08)
4.00 .157 (.03) .134 (.04) .137 (.04) .150 (.04) .162 (.04) .302 (.02) .195 (.05) 174 (.05) .162 (.04)

Equimax start, NORM = 0

88 Orthomax Promax(2) Promax(4) Promax(6) Promax(8) Obiimin(P) Oblimin(S) Hyball(P) Hyball(S)

.00 .231 (.04) .213 (.04) .208 (.05) .213 (.05) .219 (.05) .137 (.04) .148 (.04) .115 (.06) .127 (.07)

.50 .218 (.04) .198 (.05) .185 (.05) .203 (.05) .212 (.05) 135 (.04) .142 (.04) .112 (.06) .123 (.07)
1.00 .188 (.05) .178 (.05) .180 (.05) .191 (.05) .202 (.05) .135 (.04) .138 (.04) .111 (.05) .116 (.086)
1.50 .182 (.05) .162 (.06) .166 (.05) .179 (.05) .180 (.0S5) L135 (.04) .138 (.04) .111 (.06) .118 (.07)
2.00 .172 (.04) .150 (.05) .156 (.05) .170 (.05) .182 (.05) .136 (.04) .137 (.04) .109 (.086) .119 (.07)
2.50 .169 (.04) .147 (.05) .153 (.05) .167 (.05) .179 (.05) .136 (.04) .137 (.04) .112 (.05) .117 (.06)
3.00 .168 (.04) .146 (.05) .151 (.05) .165 (.05) .178 (.05) .136 (.04) .138 (.04) .121 (.06) .128 (.06)
3.50 .168 (.04) .146 (.05) .150 (.05) .164 (.05) .176 (.05) .136 (.04) .138 (.04) .121 (.06) .127 (.07)
4,00 .168 (.04) .146 (.05) .150 (.05) .183 (.04) .176 (.05) .136 (.04) .138 (.04) .155 (.04) .162 (.04)

Equimax start, NORM = 1

6 Orthomax Promax(2) Promax(4) Promax(6) Promax(8) Oblimin(P) Oblimin(S) Hyball(P) Hyball(S)

.00 .221 (.04) .203 (.04) .199 (.04) .204 (.05) .213 (.05) .136 (.04) .139 (.04) .121 (.07) .140 (.08)

.50 .208 (.04) .186 (.05) .184 (.05) .191 (.05) .200 (.05) .136 (.04) .137 (.04) .116 (.07) .126 (.07)
1,00 .182 (.04) .162 (.05) .164 (.05) .174 (.05) .185 (.05) .136 (.04) .136 (.04) .114 (.06) .122 (.07)
1.50 .165 (.04) <144 (.04) .148 (.04) .160 (.04) .172 (.04) .136 (.04) .138 (.04) .115 (.06) .125 (.07)
2.00 .160 (.04) .138 (.04) 142 (.04) .154 (.04) .166 (.04) .136 (.04) .137 (.04) .111 ¢.06) .116 (.07)
2.50 .158 (.04) .136 (.04) .141 (.04) .153 (.04) .1865 (.04) .136 (.04) .137 (.04) .110 .(.06) .115 (.07)
3.00 .158 (.04) .136 (.04) .140 (.04) .153 (.04) .164 (.04) .136 (.04) ,137 (.04) .122 (.06) .121 (.07)
3.50 .158 (.04) .135 (.04) .138 (.04) .151 (.04) .163 (.04) .136 (.04) .138 (.04) .116 (.06) .118 (.06)
4.00 .158 (.04) .135 (.04) .138 (.04) .151 (.04) .163 (.04) .136 (.04) .138 (.04) .150 (.04) .156 (.04)




Mean (SD) congruence DIVERGENCE from the source PATTERN over all hyperplane-noise levels

Extraction-axes start, NORM = 0

Table 1, p. 2

&6 Orthomax Promax(2) Promax(4) Promax(6) Promax(8) Oblimin(P) Oblimin(S) Hyball(P) Hyball(S)
.00 | 35.1 (6.2) 32.6 (7.3) 31.9 (7.2) 32.3 (7.0) 232.8 (6.9) 27.8 (7.9) 24.1 (7.1) 32.1 (11.) 31.5 (10.)
.50 | 32.9 (6.8) 30.3 (7.8) 30.1 (7.6) 30.9 (7.4) 31.5 (7.3) 31.6 (9.8) 24.1 (7.5) | 29.7 (11.) 26.2 (11.)
1.00 | 30.1 (7.0) | 27.2 (8.1) 27.7 (7.8) 29.0 (7.3) 30.0 (7.1) 36.4 (9.8) 24.9 (7.8) | 26.2 (11.) 21.3 (10.)
1.50 | 27.7 (6.9) 24.5 (8.2) 25.4 (7.8) 27.1 (7.4) 28.2 (7.2) 40.9 (8.1) 25.2 (7.4) | 27.4 (11.) 24.1 (12.)
2.00 | 26.7 (6.7) | 23.2 (7.8) 24.2 (7.5) 26.0 (7.2) 27.3 (7.1) 44.3 (7.6) 26.0 (7.7) | 25.0 (11.) 22.0 (11.)
2.50 | 26.5 (6.7) | 22.9 (7.8) 23.9 (7.4) 25.6 (7.1) 26.8 (8.9) 46.3 (5.1) 26.7 (7.7) | 22.3 (10.) 20.9 (11.)
3.00 | 26.3 (8.5) | 22.7 (7.5) 23.6 (7.2) 25.4 (6.9) 26.7 (6.8) 46.5 (4.8) 27.7 (7.8) | 24.7 (11.) 24.1 (11.)
3.50 | 26.2 (6.5) | 22.5 (7.5) 23.4 (7.1) 25.2 (6.9) 26.5 (6.7) 47.0 (4.3) 28.7 (8.1) | 22.8 (10.) 21.7 (10.)
4.00 | 26.3 (6.5) | 22.6 (7.5) 23.4 (7.1) 25.1 (6.9) 26.4 (6.7) 47.7 (3.6) 30.3 (8.9) | 26.7 (7.1) 26.1 (7.3)
Extraction-axes start, NORM = 1
&8 Orthomax Promax(2) Promax(4) Promax(6) Promax(8) | Oblimin(P) Oblimin(S) Hyball(P) Byball(S)
.00 | 33.4 (5.8) 30.7 (6.6) 30.1 (6.7) 30.5 (6.5) 31.1 (6.4) | 27.9 (8.3) 22.4 (6.5) 34.9 (10.) 33.7 (9.2)
.50 | 30.3 (6.0) | 27.6 (7.0) 27.6 (6.9) 28.4 (6.8) 29.2 (6.5) 33.4 (9.8) 23.4 (7.0) 33.0 (10.) 30.5 (11.)
1.00 | 27.2 (8.0) | 24.2 (7.2) 24.8 (7.0) 26.1 (6.7) 27.2 (6.5) 38.4 (9.2) 23.2 (6.5) 30.0 (12.) 26.8 (11.)
1.50 | 25.4 (5.6) | 22.0 (6.7) 22.9 (6.6) 24.5 (6.3) 25.7 (6.2) 42.8 (7.8) 24.3 (6.8) | 29.4 (12.) 27.1 (11.)
2.00 | 24.7 (5.3) | 21.0 (6.3) 21.9 (6.0) 23.5 (5.7) 24.8 (5.6) 45.2 (5.8) 26.4 (7.5) | 26.7 (12.) 24.4 (11.)
2.50 | 24.8 (5.2) | 20.8 (6.2) 21.7 (5.9) 23.4 (5.8) 24.7 (5.6) 46.0 (5.3) 27.7 (7.9) 25.0 (11.) 22.2 (11.)
3.00 | 24.2 (4.7) | 20.4 (5.6) 21.2 (5.4) 22.9 (5.2) 24.3 (5.2) 46.5 (4.9) 29.1 (7.86) 24.6 (11.) 23.4 (11.)
3.50 | 24.2 (4.8) | 20.4 (5.8) 21.2 (5.4) 22.9 (5.2) 24.3 (5.2) 47.0 (4.7) 29.8 (7.7) 23.7 (11.) 21.6 (11.)
4.00 | 24.4 (5.0) | 20.8 (5.9) 21.3 (5.8) 23.0 (5.4) 24.4 (5.3) 47.6 (3.6) 31.0 (7.8) | 26.9 (7.4) 25.1 (6.6)
Equimax start, NORM = 0
86 Orthomax Promax(2) Promax(4) Promax(6) Promax(8) Oblimin(P) Oblimin(S) Hyball(P) Hyball(S)
00 | 34.6 (6.3) 32.0 (7.2) 31.2 (7.2) 31.6 (7.1) 32.1 (7.0) | 21.2 (5.9) 22.9 (7.1) 16.4 (8.3) 17.3 (8.1)
.50 | 32.2 (6.5) | 29.5 (7.6) 29.4 (7.4) 30.3 (7.2) 31.0 (7.1) 20.9 (5.9) 22.0 (6.4) 16.1 (8.1) 17.2 (8.1)
1.00 | 29.4 (7.0) | 26.5 (8.1) 27.1 (7.7) 28.5 (7.3) 29.6 (7.2) 21.0 (5.9) 21.5 (5.9) 16.3 (7.1) 16.7 (7.8)
1.50 | 27.6 (6.8) | 24.3 (8.2) 25.2 (7.7) 26.9 (7.3) 28.1 (7.2) 21.0 (5.9) 21.5 (5.8) 16.2 (8.4) 17.1 (9.1)
2.00 | 26.3 (6.4) | 22.8 (7.5) 23.8 (7.2) 25.7 (6.9) 27.0 (6.8) 21.0 (5.9) 21.4 (5.8) 16.0 (7.8) 17.2 (8.8)
2.50 | 26.1 (6.2) | 22.4 (7.3) 23.4 (7.0) 25.2 (6.7) 26.5 (6.6) 21.0 (5.9) 21.4 (5.8) 16.6 (7.4) 17.2 (8.0)
3.00 | 26.1 (6.3) 22.3 (7.2) 23.3 (6.8) 25.1 (6.6) 26.4 (6.5) 21.0 (5.9) 21.4 (5.8) 17.6 (8.8) 18.2 (8.7)
3.50 | 26.1 (6.3) 22.3 (7.1) 23.2 (6.8) 25.0 (6.6) 26.3 (6.5) 21.0 (5.9) 21.5 (5.8) 17.7 (8.4) 18.3 (8.0)
4,00 | 26.1 (6.3) 22.4 (7.1) 23.2 (6.8) 25.0 (6.6) 26.3 (6.5) | 21.1 (5.9) 21.5 (5.8) | 23.9 (6.2) 24.9 (6.4)
Equimax start, NORM = 1
&6 Orthomax Promax(2) Promax(4) Promax(6) Promax(8) Oblimin(P) Oblimin(S) Hyball(P) Hyball(S)
.00 | 32.9 (5.8) 30.1 (6.7) 29.5 (6.7) 30.0 (6.6) 30.6 (6.6) 21.0 (5.9) 21.6 (6.2) 17.2 (8.6) 19.1 (10.)
.50 | 30.2 (6.1) 27.5 (7.0) 27.4 (6.9) 28.3 (6.6) 29.2 (6.5) 21.0 (5.8) 21.3 (5.9) 16.5 (8.7) 17.2 (8.8)
1.00 | 27.1 (6.0) 24.1 (7.2) 24.7 (6.9) 26.0 (6.6) 27.1 (6.4) 21.0 (5.9) 21.2 (5.8) 16.4 (8.2) 16.9 (8.5)
1.50 | 25.3 (5.6) 21.8 (6.7) 22.7 (6.5) 24.3 (6.3) 25.6 (6.2) 21.0 (5.9) 21.2(5.8) 16.7 (8.7) 17.7 (9.8)
2.00 | 24.7 (5.3) 21.0 (6.3) 21.9 (6.0) 23.5 (5.7) 24.8 (5.7) 21.0 (5.9) 21.3 (5.8) 16.3 (8.3) 16.8 (9.0)
2.50 | 24.6 (5.2) 20.8 (6.2) 21.7 (5.9) 23.4 (5.6) 24.7 (5.6) 21,1 (5.9) 21.4 (5.8) | 16.3 (8.2) 16.8 (8.1)
3.00 | 24.5 (5.1) 20.8 (6.1) 21.6 (5.9) 23.3 (5.6) 24.6 (5.5) 21.1 (5.9) 21.4 (5.8) 17.8 (8.9) 17.7 (8.2)
3.50 | 24.4 (5.1) 20.7 (6.0) 21.4 (5.7) 23.1 (5.5) 24.4 (5.4) 21.1 (5.9) 21.5 (5.7) 17.2 (8.8) 17.3 (8.7)
4.00 | 24.6 (5.2) | 20.8 (6.1) 21.5 (5.8) 23.2 (5.6) 24.5 (5.5) 21.1 (5.9) 21.5 (5.7) | 23.4 (6.2) 24.2 (6.3)




Table 1, p. 3

Mean (SD) RMS DIFFERENCE from the source COVARIANCES over all hyperplane-noise levels

Extraction-axes start, NORM = 0

S WWNN PP

868 Orthomax Promax(2) Promax(4) Promax(6) Promax(8) Oblimin(P) Oblimin(S) Hyball(P) Hyball(S)
.00 | .283 (.04) .243 (.05) .267 (.06) .296 (.07) .317 (.08) .217 (.08) .208 (.05) .343 (.12) .356 (.13)
.50 | .283 (.04) .235 (.05) .283 (.08) .286 (.07) .318 (.08) .227 (.05) .206 (.05) .325 (.13) .301 (.15)
.00 | .283 (.04) .222 (.05) ,251 (.06) .289 (.08) .316 (.09) .244 (.05) .204 (.04) .273 (.12) .227 (.13)
.50 | .283 (.04) .210 (.05) .247 (.08) .291 (.08) .320 (.09) .258 (.05) .205 (.04) .286 (.13) .259 (.15)
.00 | .283 (.04) .202 (.05) .238 (.06) .281 (.08) .306 (.09) .270 (.05) .209 (.04) .257 (.13) .237 (.14)
.50 | .283 (.04) .189 (.05) .238 (.05) .275 (.07) .303 (.09) .276 (.04) .208 (.04) .236 (.11) .219 (.12)
.00 | .283 (.04) .187 (.05) .233 (.05) .272 (.07) .296 (.08) .277 (.04) .210 (.04) .255 (.12) .260 (.12)
.50 | .283 (.04) .187 (.05) .231 (.05) .273 (.07) .298 (.08) .279 (.04) .213 (.04) .243 (.11) .232 (.12)
.00 | .283 (.04) .187 (.04) .230 (.05) .272 (.07) .298 (.08) .282 (.04) .220 (.04) .257 (.07) .263 (.07)

Extraction-axes start, NORM = 1
56 Orthomax Promax(2) Promax(4) Promax(6) Promax(8) Oblimin(P) Oblimin(S) Byball(P) Hyball(S)

W WD =

.00 | .283

(.04) .245 (.05) .264 (.07) .295 (.08) .322 (.09) .215 (.05) .185 (.05) .370 (.12) .391 (.12)
.50 | .283 (.04) .232 (.05) .251 (.06) .287 (.08) .314 (.09) .231 (.05) .200 (.05) .350 (.13) .354 (.14)
.00 | .283 (.04) 213 (.05) .243 (.06) .284 (.08) .315 (.09) .248 (.05) .187 (.04) .322 (.14) .311 (.15)
.50 | .283 (.04) -201 (.05) .233 (.06) .273 (.07) .303 (.09) .265 (.05) .202 (.05) .288 (.13) .305 (.15)
.00 | .283 (.04) -183 (.04) ,225 (.05) .267 (.07) .297 (.08) .271 (.05) .209 (.05) .281 (.13) .276 (.15)
.50 | .283 (.04) .193 (.04) .224 (.05) .267 (.07) .296 (.08) .273 (.05) .213 (.03) .256 (.11) .234 (.13)
.00 | .283 (.04) .192 (.04) ,223 (.05) .262 (.07) .291 (.08) .277 (.04) .223 (.06) .250 (.12) .253 (.13)
.50 | .283 (.04) -181 (.04) .222 (.05) .262 (.07) .291 (.08) .279 (.04) .223 (.05) .251 (.12) .234 (.13)
.00 | .283 (.04) -191 (.04) .222 (.05) .262 (.07) .290 (.08) .281 (.04) .225 (.05) .257 (.07) .247 (.06)

Equimax start, RORM = 0 :
58 Orthomax Promax(2) Promax(4) Promax(6) Promax(8) | Oblimin(P) Oblimin(S) Hyball(P) Hyball(S)

S WWNN -

.00 | .283

(.04) -243 (.05) .263 (.06) .291 (.07) .312 (.08) .196 ( (.035) .178 (.11) .184 (.12)
.50 | .283 (.04) .234 (.05) .262 (.06) .283 (.07) .316 (.08) .184 (.04) .197 (.04) 2175 (.11)  .184 (.12)
.00 | .283 (.04) .221 (.05) .252 (.06) .281 (.07) .319 (.09) .193 (.04) .184 (.04) .176 (.08) .185 (.10)
.50 | .283 (.04) .209 (.05) .246 (.06) .287 (.07) .316 (.09) .194 (.04) .194 (.04) .173 (.10) .183 (.11)
.00 | .283 (.04) 201 (.05) .236 (.06) .276 (.07) .302 (.09) .184 (.04) .183 (.04) .171 (.10) .181 (.11)
.50 | .283 (.04) .198 (.05) .234 (.05) .274 (.07) .300 (.09) .194 (.04) .182 (.04) .176 (.09) .182 (.09)
.00 | .283 (.04) .197 (.05) .233 (.05) .272 (.07) .298 (.08) .184 (.04) .192 (.04) .184 (.11) .203 (.11)
.50 | .283 (.04) .187 (.04) .230 (.05) .271 (.07) .296 (.08) .193 (.04) .192 (.04) .189 (.10) .188 (.10)
.00 | .283 (.04) .197 (.05) .231 (.05) .270 (.07) .296 (.08) .193 (.04) .182 (.04) .255 (.07) .256 (.06)

.04) .205

Equimax start, NORM = 1
86 Orthomax Promax(2) Promax(4) Promax(6) Promax(8) Oblimin(P) Oblimin(S) Hyball(P) Hyball(S)

S WWNN e

.00 .283

(.04) .242 (.05) .258 (.07) .286 (.08) .312 (.08) .192 (.04) .191 (.04) L1846 (.12) .215 (.12)
.50 | .283 (.04) 231 (.05) .251 (.06) .288 (.08) .316 (.09) .192 (.04) .190 (.04) .175 (.10) .183 (.12)
.00 | .283 (.04) <213 (.05) .243 (.06) .285 (.08) .316 (.09) .192 (.04) .190 (.04) .176 (.10) .188 (.12)
.50 | .283 (.04) -200 (.05) .232 (.06) .273 (.07) .302 (.08) .183 (.04) .180 (.04) .179 (.11) .181 (.12)
.00 | .283 (.04) -183 (.04) .225 (.05) .267 (.07) .298 (.08) .193 (.04) .190 (.04) .172 (.10) .173 (.11)
.50 | .283 (.04) .183 (.04) .224 (.05) .267 (.07) .296 (.08) .183 (.04) .191 (.04) .170 (.10) .176 (.11)
.00 | .283 (.04) -182 (.04) .226 (.06) .264 (.07) .293 (.08) .183 (.04) .181 (.04) .183 (.11) .185 (.11)
.50 | .283 (.04) .193 (.04) .223 (.05) .264 (.07) .293 (.08) .183 (.04) .181 (.04) .179 (.10) .182 (.10)
.00 | .283 (.04) 182 (.04) .223 (.05) .263 (.07) .203 (.08) .183 (.04) .181 (.04) .245 (.086) .245 (.06)




Table 1, p. 4

D. Breakdown by hyperplane-noise level W of selected pattern-recovery measures for selscted method variants under NORM =1 from
both Equamax start and Varimax start. For comparison to Spin results in Table 3, the most relevant portions of this
are 56 = .00 for OblmS (serially iterated Oblimin) and 86 =2.0 for HyblP (parallel iterated Hyball). Columms
".../Equx" are results from Equamax start, columns “.../Vmx" are from Varimax start.

RMS DIFFERENCE from the source PATTERN DIVERGENCE from the source PATTERN
&8 W OblmS/Eqmx | Oblws/vmx HyblP/Egmx | HyblP/Vmx &8 W OblmS/Eqgmx | OblmS/vimx HyblP/Egax | HyblP/Vimx
0] .00 | .116 (.02) | .122 ¢.03) | .071 ¢.03) | .108 (.05) .0 | .00 ] 18.0 (3.3) | 18.7 (4.1) | 10.1 (3.2) | 13.6 (4.9
0 .05] .117 ¢.03) | .119 (.03) | .082 (.05) | .096 ¢.05) 0] .05 ] 18.1 (4.4) | 18.4 (3.7) | 12.4 (6.3) | 13.3 (4.8)
0 .10 | 134 (.03) | .141 €.04) | 109 (.05) | .126 (.06) 0] .10 ] 20.3 (3.8) | 21.1 (5.3) | 15.0 (4.5) | 17.2 (7.4)
0] .15 ] .166 (.04) | 171 (€.05) | 146 €.06) | .193 (.O7) 0] 151 35.6 (7.1) | 26.5 (7.6) | 20.9 (8.2) | 26.2 (9.2)
0] .20 | 164 €.03) | 169 (.04) | .198 (.05) | .222 (.06) 0] .20 } 25.8 (5.7) | 26.4 (6.5) | 27.5 (6.2) | 29.3 (5.4)
1.0 | .00 | .116 (.03) | .124 (.03) | .065 (.02) | .073 (.03) 1.0 | .00 § 18.0 (3.6) | 19.3 (4.8) | 9.84 (2.5) | 10.6 (3.3)
1.0 ] .05 § .117 ¢.03) | .119 (.03) | .075 (.04) | .082 (.04) 1.0 | .05 | 18.2 (4.6) | 18.5 (3.8) | 11.4 (5.5) | 11.8 (3.8)
1.0 ] .10 | .134 (.03) | .136 ¢.03) | .104 ¢.05) | .109 (.05) 1.0 | .10 | 20.4 (3.8) | 20.6 (4.2) | 14.4 (5.0) | 15.5 (6.2)
1.0 | .15 | .157 ¢.04) | .167 (.05) | .140 (.06) | .169 (.06) 1.0 | .15 | 24.6 (7.0) | 25.9 (7.8) | 20.1 (8.4) | 23.7 (8.8)
1.0 1 .20 | .156 (.03) | .162 €.04) | .187 (.05) | .192 (.05) 1.0 | .20 § 24.8 (5.2) | 25.5 (5.9) | 26.1 (4.7) | 27.1 (6.6)
2.0 | .00 | .118 (.03) | .126 ¢.03) | .059 ¢.02) | .081 (.04) 2.0 | .00 | 18.4 (3.7) | 19.6 (4.8) | 9.16 (1.7) | 11.1 (3.9)
2.0 | .05 | .118 (.04) | .121 (.03) ] .073 (.04) | .088 (.04) 2.0 | .05 ] 18.4 (4.6) | 18.8 (3.8) | 11.2 (5.0) | 12.4 (4.5)
2.0 | .10 | .136 (.03) | .142 ¢.03) ] .101 ¢.04) | .108 (.05) 2.0 | .10 | 20.6 (3.9) | 21.4 (4.5) | 14.1 (4.5) | 15.2 (6.9)
2.0 | 15 ] .156 (.04) | .168 (.05) | .148 (.06) | .169 (.06) 2.0 | .15 | 24.4 (7.1) | 26.2 (7.5) | 21.7 (9.0) | 23.8 (8.1)
2.0 | .20 | .156 (.03) | .161 (.03) | .171 (.04) | .196 (.06) 2.0 | .20 | 24.8 (5.3) | 25.5 (5.8) | 25.2 (4.7) | 28.7 (7.4)
NMAXIMUM DIFFERENCE from the source PATTERN RMS DIFFERENCE from the source COVARIANCES
86 ] OblnS/Eqmx | Oblms/vmx HyblP/Eqmx | HyblP/vmx 86 ] OblmS/Egmx | OblmS/Vmx HyblP/Egnx | HyblP/Vmx
01 .00 | .347 (.10) | .380 (.12) | .257 (.17) | .411 (.23) .01 .00 | .175 (¢.04) | .184 (.04) | .107 (.07) | .175 €.09)
-0 | .05 ] .358 (.12) | .369 (.12) | .276 ¢.14) | .351 ¢.21) 0] .05 ] .166 ¢.04) | .171 (.03) | .116 (.05) | .136 (.08)
01 .10 | 437 (.14) | .452 (.15) | .397 (.20) | .426 (.21) 0] .10 | .181 (.03) | .186 (.04) | .179 (.09) | .195 (.11)
0| .15 ] .502 (.15) | .513 (.17) | .473 (.25) | .637 (.26) 0] .15 ] .220 ¢.05) | .223 (.04) | .244 (.12) | .281 (.08)
0 | .20 | 467 (.12) | 477 (.13) | .648 (.23) | .759 (.34) 01 .20 | .213 (.04) | .219 (.05) | .322 (.11) | .304 (.08)
1.0 | .00 | .336 ¢.10) | .373 (.13) | .224 (.14) | .245 (.16) 1.0 | .00 | .171 ¢.03) | .181 (.04) | .095 (.04) | .106 (.06)
1.0 | .05 | .359 (.12) | .374 (.11) | 242 (.14) | .290 (.18) 1.0 | .05 ]| .170 ¢.03) | .174 ¢.03) ] .101 (.05) | .110 (.06)
1.0 | .10 | .430 €.14) | .441 (.14) | .376 (.20) | .371 ¢.17) 1.0 | .10 | .184 ¢.03) | .185 (.03) | .166 (.10) | .166 (.09)
1.0 | .15 | .487 (.14) | .513 (.16) | .449 (.18) | .532 (.18) 1.0} .15 | .213 (.04) | .218 (.04) | .224 (.09) | .255 (.09)
1.0 | .20 | .459 (.12) | .464 (.12) | .607 (.21) | .631 (.20) 1.0 } .20 | .211 (.04) | .214 (.05) | .293 (.07) | .297 (.08)
2.0 | .00 ] .336 (.10) | .379 (.13) | .200 ¢.07) | .296 (.20) 2.0 | .00 | .171 (.03) | .182 (.04) | .085 (.04) | .133 (.09)
2.0 | .05 ] .364 (.12) | .383 (.11) | .241 (.12) | .327 (.22) 2.0 | .05} .172 ¢.03) | .176 ¢.03) | .099 (.05) | .128 (.08)
2.0 | .10 | .429 (.14) | .456 (.14) | .384 (.19) | .403 (.20) 2.0 | .10 | .186 (.03) | .188 (.03) | .161 (.08) | .173 (.10)
2.0 | 15 | .485 (.14) | .517 (.15) | .457 ¢.19) | .535 (.19) 2.0 | .15 | .212 (.04) | .223 ¢.04) | .232 ¢.07) | .260 (.10)
2.0 | .20 | .458 (.12) | .467 (.12) | .532 (.14) | .596 (.19) 2.0 1 .20 | .211 (.04) | .214 €.05) | .282 (.06) | .296 (.09)




TABLE 2

Dissimilarities among the Procrustes—start and 10 method-rated best Spin rotations ("ranks
0-10") of the same input pattern by the same rotation method, as well as, shown separately,
between the first and last rotation ("Unord spin") in each Spin series. Means for each method
at each hyperplane-noise level W, averaged over 10 repetitions of the 20 extraction patterns
at this W, are given on three measures of pattern divergence, namely,

MIN DIVERG: Smallest congruence divergence between the solutions’ matched factors.
AV DIVERG: Mean congruence divergence over the solutions’ matched factors.
MAX DIVERG: Largest congruence divergence between the solutions’ matched factors.

Orthomax variant was NORM-1 Equamax (y = 2.50); Promax target was power 2 of Equamax solution
Oblimin variant was NORM-1 Quartimin (y = 0)

Hyball variant was NORM-1 SCAN mode with <JA, JB, BH, CV,WSAL> = < 1, 2, .20, 1.0, 1.0>

MIN DIVERG AV DIVERG MAX DIVERG

Ranks | Unord | Ranks | Unord | Ranks | Unord

w Method §| 0-10 | spin | 0-10 | spin § 0-10 | spin
Equamax .02 .02 .06 .06 .12 .11
Promax .01 .02 .06 .07 .12 .15

00 Quin-P § 4.30 | 8.77 10.6 | 20.0 || 18.4 32.9
: Qmin-S 1.11 | 1.58 3.98 5.91 7.69 11.2
Hybl-P A4 | 1,92 f 1.43 13.2 3.25 31.2
Hybl-§ .10 .77 .28 10.8 .73 27.6
Equamax .14 .13 .69 .62 1.48 1.32
Promax .10 .11 .72 .74 1.48 1.51

05 Qmin—P | 4.71 | 8.94 | 11.7 22.6 20.1 37.1
: Qmin-S .93 1.33 3.53 5.42 6.69 10.6
Hybl-P .43 1.74 § 1.50 | 13.6 3.49 30.8
Hybl-S .10 | 1.57 .33 14.1 .83 33.0
Equamax .02 .02 .07 .07 .12 .12
Promax .01 .02 .06 .19 11 .42

10 Qmin-P | 5.96 11.2 14.6 25.9 23.9 | 41.2
: Qmin—S 1.21 1.98 | 4.35 7.09 7.93 12.9
Hybl-P .82 | 4.11 || 4.65 21.7 11.8 | 43.4
Hybl-8 .35 2.92 3.03 19.6 8.82 | 40.9
Equamax .08 .14 .19 .40 .33 .87
Promax .07 .08 .19 .22 .37 42

15 Qmin-P j 7.91 | 14.6 17.5 28.6 29.3 | 43.9
’ Qmin—S 1.97 2.69 5.81 | 8.89 11.0 16.3
Hybl-P | 2.56 8.47 12.3 27.9 27.5 | 48.4
Hybl-S 1.82 7.02 9.93 26.5 23.0 | 48.1
Equamax .27 .23 | 1.02 .86 || 1.79 | 1.52
Promax .29 .11 1.02 41 1.85 .75

20 Qmin-P | 6.88 11.7 | 16.3 25.7 28.0 | 41.0
: Qmin-S 1.78 3.14 || 5.84 | 10.6 10.7 19.9
Hybl-P | 2.85 6.96 16.6 26.1 35.4 | 47.5
Hybl-S 2.17 6.55 14.9 26.9 33.4 | 47.9
Equamax .11 .11 .41 .40 .77 .79
Promax .10 .07 41 .32 .78 .65

All Qmin—P | 5.95 11.0 | 14.2 24.6 23.9 39.2
Qmin-S | 1.40 | 2.15 | 4.70 | 7.59 8.84 14.2
Hybl-P | 1.42 | 4.64 | 7.30 | 20.5 16.3 | 40.3
Hybl-S .91 3.77 5.710 | 19.6 13.3 39.5




TABLE 3

Inaccuracy of source recovery by the Spin solutions of selected rotation methods, averaged over
the extraction patterns from sources at each hyperplane-noise level W, and then averaged again
over 10 repetitions of the latter. The standard error of each mean over its 10 repetitions,
multiplied by 10, is given in parentheses.

Orthomax variant was NORM-1 Equamax (y = 2.50); Promax target was power 2 of Equamax solution
Oblimin variant was NORM-1 Quartimin (y = .0).

Hyball variant was NORM-1 SCAN mode with <JA,JB,BH,CV,WSAL> =< 1, 2, .20, 1.0, 1.0>.

"Rank 0" is rotation from Procrustes start; "Rank 1" is the Spin series’ solution that optimized
the method’s criterion measure Z; "Best" is its solution closest to the source structure on the
comparison at issue; "Rank of Best" shows how many Tries in the Spin series were rated superior
by £ to the actual best; and "Filtered Rnk" is the Best'’s rank in what remains of the Spin series
when Tries are deleted if their Max Diverg from any retained Try of lower rank is less than 5.0°.

A. PATTERN, RMS DIFFERENCE

Mean (and 10*SE) RMS DIFFERENCE from the source PATTERN at each hyperplane noise level W.
W | Method Rank 0 Rank 1 Best Rank of Best| Filtered Rnk

Equamax [ .145 (.0 ) | .145 ( (.0 )
Promax § .116 (.000) | .116 (.000) | .116 (.0 ) | 20.
00 Quin-P | .092 (.000) | .135 (.025) | .103 (.011l) | 16.

: Quin-S § .112 (.000) | .132 (.015) | .110 (.003) | 17.

(
(

.000) | .145 21.4 (29.6) | 1.99 (.300)
(32.3) | 1.97 (.335)
(23.7) | 12.9 (14.2)
(16.6) | 5.28 (3.52)
(13.2) | 1.89 (.663)

(16.3) | 1.87 (.600)

Hybl-P § .053 (.0 ) | .055 (.001) | .054 (.001) § 12.
Hybl-S § .055 (.0 ) | .055 (.000) | .055 (.000) { 11.

PONOVCUDN P

Equamax J| .143 (.0 .143 (.001) | .142 (.005) { 22.
Promax § .116 (.0 .117 (.002) | .116 (.007) || 22.1 (47.4) | 2.03 (.245)

) (36.6) | 2.04 (.200)
)
05 Quin-P § .087 (.0 ) | .135 (.033) | .099 (.013) | 17.3 (17.5) | 16.0 (15.1)
) )
)
)

NWHE= O

Qmin—S § .106 (.0 .125 (.034) | .105 (.003) || 25.2 (23.0) | 5.29 (3.71)
Hybl-P § .059 (.0 .061 (.004) | .059 (.001) || 6.67 (8.47) | 1.99 (.986)
Hybl-S || .064 (.000 .063 (.003) | .063 (.003) || 10.0 (18.1) | 1.87 (.642)

Equamax | .154 (.000) | .154 (.000) | .154 (.0 ) | 21.3 (27.9) | 1.94 (.490)
Promax § .133 (.000) | .133 (.000) | .133 (.0 ) {f 20.4 (30.4) | 1.95 (.548)

10 Quin-P § .100 (.000) | .157 (.035) | .114 (.014) | 17.9 (14.8) | 16.9 (12.3)
) Quin-S § .124 (.0 ) | .143 (.020) | .121 (.005) | 25.8 (18.5) | 5.24 (3.09)
Hybl-P § .070 (.000) | .082 (.031) | .072 (.008) | 7.81 (9.38) | 2.61 (2.72)

(

Hybl-S | .074 (.0 ) | .084 (.033) | .075 (.013) | 7.09 (9.73) | 2.06 (1.49)

Equamax | .173 (.000) | .173 (.002) | .173 (.001) | 22.8 (19.7) | 2.02 (.332)
Promax | .154 (.0 ) | .154 (.003) | .153 (.001) | 22.6 (16.6) | 2.03 (.391)
15 Quin-P | .109 (.0 ) | .193 (.066) | .134 (.024) | 20.0 (20.5) | 19.6 (20.4)
’ Quin-S § .154 (.000) | .180 (.032) | .146 (.015) | 25.4 (24.0) | 8.80 (7.37)
Hybl-P § .098 (.000) | .139 (.048) | .106 (.024) § 6.93 (8.33) | 4.55 (4.53)

(

Hybl-S § .108 (.000) | .140 (.048) | .109 (.022) | 8.71 (12.6) | 4.03 (4.72)

Equamax | .178 (.000) | .178 (.009) | .177 (.000) | 23.4 (25.4) | 2.13 (.510)
Promax § .163 (.0 ) | .162 (.009) | .161 (.000) § 22.5 (30.6) | 2.13 (.808)

20 Quin—P } .110 (.0 ) | .177 (.040) | .133 (.013) | 19.5 (20.4) | 18.6 (18.4)
’ Quin-S | .147 (.0 ) | .166 (.025) | .143 (.018) | 27.0 (24.5) | 7.57 (8.19)
Hybl-P § .131 (.0 ) | .183 (.092) | .133 (.034) | 11.6 (17.8) | 8.87 (11.4)
Hybl-S | .146 (.0 ) | .187 (.067) | .136 (.026) | 10.8 (17.2) | 6.39 (10.5)
Equamax | .159 (.0 ) | .159 (.002) | .158 (.001) | 22.3 (12.2) | 2.02 (.211)
Promax | .136 (.0 ) | .136 (.002) | .136 (.001) | 21.6 (15.2) | 2.02 (.225)

All Quin—P § .100 (.000) | .159 (.020) | .116 (.008) | 18.3 (9.93) | 16.8 (8.76)
Qmin—S § .128 (.000) | .149 (.008) | .125 (.005) | 24.3 (10.8) | 6.43 (3.05)
RHybl-P § .083 (.000) | .104 (.020) | .085 (.009) [ 9.14 (5.03) | 3.98 (1.73)
Hybl-S § .089 (.000) | .106 (.014) | .087 (.007) | 9.62 (6.75) | 3.24 (2.38)
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B. PATTERN, MAXIMUM DIFFERENCE

Mean (and 10*SE) MAXIMUM DIFFERENCE from the source PATTERN at each hyperplane noise level W.

W Method Rank O . Rank 1 Best Rank of Best| Filtered Rnk
Equamax | .426 (.0 ) 426 (.002) 425 (.001) 6.41 (15.1) 1.62 (.844)
Promax § .352 (.0 ) .352 (.001) .351 (.001) | 4.91 (13.8) 1.45 (.650)
00 Qmin-P | .270 (.000) .429 (.120) .288 (.043) 18.2 (26.5) 13.8 (17.7)
: Qmin-S .337 (.0 ) 439 (.088) .323 (.024) 24.5 (22.6) 5.57 (5.51)
Hybl-P § .179 (.0 ) .185 (.013) .172 (.010) 14.7 (20.1) 2.03 (.896)
Hybl-S .190 (.000) .190 (.003) .188 (.001) 7.73 (10.7) 1.80 (.922)
Equamax | .433 (.0 ) .435 (.011) 431 (.023) 6.68 (25.1) 1.64 (1.05)
Promax § .361 (.001) .362 (.007) .359 (.024) # 7.25 (12.7) 1.57 (.748)
05 Quin—P | .254 (.0 ) 422 (.176) .276 (.044) § 17.1 (13.5) 15.7 (10.7)
: Quin-S .314 (.000) .379 (.102) .303 (.026) § 27.4 (19.5) 5.24 (3.06)
Hybl-P | .195 (.000) .199 (.019) .187 (.006) 7.23 (7.21) 2.02 (1.14)
Hybl-§ .213 (.0 ) .212 (.0le6) .207 (.014) | 7.79 (15.4) 1.82 (1.20)
Equamax § .487 (.0 ) .487 (.002) .486 (.000) 7.04 (13.1) 1.64 (.768)
Promax § .448 (.000) 448 (.002) 447 (.000) 5.67 (18.5) 1.46 (.768)
10 Quin-P | .307 (.0 ) .499 (.068) .323 (.060) 19.3 (15.4) 18.2 (13.7)
: Quin-S .400 (.001) 459 (.065) .377 (.034) 24.6 (18.3) 5.17 (3.51)
Hybl-P | .232 (.000) .285 (.100) .228 (.057) 8.10 (7.85) 2.84 (3.94)
Hybl-S 249 (.0 ) .296 (.148) .243 (.061) 7.28 (9.98) 2.24 (3.08)
Equamax | .529 (.0 ) .530 (.019) .527 (.002) 6.38 (12.9) 1.66 (1.09)
Promax | .476 (.001) 478 (.023) 474 (.002) 8.76 (20.1) 1.81 (.831)
15 Qmin-P .337 (.0 ) .561 (.261) .378 (.077) 19.6 (14.9) 19.2 (14.8)
) Qmin-S .457 (.001) .537 (.107) 417 (.073) 27.3 (18.9) 8.95 (6.15)
Hybl-P | .304 (.000) .458 (.131) .330 (.097) 9.44 (12.3) 6.16 (7.70)
Hybl-S 341 (.0 ) .453 (.157) .336 (.099) 8.93 (17.1) | 4.35 (6.80)
Equamax | .548 (.001) .542 (.055) .532 (.004) 7.06 (15.8) 1.77 (.955)
Promax | .503 (.0 ) .493 (.064) .483 (.000) 6.55 (10.0) 1.67 (.900)
20 Qmin-P .325 (.001) .509 (.159) .363 (.056) 19.9 (18.9) 19.0 (20.1)
: Quin-S .428 (.000) 474 (.080) .398 (.035) 24.9 (26.7) 7.55 (7.31)
Hybl-P 427 (.0 ) .586 (.373) .394 (.139) 13.1 (20.2) 9.89 (13.4)
Hybl-S 461 (.0 ) .598 (.173) 406 (.119) 13.2 (21.1) 7.51 (10.4)
Equamax || .484 (.001) 484 (.009) .480 (.005) 6.71 (8.08) 1.66 (.478)
Promax | .428 (.0 ) 427 (.012) 423 (.005) 6.63 (6.86) 1.59 (.393)
All Qmin-P .299 (.0 ) .484 (.087) .325 (.034) 18.8 (9.07) 17.2 (8.62)
Quin-S .387 (.0 ) .457 (.039) .364 (.020) | 25.7 (8.50) 6.50 (2.47)
Hybl-P .267 (.000) .343 (.084) .262 (.044) 10.5 (7.27) | 4.59 (2.81)
Hybl-§ .291 (.0 ) .350 (.048) .276 (.036) | 8.99 (6.99) 3.54 (3.43)
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C. PATTERN, CONGRUENCE DIVERGENCE

Mean (and 10*SE) CONGRUENCE DIVERGENCE from the source PATTERN at each hyperplane noise level W.

174 Method Rank O Rank 1 Best Rank of Best| Filtered Rnk
Equamax § 22.7 (.026) | 22.7 (.032) | 22.7 (.026) 20.9 (35.5) 1.97 (.332)
Promax | 17.6 (.038) | 17.6 (.034) | 17.6 (.006) 20.0 (40.3) 1.98 (.332)
00 Quin—-P § 14.3 (.0 ) | 20.6 (3.57) | 15.8 (2.10) 15.3 (18.5) 12.1 (12.2)
: Qmin-S § 17.3 (.010) | 20.1 (2.02) | 17.0 (.653) 16.6 (16.6) 5.22 (4.19)
Hybl-P § 8.50 (.019) | 8.81 (.213) | 8.63 (.160) 12.7 (16.9) 1.94 (.735)
Hybl-S | 8.78 (.019) | 8.78 (.034) | 8.75 (.029) 12.7 (22.2) 1.86 (.709)
Equamax § 22.4 (.0 ) | 22.4 (.105) | 22.3 (.667) } 21.0 (34.4) 2.02 (.250)
Promax  17.8 (.024) | 17.9 (.601) | 17.8 (.741) § 20.8 (40.4) 2.02 (.335)
05 Qmin-P §| 13.6 (.0 ) | 20.8 (5.20) | 15.3 (1.71) § 16.6 (17.0) 15.3 (15.0)
: Qmin—S | 16.5 (.024) | 19.5 (5.73) | 16.2 (.400) | 24.1 (23.4) 5.24 (3.64)
Hybl-P ] 9.37 (.004) 9.61 (.471) | 9.37 (.164) 6.80 (11.4) 1.99 (.970)
Hybl-S | 9.93 (.012) | 9.88 (.477) | 9.80 (.448) 11.0 (13.7) 1.89 (.850)
Equamax § 23.4 (.028) | 23.4 (.051) | 23.4 (.020) 21.3 (31.0) 1.94 (.436)
Promax § 19.8 (.0 ) | 19.8 (.067) | 19.7 (.0 ) 21.2 (23.1) 1.96 (.391)
10 Qmin—P § 15.2 (.025) | 23.9 (6.14) | 17.3 (2.09) 17.6 (18.0) 16.6 (16.1)
' Qmin-S § 18.8 (.029) | 21.7 (3.82) | 18.5 (.829) 24.9 (20.0) 5.04 (2.28)
Hybl-P § 10.6 (.0 ) | 12.2 (5.16) | 10.8 (1.13) 7.74 (8.89) 2.73 (2.95)
Hybl-S | 11.2 (.0 ) 12.5 (3.68) | 11.2 (1.33) 7.77 (9.22) 2.34 (2.17)
Equamax | 26.6 (.014) | 26.7 (.271) | 26.6 (.104) 22.3 (29.9) 2.02 (.335)
Promax § 23.9 (.055) | 23.9 (.481) | 23.8 (.116) 22.1 (29.7) 2.04 (.300)
15 Quin-P § 16.5 (.0 ) | 29.4 (10.1) | 20.5 (3.63) 19.5 (15.6) 19.1 (15.9)
: Qmin-S § 23.7 (.0 ) | 27.6 (4.89) | 22.5 (1.84) 24.3 (23.9) 8.59 (6.04)
Hybl-P }| 14.6 (.007) | 19.8 (6.73) | 15.6 (3.28) 7.35 (10.0) | 4.79 (7.21)
Hybl-S § 15.8 (.010) | 19.8 (7.41) | 16.0 (3.06) || 8.38 (13.0) 3.90 (5.41)
Equamax § 27.6 (.050) | 27.5 (1.62) | 27.3 (.043) 22.2 (28.2) 2.11 (.539)
Promax | 25.0 (.0 ) | 24.9 (1.66) | 24.7 (.0 ) 21.6 (36.3) 2.13 (.808)
20 Quin-P § 17.2 (.0 ) | 27.7 (6.09) | 20.6 (1.92) 18.8 (17.6) 17.9 (17.0)
: Qmin-S || 23.1 (.0 ) | 25.9 (3.46) | 22.4 (2.15) 28.0 (23.4) 7.97 (9.63)
Hybl-P | 19.2 (.0 ) | 26.9 (12.6) | 19.8 (3.95) || 12.5 (14.9) | 9.54 (8.71)
Hybl-S §| 20.8 (.0 ) | 27.3 (9.43) | 20.0 (2.82) 11.7 (20.3) | 6.96 (11.4)
Equamax j| 24.6 (.021) | 24.6 (.316) | 24.5 (.146) 21.6 (17.2) 2.01 (.206)
Promax | 20.8 (.027) 20.8 (.315) | 20.7 (.158) 21.1 (15.5) 2.02 (.217)
All Quin-P §| 15.4 (.0 ) | 24.5 (2.92) | 17.9 (1.28) 17.6 (9.90) 16.2 (8.87)
Qmin-S § 19.9 (.0 ) 23.0 (1.30) | 19.3 (.645) 23.6 (8.08) 6.41 (1.93)
Hybl-P | 12.4 (.015) | 15.5 (2.62) | 12.8 (1.24) 9.44 (5.37) | 4.19 (1.52)
Hybl-S § 13.3 (.0 ) | 15.6 (2.30) | 13.1 (.858) 10.3 (6.21) 3.39 (2.29)




D. COVARIANCES, RMS DIFFERENCE
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Mean (and 10*SE) RMS DIFFERENCE from the source COVARIANCES at each hyperplane noise level W.

W Method Rank 0 Rank 1 Best Rank of Best| Filtered Rnk
Equamax § .296 (.001) | .296 (.000) | .296 (.0 ) § 20.4 (17.8) | 1.97 (.332)
Promax | .182 (.0 ) | .182 (.0 ) | .182 (.0 ) | 20.7 (36.3) | 1.98 (.332)
oo | Quin-P { .162 (.000) | .199 (.033) | .152 (.011) § 29.9 (23.4) | 22.7 (17.8)
' Quin—S § .175 (.000) | .196 (.027) | .168 (.014) f| 30.7 (22.9) | 6.60 (4.84)
Hybl-P § .073 (.000) | .078 (.006) | .070 (.007) { 17.0 (20.9) | 2.35 (3.59)
Hybl-Ss | .079 (.0 ) | .079 (.002) | .078 (.001) § 15.4 (23.2) | 1.90 (.850)
Equamax § .277 (.0 ) | .277 (.000) | .277 (.000) | 21.6 (26.8) | 2.01 (.374)
Promax § .167 (.0 ) | .169 (.011) | .167 (.000) | 21.7 (7.49) | 2.02 (.335)
05 Quin—P § .149 (.0 ) | .185 (.042) | .144 (.014) | 24.3 (18.6) | 22.5 (17.5)
) Qmin-S { .161 (.0 ) | .178 (.042) | .154 (.009) | 29.2 (38.2) | 5.40 (5.09)
Hybl-P | .075 (.000) | .078 (.016) | .071 (.007) | 9.85 (13.8) | 2.19 (1.21)
Hybl-S § .087 (.000) | .086 (.010) | .083 (.010) | 14.4 (17.8) | 1.98 (.976)
Equamax § .271 (.0 ) | .271 (.0 ) | .271 (.0 ) | 21.7 (37.0) | 1.99 (.200)
Promax § .186 (.0 ) | .186 (.001) | .185 (.001) | 21.6 (33.0) | 1.96 (.450)
10 Quin—P § .163 (.0 ) | .192 (.039) | .153 (.016) | 22.6 (20.2) | 21.5 (19.1)
’ Quin—-S | .174 (.0 ) | .188 (.025) | .165 (.015) | 23.2 (20.4) | 5.21 (4.02)
Hybl-P | .105 (.0 ) | .130 (.041) | .103 (.024) | 9.63 (8.46) | 3.57 (5.78)
Hybl-S §| .121 (.000) | .137 (.037) | .113 (.018) | 10.5 (15.3) | 3.41 (4.45)
Equamax § .283 (.0 ) | .283 (.000) | .283 (.0 ) l 20.4 (28.9) | 1.99 (.610)
Promax § .211 (.000) | .211 (.001) | .211 (.000) | 22.1 (33.0) | 2.00 (.350)
15 Quin-P § .180 (.0 ) | .235 (.038) | .165 (.024) | 26.8 (31.0) | 26.4 (30.3)
) Qmin-S § .207 (.000) | .229 (.064) | .188 (.022) | 26.2 (32.8) | 8.47 (12.0)
Hybl-P § .170 (.0 ) | .229 (.076) | .155 (.038) || 13.2 (21.5) | 8.20 (15.9)
Hybl-S | .186 (.000) | .227 (.074) | .161 (.036) | 12.4 (17.5) | 5.29 (6.97)
Equamax | .288 (.0 ) | .288 (.0 ) | .288 (.000) | 22.6 (29.7) | 2.11 (.450)
Promax | .218 (.0 ) | .216 (.023) | .212 (.0 ) f 23.4 (20.6) | 2.17 (.400)
20 Quin-P § .190 (.0 ) | .225 (.068) | .172 (.034) | 29.1 (19.2) | 27.6 (17.2)
’ Quin-S § .212 (.000) | .216 (.036) | .192 (.01l1l) || 24.2 (19.3) | 7.62 (4.25)
Hybl-P | .221 (.0 ) | .280 (.133) | .182 (.042) | 17.9 (22.9) | 13.3 (20.6)
Hybl-S | .226 (.000) | .290 (.126) | .185 (.051) { 18.0 (18.1) | 9.87 (9.77)
Equamax | .283 (.000) | .283 (.000) | .283 (.0 ) § 21.3 (12.6) | 2.01 (.174)
Promax | .193 (.0 ) | .193 (.005) | .191 (.000) § 21.9 (11.9) | 2.02 (.187)
All Qmin-P 169 (.0 ) | .207 (.024) | .157 (.007) { 26.6 (10.8) | 24.1 (9.36)
Quin-§ 186 (.000) | .201 (.017) | .173 (.008) || 26.7 (15.5) | 6.66 (3.42)
Hybl-P 129 (.000) | .159 (.035) | .116 (.010) | 13.5 (9.22) | 5.92 (5.37)
Hybl-S 140 (.0 ) | .164 (.026) | .124 (.017) § 14.1 (7.53) | 4.49 (1.73)
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E. COVARIANCES, MAXIMUM DIFFERENCE

Mean (and 10+SE) MAXIMUM DIFFERENCE from the source COVARIANCES at each hyperplane noise level W.
W | Method Rank 0 Rank 1 Best Rank of Best| Filtered Rnk

Equamax § .544 (.001) | .544 (.001) | .544 (.0 ) { 20.
Promax § .347 (.0 ) { .347 (.000) | .347 (.000) {§ 19.
00 Quin—P | .303 (.0 ) | .382 (.074) | .269 (.040) | 30.
’ Quin-S | .326 (.0 ) | .379 (.095) | .308 (.028) | 29.
Hybl-P § .142 (.000) | .150 (.023) | .129 (.019) | 18.
Hybl-S | .152 (.0 ) | .153 (.004) | .148 (.004) | 16.

Equamax | .518 (.001) | .518 (.001) | .518 (.0 ) | 21.
Promax § .294 (.000) | .296 (.010) | .294 (.000) {| 23.3 (32.1) | 2.04 (.200)
05 Quin-P § .269 (.000) | .338 (.085) | .241 (.029) | 25.5 (20.6) | 23.5 (18.4)

) Quin-S § .296 (.001) | .327 (.086) | .268 (.030) | 31.4 (34.8) | 6.03 (7.11)

Hybl-P § .148 (.000) | .149 (.051) | .125 (.009) | 9.91 (10.9) | 2.23 (1.14)

Hybl-S } .168 (.000) | .169 (.029) | .159 (.029) | 13.7 (20.0) | 2.04 (1.03)

(18.6) | 1.96 (.374)
(34.7) | 1.97 (.332)
(34.3) | 23.4 (23.0)
(18.2) | 6.42 (4.20)
. 2.47 (3.18)
(22.6) | 1.92 (.600)

(17.8) | 2.01 (.320)
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Equamax } .515 (.001) | .515 (.001) | .515 (.0 ) f 21.4 (17.9) | 1.98 (.245)
Promax } .353 (.000) | .353 (.001) | .352 (.000) || 20.7 (32.3) | 1.96 (.450)
10 Quin—P § .300 (.001) | .373 (.090) | .259 (.035) | 25.2 (21.7) | 23.7 (19.1)

’ Quin-S § .326 (.000) | .360 (.064) | .291 (.030) | 27.5 (24.9) | 6.02 (3.90)
Hybl-P § .197 (.000) | .253 (.079) | .191 (.050) | 8.62 (12.5) | 3.26 (3.80)

Hybl-S § .238 (.000) | .269 (.091) | .217 (.025) | 12.4 (20.8) | 3.69 (7.82)

Equamax | .501 (.001) | .501 (.001) | .501 (.001) | 20.6 (32.8) | 2.01 (.436)
Promax | .370 (.0 ) | .370 (.002) | .369 (.003) | 22.7 (35.0) | 2.01 (.300)
15 Quin-P | .331 (.0 ) | .439 (.124) | .285 (.049) | 26.6 (19.7) | 26.2 (19.3)
) Quin-S § .373 (.0 ) | .430 (.101) | .329 (.047) || 32.7 (25.5) | 9.97 (9.38)
Hybl-P § .335 (.0 ) | .439 (.139) | .283 (.092) | 13.1 (18.9) | 8.46 (14.5)
Hybl-S }§ .358 (.0 ) | .437 (.124) | .295 (.083) | 11.8 (23.3) | 5.54 (11.0)

Equamax | .550 (.0 ) | .550 (.000) | .550 (.0 ) | 22.6 (41.0) | 2.11 (.700)
Promax | .410 (.001) | .402 (.064) | .391 (.003) || 22.5 (26.0) | 2.16 (.624)
20 Qmin-P | .349 (.000) | .426 (.138) | .293 (.063) | 29.1 (23.5) | 27.4 (23.7)
’ Qmin-S § .395 (.001) | .410 (.096) | .340 (.038) | 29.7 (32.9) | 9.47 (8.63)
Hybl-P § .426 (.000) | .546 (.320) | .329 (.099) | 17.5 (21.6) | 12.5 (18.2)
Hybl-S § .420 (.000) | .557 (.270) | .335 (.091) | 18.3 (16.9) | 9.96 (8.54)

Equamax | .526 (.001) | .526 (.001) | .526 (.001) | 21.
Promax | .355 (.0 ) | .354 (.013) | .350 (.001) § 21.
All Quin—P § .311 (.000) | .392 (.046) | .269 (.021) | 27.

(15.6) | 2.01 (.233)
(10.8) | 2.02 (.170)
(10.4) | 24.8 (8.72)
Quin-S § .343 (.0 ) | .381 (.039) | .307 (.016) | 30.1 (16.8) | 7.58 (3.28)
Hybl-P § .250 (.000) | .308 (.084) | .211 (.026) | 13.4 (7.61) | 5.79 (4.97)
Hybl-S § .268 (.0 ) | .317 (.055) | .231 (.031) || 14.6 (7.85) | 4.63 (3.20)
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Differences among the distinguished Spin solutions whose similarities to source are reported in Table 3.

TABLE 4

Mean (and 10*SE) Min/Av/Max Divergence in each Spin set between the following special solutions:
The source pattern.

Sors:
Rnkl:
DivP:
RmsC:

Rark 1 on method’s quality measure.

Best on pattern Divergence from source.
Best on RMS covariance difference from source.

W | Method | Sors—Rnkl Sors-DivP Sors-RmsC Rokl-DivP Rnkl-RmsC DivP-RmsC
Quin—P § 11.2 (3.18) | 9.62 (2.54) | 10.8 (6.30) | 5.57 (6.92) | 5.89 (3.70) | 5.07 (4.87)
o5 | Quin-S § 10.9 (2.57) | 10.1 (1.14) | 10.2 (1.12) | 1.36 (2.56) | 1.89 (3.58) | 1.40 (3.55)
) Hybl-P § 6.46 (.433) | 6.40 (.376) | 6.47 (.444) 356 (.680) | .402 (.644) | .380 (.411)
Hybl-S § 6.55 (.090) | 6.54 (.102) | 6.56 (.130) 084 (.078) | .106 (.291) | .082 (.281)
Quin-P § 14.2 (6.30) | 10.5 (3.22) | 12.9 (7.09) | 6.21 (4.60) | 8.07 (7.96) | 6.24 (13.6)
10 Quin-S | 13.0 (5.16) | 10.7 (1.96) | 11.5 (2.09) | 2.22 (3.28) | 2.42 (4.43) | 1.80 (4.17)
’ Hybl-P | 7.38 (1.41) | 7.12 (1.27) | 7.40 (2.50) | .651 (1.29) | .717 (1.13) | .537 (1.18)
Hybl-S § 7.42 (.958) | 7.16 (.398) | 7.67 (3.22) 344 (.568) | .449 (1.68) | .368 (1.61)
Quin-P } 16.9 (6.48) | 12.5 (6.11) | 17.7 (16.2) | 10.2 (9.9%) | 12.7 (16.6) | 10.2 (21.3)
15 Quin-S | 15.6 (4.44) | 13.5 (2.69) | 14.9 (4.46) | 3.94 (6.38) | 4.52 (9.43) | 3.09 (4.38)
) Hybl-P § 9.85 (3.13) | 9.46 (1.81) | 10.6 (5.79) | 1.66 (5.28) | 3.07 (10.4) | 2.50 (9.11)
Hybl-S } 9.80 (4.23) | 9.50 (1.83) | 10.3 (5.49) | 1.17 (4.15) | 1.72 (8.23) | 1.37 (6.28)
Quin—P § 17.3 (6.91) | 13.0 (4.53) | 17.9 (9.03) | 7.14 (10.0) | 11.2 (17.0) | 10.3 (17.0)
2 Quin—S § 16.4 (3.58) | 14.4 (3.32) | 15.7 (2.55) | 2.81 (4.47) | 3.31 (4.16) | 3.17 (4.01)
) Hybl-P § 15.7 (9.99) | 12.0 (3.62) | 14.1 (6.76) | 2.82 (10.7) | &.45 (14.8) | 3.43 (12.9)
Hybl-S § 14.7 (4.71) | 12.1 (1.82) | 13.7 (6.01) | 1.62 (4.68) | 2.84 (7.91) | 2.37 (7.49)
B. MEAN PATTERN-COLIMN DIVERGENCE
W | Method | Sors—Rrkl Sors-DivP Sors—RmsC Rnkl-DivP Rnkl-RmsC DivP-RmsC
Qmin-P § 20.8 (5.20) | 15.3 (1.71) | 19.2 (7.02) | 13.7 (8.51) | 17.8 (7.75) | 12.2 (14.8)
05 Qein-S | 19.5 (5.73) | 16.2 (.400) | 18.6 (5.43) | 6.43 (8.79) | 10.7 (15.5) | 6.69 (13.1)
) Hybl-P § 9.61 (.471) | 9.37 (.164) | 9.54 (.168) | 1.27 (1.49) | 1.50 (1.67) | 1.18 (1.09)
Hybl-S | 9.88 (.477) | 9.80 (.448) | 10.0 (3.86) | .401 (.266) | .750 (5.04) | .510 (4.95)
Qnin—P § 23.9 (6.14) | 17.3 (2.09) | 23.6 (11.3) | 16.0 (8.49) | 18.7 (17.8) | 16.2 (21.8)
10 Qmin-S § 21.7 (3.82) | 18.5 (.829) | 20.7 (7.9%) | 8.99 (10.8) | 9.69 (19.8) | 6.88 (18.2)
’ Hybl-P | 12.2 (5.16) | 10.8 (1.13) | 11.8 (5.40) | 3.59 (7.14) | 4.35 (7.33) | 2.83 (6.34)
Hybl-S f§ 12.5 (3.68) | 11.2 (1.33) | 12.9 (7.41) | 2.94 (5.19) | 4.07 (12.2) | 3.18 (11.6)
Quin—P § 29.4 (10.1) | 20.5 (3.63) | 29.1 (11.4) | 21.9 (16.3) | 27.0 (14.0) | 22.1 (25.8)
15 Qmin-S | 27.6 (4.89) | 22.5 (1.84) | 25.8 (6.44) | 12.8 (16.1) | 14.8 (21.3) | 11.6 (12.7)
) Hybl-P § 19.8 (6.73) | 15.6 (3.28) | 20.5 (13.1) | 9.87 (9.99) | 14.8 (16.8) | 11.6 (17.8)
Hybl-S § 19.8 (7.41) | 16.0 (3.06) | 19.4 (5.46) | 8.99 (14.6) | 11.5 (16.7) | 8.09 (13.8)
Quin-P § 27.7 (6.09) | 20.6 (1.92) | 29.7 (14.6) | 17.6 (11.8) | 25.0 (23.5) | 23.4 (23.5)
20 Quin-S } 25.9 (3.46) | 22.4 (2.15) | 25.7 (4.07) | 10.9 (14.1) | 10.7 (9.44) | 10.2 (10.6)
) Hybl-P | 26.9 (12.6) | 19.8 (3.95) | 25.5 (14.0) | 16.9 (21.8) | 20.9 (30.5) | 15.7 (21.2)
Hybl-S | 27.3 (9.43) | 20.0 (2.82) | 25.7 (7.62) | 16.8 (18.8) | 20.5 (18.0) | 14.9 (12.8)




C. LARGEST PATTERN-COLIMN DIVERGENCE
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W | Method § Sors—Rnkl Sors-DivP Sors-RmsC Rokl-DivP Rnk1-RmsC DivP-RmsC
Quin—P | 31.7 (8.32) | 23.4 (5.35) | 31.5 (19.8) | 21.3 (12.8) | 30.2 (14.9) | 23.0 (18.6)
00 Quin-S | 31.6 (4.40) | 25.6 (2.34) | 28.6 (8.44) | 14.1 (10.4) | 17.8 (17.6) | 9.74 (24.9)
) Hybl-P | 11.5 (.526) | 11.3 (.506) | 12.0 (4.72) | 2.38 (2.91) | 3.53 (10.5) | 3.18 (9.02)
Hybl-S § 11.5 (.127) | 11.5 (.078) | 11.5 (.128) | .358 (.378) | .422 (.502) | .355 (.625)
Quin—P f§ 32.4 (7.56) | 22.7 (4.45) | 29.1 (12.8) | 23.8 (16.3) | 31.5 (16.0) | 20.0 (26.9)
05 Quin-8 § 29.9 (10.9) | 24.1 (1.69) | 29.2 (10.8) | 12.6 (19.2) | 21.8 (30.4) | 13.4 (25.6)
) Hybl-P § 13.6 (1.37) | 13.1 (.483) | 13.5 (.735) | 2.95 (4.07) | 3.59 (3.58) | 2.61 (2.61)
Hybl-S § 14.6 (1.38) | 14.4 (1.42) | 14.9 (7.83) | 1.38 (.925) | 2.25 (12.7) | 1.23 (12.1)
Quin-P § 36.3 (10.3) | 25.1 (6.71) | 36.3 (17.5) | 26.4 (19.8) | 30.2 (27.4) | 26.7 (32.4)
10 Quin-8 | 32.8 (5.61) | 26.9 (2.46) | 30.8 (16.6) | 16.3 (19.5) | 17.9 (40.2) | 12.9 (35.0)
) Hybl-P § 18.5 (7.71) | 15.4 (4.35) | 17.2 (11.3) | 8.56 (13.3) | 10.4 (15.6) | 6.86 (14.4)
Hybl-S § 19.1 (6.32) | 16.2 (5.08) | 19.0 (11.9) | 8.24 (11.6) | 9.98 (21.1) | 7.17 (21.7)
Quin-P § 43.9 (18.8) | 29.1 (7.08) | 42.3 (17.1) | 36.0 (29.2) | 42.3 (18.8) | 34.8 (30.5)
15 Quin-S | 42.0 (9.69) | 32.3 (6.40) | 38.1 (11.7) | 24.3 (35.2) | 27.9 (39.0) | 21.6 (20.9)
) Hybl-P § 33.7 (12.4) | 23.9 (7.61) | 33.2 (22.4) | 23.2 (20.3) | 32.7 (26.0) | 24.2 (27.9)
Hybl-S § 33.8 (12.7) | 24.1 (8.09) | 30.8 (14.5) | 23.4 (27.1) | 28.4 (22.0) | 18.3 (21.1)
Quin—P § 39.5 (11.2) | 29.2 (5.21) | 43.3 (24.7) | 30.2 (19.4) | 39.4 (30.6) | 37.2 (42.5)
20 Qmin-S § 35.4 (7.12) | 30.6 (3.06) | 35.9 (6.17) | 20.2 (28.8) | 19.4 (19.8) | 18.9 (22.5)
) Hybl-P § 42.1 (21.4) | 30.3 (17.3) | 39.0 (20.0) | 36.9 (32.0) | 41.2 (34.6) | 31.1 (23.8)
Hybl-S § 42.9 (16.1) | 30.8 (11.3) | 39.6 (15.8) | 37.6 (25.5) | 42.5 (30.9) | 30.4 (18.6)
D. RMS FACTOR-OOVARIANCE DIFFERENCE
W | Method § SorsRnkl Sors-DivP Sors-RmsC Rnkl-DivP Rnkl-RmsC DivP-RmsC
Qmin—P § .185 (.042) | .157 (.019) | .144 (.014) | .071 (.051) | .091 (.043) | .052 (.053)
05 Quin-S j .178 (.042) | .159 (.008) [ .154 (.009) | .039 (.063) | .062 (.097) | .032 (.060)
) Hybl-P § .078 (.016) | .075 (.011) | .071 (.007) | .019 (.028) | .022 (.025) | .016 (.016)
Hybl-S }§ .086 (.010) | .084 (.011) | .083 (.010) | .010 (.005) | .014 (.057) | .007 (.055)
Quin-P § .192 (.039) | .171 (.020) | .153 (.016) | .068 (.070) | .081 (.079) | .065 (.080)
10 | Quin=S § .188 (.025) | .173 (.006) | .165 (.015) | .043 (.053) | .046 (.094) | .030 (.072)
’ Hybl-P § .130 (.041) | .114 (.032) | .103 (.024) | .0S8 (.094) | .067 (.090) | .039 (.059)
Hybl-S § .137 (.037) | .122 (.038) | .113 (.018) | .051 (.071) | .057 (.089) | .037 (.101)
Qmin—P § .235 (.038) | .195 (.046) | .165 (.024) | .114 (.084) | .134 (.109) | .102 (.087)
15 Quin-S § .229 (.064) | .206 (.039) | .188 (.022) | .076 (.131) | .089 (.164) | .064 (.069)
) Hybl-P | .229 (.076) | .186 (.064) | .155 (.038) | .149 (.166) | .192 (.198) | .134 (.154)
Hybl-S | .227 (.074) | .183 (.088) | .161 (.036) | .148 (.202) | .172 (.138) | .111 (.155)
Quin-P § .225 (.068) | .205 (.022) | .172 (.034) | .097 (.083) | .127 (.130) | .114 (.153)
20 Qmin-S | .216 (.036) | .208 (.019) | .192 (.011) | .060 (.092) | .061 (.065) | .057 (.069)
) Hybl-P § .280 (.133) | .227 (.040) | .182 (.042) | .236 (.216) | .247 (.235) | .179 (.179)
Hybl-S | .290 (.126) | .231 (.070) | .185 (.051) | .246 (.194) | .265 (.223) | .175 (.136)




TABLE 5

Marginal means, SDs, and correlations among the five inaccuracy measures for each method variant,
computed over all the method’s Spin solutions, or all the selected solutions, at all W-levels.

All Spin solutions (unfiltered) First 10 in Spin Cream filtered at 5.0°

Equamax{ Mean SD ~ Correlations Equamax| Mean SD Correlations

RusP | .16 .04 [1.00 RmsP | .16 .04 [1.00

MaxP 49 14 | .86 1.00 MaxP .50 .14 | .86 1.00

DivP | 24.8 5.4 | .96 .76 1.00 DivP | 25.3 5.7 | .96 .78 1.00

RmsC .28 .04 | .18 .15 .20 1.00 RmsC .29 04| .26 .21 .27 1.00

MaxC .53 .09 | .04 .08 .05 .68 1.00 MaxC .53 .09 | .08 .08 .08 .66 1.00
Promax| Mean SD Correlations Promax| Mean SD Correlations

RmsP 14 .04 {1.00 RmsP .14 .04 11.00

MaxP 43 151 .91 1.00 MaxP A4 16 | .91 1.00

DivP | 21.1 6.4 | .97 .82 1.00 DivP | 21.7 6.8 | .97 .83 1.00

RmsC 19 .04 | .64 .62 .64 1.00 RmsC .20 .05 | .67 .66 .68 1.00

MaxC 36 .09 | .56 .60 .53 .83 1.00 MaxC .36 .09 | .58 .62 .55 .83 1.00
Quin—P| Mean SD Correlations Quin-P| Mean SD Correlations

RmsP .17 .06 |1.00 RmsP .16 .05 |1.00

MaxP .53 .18 | .89 1.00 MaxP .48 .16 | .88 1.00

DivP | 27.4 8.5 | .98 .82 1.00 DivP | 24.3 7.0 | .97 .80 1.00

RmsC .21 .05 | .60 .55 .60 1.00 RmsC .21 .06 | .59 .53 .58 1.00

MaxC 40 11 ) .54 .51 .53 .87 1.00 MaxC 39 11| .54 .49 .53 .86 1.00
Quin-S| Mean SD Correlations Quin-S| Mean SD Correlations

RmsP 15 .04 |1.00 RmsP .17 .04 |1.00

MaxP 44015 .88 1.00 MaxP .51 .16 | .86 1.00

DivP | 22.6 6.6 | .97 .80 1.00 DivP | 25.4 6.7 | .97 .77 1.00

RusC .20 .05 ] .63 .53 .62 1.00 RmsC [ .21 .05 | .56 .50 .55 1.00

MaxC .36 .10 | .56 .50 .54 .86 1.00 MaxC .39 10| .52 .51 .51 .87 1.00
Hybl-P| Mean SD Correlations Hybl-P| Mean SD Correlations

RmsP .17 .09 |1.00 . RusP .16 .06 |1.00

MaxP .56 .29 | .93 1.00 MaxP .58 .23 | .87 1.00

DivP | 22.6 11.0 | .96 .84 1.00 DivP | 21.9 8.0 | .92 .69 1.00

RmsC .25 .13 | .88 .8 .83 1.00 RmsC .26 .10 | .80 .77 .711.00

MaxC 47 25| .85 .85 .80 .95 1.00 MaxC 50 .21 | .74 .75 .65 .93 1.00
Hybl-S| Mean SD Correlations Hybl-S| Mean SD Correlations

RmsP .17 .09 |1.00 RmsP .19 .06 (1.00

MaxP .56 .31 .93 1.00 MaxP .65 .24 | .85 1.00

DivP | 21.8 11.0 | .93 .81 1.00 DivP | 23.9 7.8 | .85 .56 1.00

RmsC .25 14| .90 .88 .82 1.00 RmsC .29 10| .76 .75 .59 1.00

MaxC 48 .27 | .86 .86 .79 .96 1.00 MaxC .56 .21 | .70 .71 .52 .92 1.00




TABLE 6

Percentage distributions of unsigned loadings in the source patterns both in population and in sample (NS = 400),
broken down by hyperplane-noise level crossed with the Salient/Nonsaliant difference in production parameters.

Strip PN: Percent source-pattern loadings in the 20 populations at this W-level generated as Nonsalient.
Strip PS: Percent source-pattern loadings in the 20 populations at this W-level generated as Salient.

Strip SN: Percent procrustes-pattern loadings in the 20 size-400 samples at this W-level generated as Nonsalient.

Strip SS: Percent procrustes-pattern loadings in the 20 size-400 samples at this W-level generated as Salient.
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Figure 1. Source-recovery error by selected rotation methods as a function of hyperplane noise.
The Spin curves for Promax are indistinguishable from the Equamax-start Promax resuits
shown here.
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QO : Qmin-P Rank-1 Spin
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<> : Bestof Hybl-P Spin
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Figure 2. Improvement in source recovery when the sample covariances of items factored in this

study are replaced by their population values.




