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University of Alberta 

Want to rotate the latent variables you have found by some method of factor extraction to 
oblique simple structure while leaving invariant selected axes or subspaces in your initial 
solution? Here's how. 

So much has been published on the methodology of factor rotation, and so 
many computer programs released for simple-structure solutions by one criterion 
or another, that one might well favor a moratorium on this topic. Yet on the side 
of theory, the approach to oblique rotation pioneered by Maxplane (Cattell & 
Muerle, 1960; Eber, 1966) and Functionplane (Katz & Rohlf, 1974) - analytic 
emulation of subjective rotation to derisest hyperplanes — has remained largely 
neglected. And more importantly, on the side of practice, the routines for factor 
rotation available in commercial data-analysis libraries (IMSL) or software 
packages (SPSS, SAS, BDMP, SYSTAT, etc.) oh which most users must rely 
are obdurately inflexible in how they can be applied. So it should please you to 
leahi that the customized control over rotation that deep down inside you have 
always wanted can now be yours. Specifically, I would like to acquaint you with 
HYBALL, a program for oblique rotation with distinctive versatilities not 
currently available elsewhere. While the most important of these features can 
easily be included in future editions of any other program whose rotation is 
direct, HYBALL can be running on your microcomputer tomorrow. 

Although HYBALL — short for hyperplane eyeballing — is named for its 
emulation of subjective rotation, its main motivation is to allow invariance of 
selected factor axes or subspaces while others become oblique to them. So first 
of all I had better explain why this is a Good Thing. Briefly, the reason is that 
initial factoring sometimes manages to position certain of its axes where we 
think they should be, at least up to rotation within restricted blocks thereof, so 
that we want these axes or subspaces to persist in our terminal solution. To 
illustrate, let me introduce the example that will later be detailed numerically. 

Data released by the Psychological Corp. (Wechsler, 1981) for the sample 
population on which the WAIS-R was standardized include subject scores not 
merely on the 11 WAIS-R subscales, but also on severd background variables 
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that in Experimental-design conceptions of multivariate relations would be 
viewed as random-effects treatment factors. Two of these, chronological age 
(Age) and education level (Educ), show substantial correlations with the WAIS-
R subscales; and the question thus arises, when factoring the WAIS-R data for 
disclosure of common sources, how can we best include Age and Educ in the 
analysis? There are various ways to approach this, one being simply to treat Age 
and Educ as two more output measures to be factored jointly with the others. 
However, common sense urges us to view Age and Educ, or at least variables 
of which these are distinguished indicators, as causal influences on success at 
intelligence tasks rather than additional effects of the latter's proximal causes. 
So letting column vector 7= (y^,y^^ comprise the 11 WAIS-R subscales 
while JL ' = (JCJ, JC )̂ = (Age, Educ) is the column vector of manifest input variables, 
it is more reasonable to begin by inquiring whether the covariances among 
performance variables Y might be due just to their mutual dependence on X. 

For simplicity treating measures X as errorless, we can test this initial 
hypothesis by partialling X out of Y and observing whether the residual Y-
covariances vanish — which they most emphatically do not in this case. 
Insomuch as there are appreciable relations among the WAIS-R suBScales prima 
facie unaccounted for just by their common sources Age and Educ, we next turn 
to models positing that the WAIS-R subscales are determined not only by Xbut 
additionally by some number r of latent common factors F = ( f j , / ^ ) as well. 
That is, we now want to solve for pattern matrices A, B, and diagonal D in 

(1) y = A F + B;^ + D[/ 

that reproduce from F and X all the F-covariances except residual variances 
attributable to unique factors U. 

An initial solution for the coefficients in Equation 1 is entirely straightforward: 
We simply partialZout of Y, take the regression coefficients of 7uponXfor B, 
and extract A from the residual F-covariance matrix Cyj,^by whatever common-
factoring algorithm we favor, say iterated principal axes. But we cannot 
cogently interpret the pattern of Y on these initial (F, .y)-axes as structural 
weights unless we argue that F s proximal latent sources are uncorrelated with 
Age and Educ. Far more plausible is that whatever latent factors most 
immediately determine WAIS-R success along with Age and Educ are themselves 
importantly influenced by the latter, and indeed may mediate most if not all of 
the latter's effects upon the former. That is, the reason why Age and Educ 
influence WAIS-R responding may well be that performance on intelligence 
tests is due to certain mental abilities which develop in part as a function of 
maturation and training. Starting from our initial solution for the pattern on 
Equation 1 with F orthogonal to X, we can appraise this causal-mediation 
prospect by searching for an alternative r-tuple G - W^F + Ŵ AT of axes in 
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combined (F, ^-space such that rotated pattern coefficients onZ in 

Y = (AW;OG + (B - AW;iW^)^ [F = W^-\G - W^] 

are as close to zero as choice of can achieve. And this, in turn, can be nicely 
accomplished by rotating the joint pattern [A B] of Yon (F,X) in Equation 1 to 
simple structure under the constraint that theX-axes remain invariant. You will 
see later for the WAIS-R data just how striking the results so obtained can be. 

The rationale of this mediation model can be relaxed in various ways that 
call for more complex rotational constraints. For example, we might conjecture 
(nevermind how plausibly) that although Age and Educ lie in a 2-dimensional 
space of relatively remote WAIS-R sources, the causal basis of this space may 
not align perfectly with Age and Educ. In that case, we want to rotate all of 
factors (F, X) in Equation 1 to simple structure under the constraint that the 
subspace spanned by JIT remains invariant even though its rotated axes need not 
coincide with Age and Educ. Alternatively, if we hypothesize that Age is a 
causal source of WAIS-R and that a second one is also inX-space even though 
it may not be collinear with Educ, we want a hierarchy of subspace constraints 
on rotation of Equation 1 under which the invariances are to be first of allX-space 
and, nested within that, its one-dimensional subspace spanned by Age. 

Finally, note that the factor axes/subspaces we want rotation to leave 
unaltered needn't consist just of data variables. For example, were we to obtain 
reliability coefficients showing that recorded Age and Educ are appreciably 
coiitaminated by measurement error, we could replace these measures' observed 
variances by their estimated true variances and proceed to analyze the WAIS-
R covariance structure exactly as before except that X in Equation 1 would now 
comprise the true-parts of Age and Educ. More broadly, whenever a complex 
structural model describable by a path diagram on blocks of latent variables 
imposes arbitrary constraints such as triangularity of pattern or orthogonality of 
covariances on its within-block parameter arrays in order to specify a determinate 
solution, it is appropriate to remove these by a subsequent rotation that searches 
for simple structure (or any other pattern ideal you may prefer) under invariance 
of the latent axes/subspaces whose positionings are not arbitrary in the model. 
How often need for subspace-constrained rotation arises in structural modeling 
practice, I have no idea. But HYBALL can impose a complex nested hierarchy 
of subspace invariances just as easily as it can fix single axes. 

The Algebra of Subspace Invariance Under Factor Rotation 

HYBALL finds simple structure by iterating single-plane pattern shifts 
(direct rotation) while achieving invariance of selected factor axes/subspaces 
through an appropriate layout of zeros imposed on the rotation matrix. 
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Computationally, this is so elementary that most of HYBALL's technicalities 
which need to be put on record can be relegated to the Appendix. But the algebra 
of subspace-invariant rotation merits an explicit theoretical statement. 

Let y = ( y j , c o m p r i s e common parts of our data variables for which 
we have developed an initial factoring 

(2) Y=AF, C ^ = A C ^ ^ ' 

for some A and C^^. (Decomposition Equation 2 is the relevant fragment of 
some larger decomposition that also generally includes uniquenesses and 
reproduction residuals. Factor pattern A and factor covariances C^^ are 
presumed to be numerically identified, whereas subjects' scores on F are 
typically unknown.) Then for any nonsingular but otherwise arbitrary rotation 
G = TF of the F-axes, the G-covariances and the pattern of y on G are given by 

(3) y=(AT-i)G, Coo = TG,,T' (G = TF). 

If T in Equation 3 fails to normalize the G-covariances, we can subsequently 
achieve this by putting = [Diag(C^)] ''''and rescaling both the G-axes and 
the pattern on G in accord with y = (AT •'D -̂̂ )(D^G). Entrenched orthodoxies 
notwithstanding, H Y B A L L finds it most theoretically insightful and 
computationally efficient to let obliquely rotated factors have arbitrary variances 
in our basic formulas, adding variance normalization only after the rotation's 
essence is clear. 

Suppose, now, that with factor totalities F and G partitioned as F = (F^, F^ 
and G=(Gj, G^) with G^ (Gj) having the same dimensionality asF^̂  (Fj), rotation 
by Equation 3 is constrained to have the subspace spanned by F^ also spanned 
by Gj. This is equivalent to requiring G^ = some nonsingular where 

may be under additional constraints (possibly as extreme as axis fixation G^ 
= F2) to which we are at present indifferent. Then rotation matrix T and its 
inverse are restricted to block-triangular form 

(4) T = 
w • V -Q • V 

0 v.. 0 

corresponding to a subspace-constrained rotation 

(5) 

(Q = V^^WV^-^), 

V, W 

.0 V , , 
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When Aj and are the subpattems in A = [A^ A^] on and F^, respectively, 
the factor pattern that results from rotation Equation 5 has algebraic composition 

(6) AT-i = (A^ A^) 
V,^ -Q 

0 V ^ ^ 
= [Ay/-^ (A^V^-^-A^Q)]. 

Moreover, although and in Equation 4 to Equation 6 must be nonsingular, 
T's off-diagonal submatrix W or its counterpart -Q in T'̂  remains entirely 
unconstrained. So if we solve for Q to maximize the number of near-zero 
elements in (AjV^"^ - Aj Q) given our preferences for and V^, Equation 5 yields 
a rotation of F = (Fj, F^) into G = (Gj, G^) wherein G^ spans the same subspace 
as Fj (in fact, we can have G^ = F^ by taking V2 = I), while the repositioning of 
Fj as Gj in joint (Fj, F2)-space minimizes the putative effects of G^ on Y 
unmediated by Gj. . 

What has been shown is that if F^ is any restricted block of the factor axes 
in y = AF, a necessary and sufficient condition for invariance of the subspace 
spanned by F^ under rotation G = TF is for a suitable permutation of T's rows 
and columns — namely, one that puts F̂ ^ at the end of the permuted F and the 
corresponding G^ at the end of the permuted G — to be block-triangular as in 
Equation 5 with F ,̂ for Fj and G^ for G^. T may have many different permutations 
into such block-triangularity (cf. the limiting case of diagonal T), so it can leave 
a multiplicity of factor subspaces invariant, some perhaps nested in others. 
HYBALL exploits this implicit block-triangularity principle by imposing on T 
a fixed assignment of zero elements describable by a rotation control matrix K 
of the same order as T and containing just zeros and unities. If the y th element 
K„ of K is zero, T„ is required to be zero; whereas if K„ = 1, T„ is allowed to be 
whatever our criterion for rotated axis positioning may elect at any stage of the 
solution iteration. Let us say that rotation matrix T is K-structured just in case 
every zero element of K is also zero in T. And say also that axisf. in F = (f^, 
/̂ ) is (rotationally) vulnerable to axis^. under K-structured rotation iff (K)„ = 1, 
that is, just in case K allows/) to shifted into g. by adding tof. some weighting 
of Clearly, any g. produced by rotation G = TF lies in the subspace spanned 
just by the F-axes to which/. is vulnerable. So for any block of factors Fj in F 
indexed by some subset J of integers from 1 to r, if the axes in Fj are rotationally 
vulnerable only to ones that are themselves in Fj, block Gj of the rotated factors 
will span the same subspace as Fy 

In order for control matrix K to impose on K-structured T the implicit block-
triangularities that yield subspace invariances as wanted, however, the rotation-
vulnerability relation defined by K must be transitive in the sense that = 1 
whenever both K . = 1 and K.^ = 1 for any It is straightforward to show that K 
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is transitive just in case the factor indices can be partitioned into disjoint subsets 
J J , . . . , (1 < 5 < r) in such fashion that the blocks F ^ ^ , . . o f F-axes respectively 
picked out by these J-blocks are partially ordered by K-controlled rotation 
vulnerability as follows: (a) \if. is vulnerable to^., then every in the same J-
block as^. is vulnerable to every in the same J-block as .̂; and (b), if ^. is 
vulnerable to .̂, then .̂ is not vulnerable iof. unless/: and .̂ are in the same J-block. 
From there, it follows for any transitive K that if T is K-structured so is and 
if Tj and are both K-structured so is TjT^. (Hence iteration of K-structured 
rotation preserves structure K.) Moreover, if sequence Jj, Ĵ  of J-blocks 
reflects the partial-ordering by K in the sense that the axes in Fj are vulnerable 
to the axes in Fj only if / < k, then for each A; = 1 , 5 , the subspace spanned 
jointly by axis blocks F^ ,̂ F^ F^ is invariant under K-structured rotation. 
(Note that because this is only a partial ordering, there is generally more than 
one sequence of J-blocks having this property.) 

Sketch of Proof 

If rotation matrix T is K-structured for transitive K, we can always choose 
the order J ^ , J ^ of its index J-blocks to reflect K's partial ordering of factor 
blocks in the sense just described while ordering F as F = (F^ ,̂ F j , F ^ ) . Then 
G and the rows of T can be ordered to give T block-triangular Ibrm 

11 
0 

• 12 
T 

Is 
T, 

11 
0 22 2s 

0 0 . 0 T 

with T.̂  the coefficients of F^ 's contribution to Gj.. Each T.̂  on the diagonal 
therein must be nonsingular is to be a full-rank rotation, but any T.̂  (i < 1c) 
can be zero either by solution fortuity or by K-stipulation. From here, proof of 
the claims made above is routine. 

The Elegance of Single-axis Pattern Shifts 

Selecting a transitive control matrix K is only half the problem for subspace-
constrained factor rotation. Also necessary, obviously, is to devise a method for 
assigning numerical values to whatever coefficients in T are allowed by K to be 
nonzero. Altematives for this are determined first of all by what sort of pattern 
ideal is the rotation's target, and secondly by details of how that is to be 
approached. HYBALL goes about the latter by iterating aggregates of Equation 
4 rotations for varied choices of the to-be-shifted axis block F^. And dexterity 
is optimized by taking F^ to be a singleton while is temporarily fixed. 
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"^1 ' « 1 ' • 1 w' 
(7) y=[a,(A^-a,w)] > 

P2. .01 . P2. 

To clarify, consider the special case wherein only one axis is moved, say/j. 
That is, put - (f^) and = I in Equation 4. With no further loss of generality 
we can also choose Vj = 1, whereupon Equation 6 simplifies to 

in which aj is the first column of F s unrotated pattern A on F [= (f^, FJ\, A^ 
comprises the last r-1 columns of A, w is a 1 x (r-l) row of rotation coefficients, 
and is/j plus a component wFj in a possibly-restricted part of F^-space. (That 
is, K may require some elements of w to be zero.) Since = ̂ 2 ' / i °"^y 
axis repositioned by this rotation. Let a. be the jth column of A, that is, the 
0'-l)th column of A^, while w. is the (/-l)th element of w. Then rotation Equation 
7 just of axis /j leaves the first-factor pattern coefficients â  unchanged (though 
subsequent normalization of g^s variance will rescale â ), while for each 

= 2 , r , the column of F s pattern on the jih axis /j changes from aj to 

(8) a. = a. - wa,. 

where a. is the jth column of the rotated pattern. (Note that choice of w. affects 
only the yth pattern column, which is to say that these planar shifts o f d o not 
interact.) 

\ Equation 8 corresponds to a rotation of factor/j just in ihtfjf. plane, and 
can easily be understood graphically.̂  Consider the illustration in Figure 1 (next 
page) of the scatter plot of initial factor loadings (a ,̂ â .) in the fjf. plane, each 
point i therein showing the joint entries in columns 1 and ; of A for the item 
(output variable) y. whose factor loadings are given by A's ith row. Equation 8 
is simply the equation for the line gj through this graph's origin whose angle to 
/j is arctan(w.).̂  And any item's loading on^. (= g.) after Equation 8 rotation of 
/j is just the item's vertical distance from line g^, whence in particular, any item 
whose/j/^. point lies on g^ has a post-rotation loading on/j of zero. So gj is the 
intersection of the fjf. plane with the post-rotation hyperplane to .̂. And graphic 
line also represents rotated factor g^ in that the g^ If. pattern plot is what we 

'Versions of Equation 8 have previously been published by Jennrich & Sampson (1966, 
p. 316) and Mulaik (1972, p. 282); but their explicit inclusion of a coefficient normalizing gj's 
variance has obscured recognition how perspicuous a graph like Figure 1 can make the nature 
of single-plane direct rotation. 

^ i s is the angle between lines/j and gj in the graph plotting^ against/j at a right angle 
regardless of the factor correlation, not the angle whose cosine is the correlation between/j and 
gj. (Factor conelations enter direct rotation only in variance renormalizations.) 
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Figure 1 
Graphic representation of Equation 8. gj is the line in the//J .̂ plane whose slope relative to the 
/j-axis^ vv.. 

get by pushing line down to horizontal while similarly displacing all the item 
points downward to preserve their vertical distances from g^ and horizontal 
distances from^.. 

Choosing w. in Figure 1 is the standard move of graphic rotation except for 
working directly with item loadings on primary factors rather than with item 
correlations with reference axes. For any planar pattern ideal that we can 
effectively describe — it needn't be simple structure, though that is HYBALL's 
aim — it is relatively straightforward to devise a measure of how well any given 
pair (a., â  of pattern columns approaches this ideal, and from there to program 
a function on pairs of pattern columns whose output for any planar pattern (a., 
a) is the coefficient w.. that optimizes the pattern (a., a.) into which (a., â  is 
rotated by Equation 8 axis shift a. = a. - w.a.. In particular, for every such 
that K.. = 1, HYBALL searches out a line through the f./f. plane's origin (not 
so close to .̂ as to threaten factor collapse) that pattern points lying close thereto 
demark with special prominence (again, see Figure 1), and outputs the w.. that 
rotates/. to this position. Iteration of the K-allowed planar shifts so computed 
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then yields HYBALL's global solution for simple structure. 

Other HYBALL Felicities 

There are many analytic criteria by which we can search factor planes for 
simple structure. Elsewhere (Rozeboom, 1991) I have discussed this matter in 
some detail, with emphasis on a broad class of efficiently computable hyperplane-
fit measures that includes or well-approximates most that we might seriously 
wish to use. Any member of this class (including the Quartimin criterion, 
though that is not recommended) is available to HYBALL users through choice 
of control parameters. Most of HYBALL's remaining technicalities, notably 
how planar shifts are iterated to a global solution, need not detain you though 
they are given in the Appendix if you care. You should, however, be apprised 
that HYBALL is an interactive program whose flexibility should by rights make 
the method of choice for difficult rotations even when free of subspace 
constraints. Not merely can many variations of the control parameters be tested 
at one sitting, a record is kept of all provisional solutions and any can be recalled 
at any time with guidance by a screen display of hyperplane counts for all the 
stored solutions. Plane plots of the currently active pattern are also available on 
screen; and in light of these the user can fine-tune the rotation's continuation by 
instructing it to ignore selected item points in selected planes. 

An Empirical Example 

^ What HYBALL can accomplish through subspace constraints is illustrated 
in Figure 2 (next page). The data analyzed are scores of 1880 young-to-mature 
adults on the 11 subscales of the revised Wechsler Adult Intelligence Scale 
together with subjects' ages and education levels. Both Age and Educ show 
substantial correlations with the WAIS-R subscales (Educ with all; Age with 
just the nonverbal subscales), and can be viewed as causal sources of the latter 
or at least as (let us pretend) nearly-errorless indicators of certain dimensions in 
WAIS-R source space. But orthodox common-factoring of the WAIS-R 
correlations also implicates three or four latent sources which should themselves 
be dependent on Age and Educ if distinct from them. So the question naturally 
arises: Do Age and Educ discernably influence WAIS-R competence only 
through the mediation of their effects on more imminent common factors of the 
WAIS-R, or do the former appear also to have WAIS-R effects along causal 
paths independent of the latter? 

To answer, we first partial Age & Educ out of the variance-normalized 
WAIS-R subscales, and then extract orthonormal common factors from the 
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HYBALL ROTATION OF MODA PATTERN FOR THE WAIS-R SUBSCALES ON THREE 
LATENT AND TWO MANIFEST COMMON SOURCES. 

The input pattern of 11 WAIS-R subscales on 5 factors ( F l = Age, 
F2 = Education; communalities i n parentheses) i s 

1. ( .76) .15 .60 .59 -.23 -.08 (Information) 
2. ( .49) -.06 .42 .45 -.05 .33 ( D i g i t Span) 
3. { .87) .18 .62 .64 -.29 -.07 (Vocabulary) 
4. ( .69) .06 .53 .58 -.04 .28 (Arithmetic) 
5. ( .69) .10 .56 .59 -.17 -.10 (Comprehension) 

6. ( .71) -.09 .54 .61 -.12 -.11 ( S i m i l a r i t i e s ) 
7. ( .66) -.27 .40 .60 .17 -.12 (Picture Completion) 
8. ( .56) -.33 .38 .52 .04 -.05 (Picture Arrangement) 
9. { .72) -.31 .39 .59 .30 .04 (Block Design) 

10. ( .65) -.28 .31 .55 .38 -.09 (Object Assembly) 

11- ( .58) -.45 .40 .40 .07 .05 ( D i g i t Symbol) 
12. (1.00) 1.00 .00 .00 .00 .00 (Age) 
13. (1.00) .00 1.00 .00 .00 .00 (Education) 

with corresponding f a c t o r covariances 

1.00 -.15 .00 .00 .00 
-.15 1.00 .00 .00 .00 
.00 .00 1.00 .00 .00 
.00 .00 .00 1.00 .00 
.00 .00 .00 .00 1.00 

(The f i r s t 2 factors are manifest input variables.) 

Control matrix f o r t h i s r o t a t i o n , with KTL(I,J) = 1 s i g n i f y i n g that 
Factor J rotates Factor I, was: 

1 0 0 0 0 
0 1 0 0 0 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 

This pattern was transformed by f a c t o r - r o t a t i o n matrix 

1.00 .00 .00 .00 .00 
.00 1.00 .00 .00 .00 
.10 .67 .70 -.24 -.10 

-.43 .35 .65 .46 -.11 
-.01 .62 .67 -.06 .40 
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into rotated factor pattern 

1. ( .76) .04 .03 .87 -.05 .02 (Information) 
2. ( .49) -.06 -.01 -.07 -.05 .79 (D i g i t Span) 
3. ( .87) .03 -.02 .97 -.11 .05 (Vocabulary) 
4. ( .69) .08 .00 .08 .05 .74 (Arithmetic) 
5. { .69) .05 .02 .82 .06 -.04 (Comprehension) 

6. ( .71) -.11 .00 .77 .14 -.04 ( S i m i l a r i t i e s ) 
7. ( .66) -.06 -.02 .37 .56 -.04 (Picture Completion) 
8. ( .56) -.24 -.03 .40 .30 .06 (Picture Arrangement) 
9. ( .72) -.02 .01 -.04 .67 .27 (Block Design) 

10. ( .65) .07 .01 .01 .82 .01 (Object Assembly) 

11. ( .58) -.36 .09 .13 .24 .22 ( D i g i t Symbol) 
12. (1 .00) 1.00 .00 .00 .00 .00 (Age) 
13. (1.00) .00 1.00 .00 .00 .00 (Education) 

with corresponding factor covariances 

1.00 -.15 .00 -.48 -.10 
-.15 1.00 .65 .42 .62 
.00 .65 1.00 .59 .85 

-.48 .42 .59 1.00 .63 
-.10 .62 .85 .63 1.00 

Figure 2 
Reproduction of HYBALL's output file (sans pattern-plane graphs) for rotation of the 
WAIS-R factor pattern with Age & Education fixed as manifest sources. Before printing, a 
text-editor was used to insert the WAIS-R subscale names, expand some legends, and delete 
some superfluous information. 

latter's residual covariances either by iterated principal factoring (which produced 
the pattern rotated in Figure 2) or by any other factoring method if preferred. For 
the present data, both scree considerations and tidiness of the ensuing results 
urge that the proper number of common residual factors is three. The WAIS-
R loadings on these are shown in the last three columns of Figure 2's initial 
pattern, while this pattern's first two columns comprise the joint regression 
weights of Age & Educ for the WAIS-R subscales.̂  

' Although details of this initial factor solution don't really matter here, salient 
technicalities are as follows: (a) The first eight eigenvalues of the WAIS-R zero-order 
correlation matrix are 6.49,1.17, .67, .54, .43, .39, .33, .29, having a weak scree break after the 
4th. After Age & Educ are partialled out, the first six eigenvalues of the residual covariances 
are 3.75, .75, .66, .45, .42, ,38, with a conspicuous scree break after the 3rd. (b) The proportion 
of total WAIS-R normalized variance accounted for jointly by Age, Educ, and r = 0 , 1 , 6 latent 
factors (iterated principal factoring) are respectively .298, .437, .500, .536, .556, .569, .585. (c) 
Age, Educ, and r=3 latent factors jointly reproduce the WAIS-R correlations with RMS residual 
error of .012 and maximum error of .033. 
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Following Varimax pre-rotation of the three latent factors within their initial 
subspace (an optional commencement of HYBALL), rotation of the input 
pattern with Age & Educ fixed converged in six iteration steps to the simple-
structure pattern shown at bottom in Figure 2. The hyperplanes revealed there 
are exceptionally clean, and that HYBALL can find these attests to its proficiency. 
But other methods of oblique rotation could also do more or less this well were 
they to include provision for subspace constraints. Where HYBALL displays 
its distinctive competence is in the rotated pattern coefficients on fixed factors 
Age & Educ. The weights on Educ, which were so prominent in the initial factor 
pattern, have all vanished, strongly supporting the hypothesis that education has 
no bearing on WAIS-R competence except through the three abilities factors 
(you name them) diagnosed by columns 3-5 of the rotated pattern. In contrast, 
although the same is also largely true of Age, variables 8 and 11 (Picture 
Arrangement and Digit Symbol) are exceptions conspicuous enough to merit 
further inquiry by WAIS-R studies. I am not myself inclined to make much of 
factorial results from any array of variables so small as this one. But you must 
agree that the pattern and associated factor correlations disclosed by HYBALL 
in this case are strongly provocative. 

Program Availability 

FORTRAN-77 source code for HYBALL, together with its compilation for 
DOS execution on AT-compatible machines either with or without a math 
coprocê ssor, are available on request in a package that also contains .FOR and 
.EXE code for several other programs that facilitate HYBALL's use. These 
include computation of data covariances from raw-score files, construction of 
item scales to estimate the HYBALL factors, and, most importantly, initial 
factor extraction by program MODA (Multiple-output Dependency Analysis). 
Given a covariance matrix as input, MODA allows selection of zero or more of 
the received variables to be manifest sources (theX-set), selects some or all of 
the remainder to be outputs (the Y-set), computes the F-set's regression upon the 
X-SQt; factors the latter's residuals either by iterated principal-factoring or by 
Minres for each of the common-factor dimensionalities in a range chosen by the 
user in light of the residual Y-covariance eigenvalues, and files these initial 
patterns for transmission to HYBALL. (The pattern initiating Figure 2 was 
produced by MODA.) Send me $10 for expenses, and four SVi inch or two 3.5 
inch floppies bearing these and other goodies developed more recently, together 
with instructions for their installation and operation will be yours by return mail. 
Or if your budget is tight, write me anyway for a freebie. Unless you advise me 
otherwise, I' 11 presume that you want .EXE code that requires a math coprocessor. 
Source code for UNIX is also available. 
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Appendix 

The assorted local tactics whose aggregate constitutes the HYBALL 
program are of three sorts. First is stipulation of whatever subspace invariances 
may be wanted. In principle, this requires the user to enter rotation-control 
matrix K; but patterns received by HYBALL from its support programs include 
default specifications of K derived from higher-level decisions made previously, 
notably, choice of an X-set in MODA or imposition of a causal-path structure 
on blocks of the MODA factors by a program (HYBLOCK) whose rationale 
must await another occasion,'* that seldom need to be overridden. Even so, it is 
relatively simple to reset K by following on-screen instructions for this. 

Next comes selecting a criterion for the single-plane axis shifts illustrated 
in Figure 1. HYBALL provides a broad repertoire of misfit functions (j) for 
optimizing these. Specifically, ^{a., a., w) measures how diffuse in the (f., f^ 
plane is the hyperplane demarked by the pattern column a. = a. - wa. resulting 
from factor shift g. = ^. + wf. for arbitrary w, the best shift of /. in this plane by 
this criterion being the one that minimizes (|). Given (a., â , ^(a., a., w) is for each 
choice of <j) an increasing function of the magnitude of each a-element, but the 
curve of that increase differs considerably from one (j) to another. HYBALL's 
parameters specifying (j) and a method for minimizing it are detailed in 
Rozeboom (1991). But the program provides on-screen guidance in selection 
of these while encouraging default options that bypass concern for them. 

Finally, given specifications of K, (j), and a solution algorithm ^*(a., a!) 
whose value for any pair (a., a.) of columns from the current factor pattern is the 

* HYBLOCK intervenes between MODA and HYBALL, and is designed for use with data 
that include multiple indicators of source factors in blocks for which a causal-path structure is 
postulated. The program is fully operational and is documented in my forthcoming article, 
HYBLOCK: A routine for exploratory factoring of block-structured data. 
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approximate w that minimizes (|)(a., â ., w), we need a strategy for iterating 
applications of (j)* under constraint K. HYBALL finds it efficient to proceed as 
follows: Entering any cycle of iteration with intermediate pattern A = (â , a ,̂..., 
â ) on variance-normalized factors F -(f^, ...,f^, the program first computes an 
r X r provisional-shift matrix W to have elements 

(9) W„ = 
* * y ( » , ' 3 P if/^yandK..= 1 

0 if / = ; or K.. = 0 

where .. is identical with the globally chosen (j)* except for ignoring the pattern 
points for items currently listed in OMIT for factor planeyj/jj.. This omissions 
list comprises items that lie outside the zone within which axis repositioning is 
allowed together with any explicitly stipulated for this plane by the user, and is 
frequently updated. Then for any one / = 1 , r , if W. is the r x r matrix whose 
ith row is the same as W's but is zero elsewhere, G = (W. + I)F would be a K-
structured rotation of F into G that alters just axis f. with its shift to g. being 
pattemwise optimal by criterion However, HYBALL prefers to utilize not 
just one row of provisional-shift matrix W at each rotation step but all of them. 

One way to exploit W more fully would be to compute for each i = 1 , r 
separately what pattern change would result from single-axis rotation (W. + I)F, 
and execute the one whose improvement is greatest. But far more economical 
is simply to do all the W-approved single-axis shifts simultaneously — or rather, 
to reduce overshooting, to position each rotated axis g. only partway between/] 
and the ith axis in (W + I)F. 

To be specific, suppose that zero or more prior rotation steps have canied 
initial pattern A ĵ with factor covariances into pattern A on variance-
normalized factors F having covariances C^^. Then HYBALL's iteration step 
in simultaneous axis shifting is as follows: (a) Compute W by Equation 9; (b) 
Put T = (I + gW) and = [Diag(TC^^T')]-*f where g is a damping 
parameter in the unit interval (Values of g exceeding .5 generally seem 
preferable; but g = 1 theoretically incurs some risk of factor collapse.); (c) 
Execute variance-normalized rotation G = DTF to obtain rotated factor pattern 
A^ = A(D T) with rotated factor covariances C ^ = D TC^^T'D^; (d) Test for 
convergence by computing the order-r vector e whose ith element is the angle 
through which the present rotation step has shifted y]. If any term in E is larger 
than a stipulated small tolerance e, say e=.5°, replace A and C ^ by A^ and C ^ , 
respectively, and repeat the cycle from the beginning of (a). This iteration 
continues until no element of E exceeds c or a set limit is reached, say 25 or 30 
cycles. The program then records A^ and C ^ along with the current control 
parameters, and awaits user selection from a menu of continuation altematives. 
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If the continuation command is to stop, the program prepares a printable file 
of AQ, CQ, A ^ , C^, the transformation that carries into G, and, if wanted, 
planar plots of rotated pattern A^.^ Alternatively, the user can call for screen 
display of A^ either as a numerical table or as graphic factor-plane plots, can 
continue rotation from the present A^ with or without adjustments of the control 
parameters, or can revert to a preceding stage of the rotation chosen in light of 
an accumulated record of hyperplane counts at each preceding pause. Graphic 
inspection of rotated pattern A^ allows judgment whether there are any pattern 
planes gJ g. wherein the position of moveable g. is still subjectively suboptimal. 
It should also be evident for any such plane what items are degrading the 
solution; and continuing rotation from A^ with revised item omissions and 
perhaps other control adjustments yields a global solution more finely tuned 
than before. 

In the event of convergence failure, E locates the difficulty. For the indices 
of E-elements larger than tolerance identify axes that have failed to converge, and 
in that case the program also reports to screen which axis is most wobbly in what 
plane. If the instability seems too large to ignore, inspecting screen displays of 
the item plots in troublesome planes may suggest a fine-tuning that removes the 
convergence obstacle. 

^Additional options at hard-copy time are the data variables' covariances with the rotated 
factors, and the column multipliers for converting pattern A ,̂ on the primary factors into the 
corresponding structure on reference axes. (The latter are useful for comparing HYBALL's 
performance on standard test problems to previous results for these published as reference 
structure.) And when a putative causal ordering is imposed on blocks of the factors by K-
stipulated rotation constraints, the corresponding factor regressions are also recorded. 
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