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Theory & Practice of Analytic Hyperplane Optimization 
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University of Alberta 

There are many procedural alternatives by which subjective rotation to oblique simple 
structure can be emulated analytically, some rather more effective than others. This article 
develops a theoretical framework for comprehending these, and reports performance tests for 
some major variants thereof when implemented within the H Y B A L L rotation program 
described elsewhere. 

The H Y B A L L program for factor rotation to oblique simple structure, 
described in Rozeboom (1991), has been designed primarily to provide invari-
ance under rotation of selected factor axes/subspaces. But it also advances the 
art of analytic emulation of subjective rotation. Here's your chance to learn more 
about this exciting development. 

For any to-be-rotated factor pattern A = [a^, a ,̂ a j of variables 
Y= ( y j , y j on factors F = (/",, ...,/„) (i.e., the ith element of column vector a. 
is the initial loading of item>'. on factor j^), consider the pattern shift that results 
from replacing by f^=f^ + wf^ for an arbitrary rotation coefficient w. As 
detailed in Rozeboom, 1991, this is a rotation just of/j in \ht fjf^ plane that 
leaves unaltered all pattern coefficients except the column â  of loadings onf^. 
Specifically, prior to renormalizing the rotated factor's variance (which merely 
multiplies pattern column â  by a scaling constant), the only pattern change that 
results from this single-plane shift in is replacement of the pattern column aj 
on/^by 

(See Rozeboom, 1991, Equation 8 and Figure 1. Take care to appreciate how 
this shift of /j in the/^/j plane modifies the distribution of loadings not o n b u t 
on/2. Justification for omitting renormalization of/j's variance here is sketched 
in the Appendix.) Given that we wish to find the strongest hyperplanes, our task 
is to solve for the w that yields an optimal array of near-zero elements in k^. In 
applications, of course, such single-axis repositionings are to be aggregated for 
all moveable factors over all planes, and iterated through as many rotation cycles 
as may be needed for convergence to global optimum. But the mechanics of 
global iteration (see Rozeboom, 1991, Appendix) are not of present concern. 
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Here, our focus is how to locate the best hyperplane f o r i n the pattern just on 
factor pair 

Theory 

Analytic identification of the best w for axis-shift fi=fi + wf^ evidently 
requires above all some choice of a criterion measure y on pairs of pattern 
columns to appraise the ideality of rotated planar pattern ( H J , a^. It then remains 
to contrive an efficient computation of the w that optimizes y(a^, st^, that is, 
Y(aj, - ivaj); but first concern must be to articulate a class of reasonable 
alternatives for y. Because our target is simple structure, we want Y(aj, a^) to 
become increasingly optimal as each element d.^ of approaches zero; so y(a^, 

is to be a monotone function of each J (i= !, . . . ,«). But what function shape 
beyond that? And is its value to be determined justhy the array {Ifljll of rotated 
pattern magnitudes on axis/2 ^^^^ * i occurs vacuously in Y(aj, a^) ), or are 
subtler aspects of pattern configuration (a^, a^ also to be relevant? 

To close in on details for Y, we stipulate first that this is to be a real-valued 
function optimal at an extremum. But should the latter be a maximum or a 
minimum? If we think of each \d.Ji as an "error" in the ith pattern point's fit to 
the provisional/j-hyperplane, and take Y(aj, a^) to measure how distasteful is this 
array of misfits on the whole, Y will be optimally at minimum (most naturally 
zero) when each [aJ is zero. Yet as embodied in previous approaches to analytic 
hyperplane optimization, notably Maxplane (Cattell & Muerle, 1960; Eber, 
1966)^nd Functionplane (Katz & Rohlf, 1974,1975), we can alternatively let 
Y(aj, a^ appraise the concentration of points in this plane around the f^-
hyperplane. In this latter case, Y(aj, a^) reaches its optimal maximum (most 
naturally n) when all rotated coefficients (d.^} on are zero, and approaches zero 
as the hyperplane's neighborhood becomes empty. However, any such concen-
tration-near-hyperplane measure can be translated as poorness-of-fit simply by 
subtracting it from its maximum, whereas the converse conversion does not 
work for loss-functions that are unbounded. So hyperplane misfit is the broader 
conception. 

Consider, therefore, the class of misfit measures on (a^, a^) that are minimal 
at zero when jij = 0 and are increasing in each \d.ji. Simplest of these is just 

1=1 

— which, however, is useful mainly to exhibit inadequacies. For one, its explicit 
dependence on the absolute-value operator is analytically infelicitous. More 
importantly, although we find it most algebraically appropriate for y{a^, a^) to 
be a sum of terms Y,("n' ̂ IT) contributed by the individual pattern points, there 
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is no reason why each Y,(«,i' 1̂2) needs be linearly proportional to \dj(; instead, 
its increase with increasing \d^^\n just as well be either positively accelerated 
(as in traditional least-squares curve fitting) or decelerated with or without an 
upper bound. Finally, 

2 K\ 

makes no provision for each pattern point's contribution to the total-misfit 
measure being distinctively weighted to reflect pattern desiderata beyond this 
point's bare distance from the/j-hyperplane. Thus, we may wish to assign zero 
weight to points that are evidently salient on/2; might also consider small 
loadings on/2 *° worth less in points near the fjf^ plane's origin than in points 
that are strongly salient on/j. 

Accordingly, let us take as our generic class of misfit measures — not 
comprising all mathematical possibilities but surely broad enough to include 
most that are analytically tractable — the ones expressible as a function of 
hyperplane repositioning in form 

(1) E^(w) = i c, X al)[E,.(w)],̂  

wherein each e.(w) is a nonnegative error term generated from the rotated pattern 
point (a.,, fl^) by choice of rotation coefficient w, IJJ(E) is some fixed growth-
function of E , and each c. is some fixed nonnegative weight. We shall further take 
ea^h E.(H ') to have the more determinate specification 

(2) E,.(w) = (djbf = [(a, - y^a^,)lbY 

where b is ahyperplane-bandwidth parameter, say between .10 and .20, such that 
point i is construed to be in the rotated/2-hyperplane just in case \d.Ji < b. But 
details of E.(W) do not yet matter beyond the important observation that when ijj 
is the Identity function, solving [1,2] for the w that minimizes E^(w) is simply 
a weighted least-squares regression solution for w in wa^'^a^- That is, in special 
case i\){e) = E , (1, 2) simplifies to 

(3) E,(w) = 2 cz^iw) = 2 fc.^aV 
ib^ = jcjb). 

' E^{w) is essentially a specification of y(a^, â -waj), except that the pattern coefficients which 
are explicit arguments in the latter are only implicit in the former — primarily through definition 
Equation 2 of but also prospectively as constituents of weights (c) (cf. later Equation 12). 
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which is the sum-of-squares loss resulting from first replacing unrotated pattern 
( E J , â ) by its weighting (0,1,0,2) = ^e/C^^n' ^.^.2) 0' = 1' n) and then 
approximating by wa,. The w that optimizes fit in this case is of course the 
classic least-squares solution 

(4) H - , ^ , = (a;a,)-a;a, = ( i bf,,a^)l(i bfa,-) 
1=1 1=1 

i=l j=l 

In fact, (3,4) is H Y B A L L ' s basic step-down regression solution for provisional 
hyperplanes, with binary weights (c.) set according to whether point i lies in the 
search window at the moment of application. In this procedure, c. is 1 (otherwise 
0) just in case the angle of point i to the to-be-rotated axis is less than an 
adjustable value p. Shifts of/j using Equation 4 are iterated with p starting large, 
say p = 60°, but decreased after each iteration until p reaches a lower limit of 15° 
or thereabouts. Despite its lack of finesse, basic step-down regression often 
works nearly as well as more sophisticated solutions. 

Another instance of hyperplane fitting by a criterion having the form of 
Equation 3 is Direct Quartimin (Jennrich & Sampson, 1966), wherein c. is 
proportional to a.^. More will be said about this case in the Appendix. 

A large objection to Equation 4, however, is its zeal in trying to minimize 
the deviancy of outliers, due to E . (W) 'S positive acceleration in \d.^, even though 
outlier^ are the most conspicuous salients on/^ and should hence be given little 
say in positioning the/j-hyperplane. Assigning zero weights to evident outliers 
is a workable solution to this problem, but rather a crude one. Far more elegant 
is the graded analytic disregard for outliers that suitable op can accomplish in 
Equation 1 by making 'iJj[e.(H')] a decelerated (i.e., convex) increasing function 
of \d.^, preferably one having an upper bound. For then, when \d.^ > \d.^, even 
though ip[e.(iv)] still adds more to £^(w) in Equation 1 than does ipLe^^w)], the 
change in I|)[E.(IV)] produced by a small change in w is now less than the change 
in 'I1 [̂E .̂(W)]; so for small adjustments of the provisional /j-hyperplane selected 
by an approximation w to w^^^, points whose misfits \d.^ by the provisional 
hyperplane are smallest will have the strongest voice in appraising the merit of 
this shift while outliers for which ip[E,.(w)] is near ip's limit will be virtually 
mute. Under such a differential item weights in Equation 1 may still have 
some purpose; but they are no longer needed to exclude outliers. 

Instead of requiring a|)(E.) to be convex throughout, we can achieve the same 
outlier suppression by giving this a sigmoid shape under which deceleration of 
its increase in \d^^ does not take over until \d.^ leaves the hyperplane band. The 
most extreme example is Maxplane's hyperplane counting which, rewritten as 
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a misfit measure, takes lij(E) to be 0 if e< 1 and 1 if E > 1. Functionplane, too, 
has generally sigmoid misfit. 

Three practical questions remain: (a) What are good functions to choose for 
ip in Equation 1? (b) Have we any rationale for differential weights {c.} in 
Equation 1 even when is bounded? And (c) how can we best solve Equations 
1/2 for the w^^^ that minimizes E^(w) given our choice of \p? I shall speak to (c) 
first, for I have two methods to recommend — brute-force scanning, and 
polished step-down regression — and both are largely indifferent to the specifics 
of ip. 

Brute-force scanning of Equations 1/2 for w^^^ is simply computation of 
E (w) over a sufficiently dense sampling of w-values and returning the w for 
which E^(w) is smallest. If we limit arctan(iv) to the range, say, ±75", 26 
computations of E^(w) for equally spaced arctan(H') should identify arctan(H'̂ p 
within 6°, after which another 25 or so finer-spaced computations of E^{w) in 
this vicinity finds w^^^ to 2nd-decimal precision. Programming details are 
entirely routine, mainly matters of how is to be specified by what control-
parameters in what determinate function-form, and how, once specified, it can 
be computed most efficiently. The main practical complication is that if 
computation of is sluggish, its approximately 50 x n applications in each 
solution for w^^^, multiplied by the number of coefficients to be found for all 
shifts in all factor planes times the number of iteration cycles, can be rather time-
consuming. 

But when ij) has a continuous 1st derivative, there is also an alternative 
computation that can generally find w^^^ in much less time than by brute-force 
scanning. This is to approximate Equations 1/2 by an instance of Equation 3 
wherein each item weight is the 1st derivative of c.xi^ evaluated at the item's 
current value of E.(W). Specifically, the 1st derivative of E^{w) in Equation 1 
with respect to w is 

(5) E^\w) = 2 c. X ip'[E,.(iv)] X E ; ( I V ) , 
1=1 

while the 1st derivative of Equation 3 is 

(6) E:(W)= 5 : C X E » . 
i=l 

If we replace each fixed weight c. in Equation 3 by c. times 'iî '[E.(ivJ] at the 
current estimate of w^^^ and write E^(w) for this special weighting of 
the slope of ̂ (̂w) at w = is thus the same as that of E^(w). So E^(w) must 
have a local minimum — which moreover should be its global minimum if 
is fairly close to w^^^ — in the same direction from as the minimum of EJw) 
and quite possibly in its vicinity. This suggests that starting from an initial 
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approximation to w^^^, the value w, of w that minimizes E^, namely, the value 
computed by Equation 4 with item weights {c. x ^ P ' [ E , ( ^ J ] } ' should be an 
efficiently improved approximation to w^^^. There is some risk of overshooting; 
but to minimize that we can let our revised approximation to w^^^ be pw^ + 
(1 - p)w^ for some damping parameter p in the unit interval. (In fact, 
overshooting virtually never occurs for functions in the class implemented by 
H Y B A L L , so by rights p>l should be most efficient. But for reasons not clear 
to me,p «.5 generally yields somewhat higher hyperplane counts when iterated 
to global solutions in difficult problems than does p near 1.) I shall call this 
method polished step-down regression in contrast to its basic (unpolished) 
version that delivers the point of departure for polishing. More technically, 
H Y B A L L programs step-down regression with a parametric limit lim on the 
number of local polish iterations (strokes) allowed per factor pair on any one 
global iteration cycle. (Lim = 10 is a good default setting; most local polish 
iterations converge within that whenp «.5 even in large problems.) Basic step-
down regression is then special case lim = 0. 

What should we choose for op? The function-form proposed by Katz & 
Rohlf (1974), namely. 

(7) X1)(E) = 1 - 1 / E X P ( E O , il)'(e) = r[l - i[)(E)]e'̂ -^ ( ' • > 0 ) , 

with r a control parameter having default value r = 1, is very attractive 
mathematically. But Equation 7 is not very parametrically flexible; and worse, 
Expone|itiation is slow to compute. So consider instead the class of growth 
functions whose 1st derivatives are delimited by suitable constraints on param
eters a, b, c, r, 5 in 

b-UE' if E < 1 

C/E^ if E > 1 

We require ip'(£) ^ 0 for E ; so 6 > 0, and also r > 0 unless a < 0.̂  And 
i|j'(l) = 1 is a convenient scaling stipulation, whence b = l + a and a > -1, as well 
as c = 1 unless we allow ip'(B) to be discontinuous at E = 1 (a permissible 
generality that we shall forego). This gives us the class of functions whose 1st 
derivatives are 

^ 6 > 0 is immediate from tl>'(0) > 0. And were r to be negative when a is positive, \|j'(e) 
would become negative for sufficiently small e. All other combinations of a and r are admissible 
by this criterion; however, r < -1 will soon prove inadmissible on other grounds. 
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l+a(l-e') i f E < l 

(a > -1; r > 0 unless a < 0); 
1/E^ if E > 1 

The functions that have Equation 8 derivatives (r -1,5 1) and for which also 
\i)(0) = 0 (which cannot be satisfied if r < -1) are 

(9) ip(E) = 

(1 + a)E - fl(r + 1)-'E'^I i f E < l 

(r > -1), 
d-y(s-l)e'-' i f E > l 

wherein the value of d required for I1J(E) to be continuous at E = 1 is 

d = s/{s -1) + ari(r + 1). 

For s = 1, the integral of Equation 8's E > 1 leg is xi)(E) = + / « ( E ) ; SO Equation 
9 increases in E without limit just in case 5 < 1. That is, we need 5 > 1 for i]) to 
be bounded. 

For small integers r and s, functions having the form of Equations 8/9 are 
computationally quite fast and provide considerable diversity of growth curves, 
either convex in E throughout when ar > 0, or sigmoid when a < 0 with inflection 
point E = 1. Equation 9 resembles Equation 7 most closely when a = -1. 
However, with r > 0 (seeNote 2, below, on special setting r < 0) this makes '^\e) 
aj)proach 0 as E approaches 0, which seems unattractive for polished step-down 
regression. If intuition is correct to insist that points near center in the 
hyperplane band should carry more weight in hyperplane positioning than 
points at its edge, we should prefer a > 0. And in that case we can also stipulate 
5 = ar to contrive (admittedly for no compelling reason beyond mathematical 
elegance) that Equation 9's 2nd derivative, too, is continuous throughout. On 
the other hand, if we don't much care how close points are to hyperplane center 
so long as they are in the hyperplane band somewhere, the way to go is a = -1 
with r at least 1 and preferably greater. 

There is, of course, rather more to Equation 9's parametric flexibility than 
just its curvature within the hyperplane band. Another cogency is that for 
E > 1, misfit approaches its limit with increasing rapidity as s becomes large. But 
even more prima facie important is how tjj's range from \p(0) to ilJ(«') divides 
between the rise h.^ from hyperplane center to edge and its remaining rise h^^^ 
beyond that. To make this comparison, observe from Equation 9 that 

h.^ = ip(l)-il)(0) = l + f l - a / ( r + l ) = l + a r / ( r + l ) , 

h^^= lim i l)(E) -11,(1) = 1/(5 -1); 
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so h.^ in proportion to h^^^ is 

> - l ) / ( r + l ) i f f l « - l 

(s -1)(1 + a) if r > 2 

This does not tell us what h.Jh^^^ values to prefer; but it does facilitate inquiry 
whether differences in the quality of results under varied parameter settings can 
be attributed substantially to variation in this ratio. 

Hotel 

For very large settings of parameter b in Equation 2 specification of E , say 
b>\,b will exceed almost every a.^ encountered in practice so that only the first 
leg of Equation 9 is operative. Hence Equation 9 in effect includes measures 
T1J(E) that are positively accelerated throughout, even though use of these for 
hyperplane search would ordinarily be unmotivated. More generally, large b 
allows the first leg of Equation 9 to be operative throughout regardless of its 
curvature. 

Note 2 

The first leg of Equation 9 under a = -l and large hyperplane-bandwidth b 
(see Note 1) holds special theoretical interest for fractional r between 0 and -1. 
Reparameterizing this range by v = (1 + r)"' gives us 

(10) I1)(E) = VE'/" (b > 1) 

as a special subclass of Equation 9 wherein IJ)(E) is proportional to the vth root 
of E for any positive v. And Equation 10 in turn specifies Equations 1/2 for the 
/^-hyperplane misfit resulting from axis shift = /^ + wf^ as 

{b. = c./b''\v>0). 

is a generalization of Equation 3 whose increase in \d.^ is positively 
accelerated if v < 2, linear if v = 2, and negatively accelerated if v > 2. What is 
most theoretically appealing about Equation 11 is that hyperplane bandwidth b 
affects only the scaling ofE„ with no impact whatever on its solution for ,̂ 

hjh^^, = (s-l)[l+ar/{r^l)] 

(11) 

2/v 

/•=1 
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while the hyperplane identified by w^^^ is invariant under rescalings of and SL^. 
Specifically, for any fixed item weights (c.) and any rescaling (a^*, a^') = 
(s,a,, S2a2) of pattern configuration (a,,a2) (positive and s^, the value w^^' of 
w that minimizes £ . . ( a ; , a2*, w) is w^^; = (s,/s;)w^^^, so that a.^ (= - w^t^n) 
is zero just in case a.; = a.; - w^^.'a.; = s^a.^ - (s^s^) x w x (5̂ 0.̂ ) = s^d.^ is zero. 
In short, rotations based on misfit functions of Equation 11 form have the 
extremely desirable property of being scale invariant, or more precisely factor-
scale invariant, with concommitant indifference to hyperplane bandwidth. And 
although the price of this is unboundedness of Equation 11 in J a J , the influence 
on axis positioning of points far from hyperplane center can be emasculated as 
thoroughly as we please by taking v sufficiently large. 

Note 3 

We can take 

\P(E) = ve^'" if e < 1 

as an additional alternative for the first leg of Equation 9 even when hyperplane-
width parameter b is small. I have added this extension to H Y B A L L , with the 
expectation but not requirement that it be used with large b, by letting negative 
settings of integer control parameter r call its variant v = 1 + |r|. However, I have 
found no applications in which this option improves on r > 0; and it increases 
th€̂  computation time of polish strokes and brute-force scanning by a factor of 
three. 

Note 4 

If called for adjustment during a H Y B A L L run, the parameters here written 
a, r, s, and p are identified on screen as CV, JA, JB, and PD, respectively. 

Practice 

I have tested parametric variations in these hyperplane-search methods by 
H Y B A L L rotation of eight empirical problems ranging from 11 to 86 variables 
and from 3 to 10 factors. The variants compared were (a) unpolished step-down 
regression (STEP) versus polished step-down regression with lim = 10 (POL) 
versus brute-force scanning (SCAN); (b) hyperplane-bandwidth target b = .15 
versus b = .10; (c) Varimax start versus no Varimax start; (d) misfit curvature 
within the targeted hyperplane band at settings a = -1,0,1,2,3; (e) power levels 
r = s = 2 versus r = 5 = 4; and (f) Equation 9 versus Equation 7 for the form of 
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ip. In the majority of these problems, procedural variations affected the resultant 
hyperplane counts within the ±,15 band by at most a percentage point or two. 
(Differences within the ±. 10 band were somewhat more pronounced.) But even 
these small differences were near-perfectly consistent with the effects summa
rized in Table 1 for the three problems that were most responsive to method 
detail. These are (a) the Holtzinger pattern (Harman, 1960) of 24 variables on 
four factors, (b) the pattern on 10 factors extracted from the correlations 
published by Thurstone (1938) for 57 P M A tests, and (c) the pattern on six 
factors extracted from data on 86 thinking-style scales in an unpublished study 
by my colleagues W. Baker & L. Mos. 

Before commenting on the Table 1 comparisons, let me first note findings 
that don't need tabling, namely, computational efficiency, the virtues of 
Equation 9 versus Equation 7, benefits of Varimax start, and some uncertainties 
about the most effective use of POL. Regarding Varimax, only one of the 
problems studied showed any gain from commencing with Varimax pre-
rotation, and even that mattered only for STEP. (This was the Holtzinger 
pattern, for which Varimax alleviates a hyperplane ambiguity that causes 
persistent instability in one plane for STEP and POL.) Even so, Varimax start 
takes negligible time, seldom does any harm, and sometimes leads to a rotated 
pattern interestingly different from the one reached without it. So it remains a 
default option in H Y B A L L . 

Efficiency-wise, Equation 7 took over three times as long to compute as did 
Equations 8/9, both in brute-force scanning and for POL weighting. Moreover, 
Equatic^n 7 never achieved better hyperplane counts than did its nearest Equation 
9 counterpart but tended (unreliably) to do slightly worse. So you'll hear no 
more about Equation 7 here. Secondly, polishing step-down regression by 
Equation 8 under lim - 10 increased STEP time by only about 25%, whereas 
brute-force scanning under the corresponding Equation 9 took roughly fifteen 
times that long. Subsequent to running these comparisons I have managed to 
improve SCAN's efficiency, but it still exceeds POL time by almost an order of 
magnitude. 

However, POL's advantage is scarcely unequivocal. For S C A N prevail
ingly achieves higher hyperplane counts in complex problems than does POL; 
and although the difference needn't be appreciable, occasional vagaries in 
POL's behavior may vitiate much of its per-cycle speed superiority. Conver
gence in global iteration under SCAN is generally sharper and more rapid than 
under POL, nor does the hyperplane count under POL always increase mono-
tonically with the number of iterations. Moreover, although POL damping 
p = .5 has consistently proved superior top much larger or smaller than this, the 
chance that this will not always be true seems high enough to encourage users 
to explore other p-settings as well. Such complications do not arise under 
SCAN. 
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> Table 1 
JO < Percent of loadings in each of the three factor patterns rotated by H Y B A L L into the ±. 15 and ±. 10 hyperplane bands, variously 
<o using unpolished step-down regression (STEP), polished step-down regression with lim = 10 (POL), and brute-force scanning 

(SCAN) under various settings of misfit parameter b (hyperplane-bandwidth target), a (misfit curvature within the target 
hyperplane-band). and powers r and s. 

CO 

A (Holtzinger), 24 x 4 

% rotated loadings in band 

B (Thurstone), 57 x 10 

% rotated loadings in band 

C (Baker/Mos), 86 x 6 

% rotated loadings in band 

±.15 ±.10 averaged ±.15 ±.10 averaged ±.15 ±.10 averaged 

under each target 6-setting under each target 6-setting under each target 6-setting 

Method a r s .15 .10 .15 .10 .15 .10 .15 .10 .15 .10 .15 .10 .15 .10 .15 .10 .15 .10 

STEP - - - 57.3 57.3 44.8 44.8 51.0 51.0 60.5 58.1 48.2 50.2 54.4 54.2 67.6 69.2 57.6 56.8 62.6 63.0 
POL -1 2 2 57.3 57.3 41.7 43.8 49.5 50.6 68.2 61.9 42.6 56.4 55.4 59.2 73.8 73.1 53.9 61.0 63.8 67.0 
SCAN -1 2 2 57.3 56.2 37.3 49.0 47.3 52.6 70.9 61.8 43.0 58.5 57.0 60.3 76.0 73.4 56.2 63.2 66.1 68.3 
POL +1 2 2 56.2 55.2 44.8 44.8 50.5 50.5 63.7 59.6 52.3 52.3 58.0 56.0 70.9 70.5 58.7 58.5 64.8 64.5 
SCAN +1 2 2 55.2 45.8 46.9 42.7 51.0 44.2 63.7 60.5 55.8 53.7 59.8 57.1 73.3 71.7 61.4 61.6 67.4 66.7 
POL 0 2 2 55.2 54.2 43.8 46.9 49.5 50.6 64.4 61.1 48.9 53.2 56.6 57.2 71.9 70.7 58.3 58.9 65.1 64.8 
POL +2 2 2 57.4 55.3 45.7 46.8 51.6 51.0 62.8 60.2 52.8 51.4 57.8 55.8 70.9 70.3 59.3 57.8 65.1 64.0 
POL +3 2 2 55.3 55.3 47.9 46.8 51.6 51.0 63.0 60.0 53.7 51.1 58.4 55.6 70.7 69.8 59.3 58.1 65.0 64.0 
POL +1 4 4 56.2 54.2 46.9 45.8 51.6 50.0 62.5 59.5 52.6 52.5 57.6 56.0 71.3 69.6 59.1 58.1 65.2 63.8 
POL -1 4 4 58.3 57.3 42.7 46.9 50.5 52.1 67.7 60.7 44.0 56.3 55.8 58.5 75.0 70.7 55.0 60.9 65.0 65.8 o 

N (D 
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And now to Table I's hyperplane ratings. These exhibit the rather 
interesting effect of within-hyperplane misfit curvature a, cornpares STEP/ 
POL/SCAN, and looks briefly at variation in powerings r and s. The conclu
sions: 

1. Although POL clearly improves upon STEP when that is possible, and 
with well-chosen p decently approaches the hyperplane counts achieved by 
SCAN under the same parameter settings,-' S C A N wrings the highest hyper
plane counts out of complex patterns. Moreover — an important point not 
shown in Table 1 but already noted — global iteration reaches convergence more 
rapidly and reliably under SCAN than under POL. 

2. At each hyperplane-bandwidth target b = .15 and = .10, curvature 
setting a = -1 consistently yields a higher count within the target band than does 
a = +1, with a = 0 intermediate but generally closer to a = +1. But under ib = .15, 
a = +1 obtains higher counts for inner band ±.10 than does a = -1, with A = 0 again 
intermediate but closer to a = +1. This is as might be expected; for a = +1 works 
harder than does a = -1 to center points within the target band, and should 
accordingly be somewhat less attentive to herding points at band edge into the 
fold. If we appraise success at both bandwidths simultaneously by averaging the 
two counts, as shown for each 6-setting in Table 1 's last two columns for each 
problem, we see that a = +1 and a = -\e rather similar averaged success 
ratings, with A = +1 mildly superior to a = -1 under bandwidth target b = .15, but 
with the superiority order reversed under b = .10. This crossover interaction 
between parameters a and b can be explained by arguing similar to before that 
under h= .10 the indifference of curvature a = -1 to centering points within ±.10 
frees it for greater effort at bringing moderate outliers close to if not within the 
target band. 

3. Increasing a beyond +1 to +2 and +3 appears to degrade performance 
slightly, but scarcely enough to matter were there other grounds (I know of none) 
on which to prefer higher a. This suggests that ratio hjh^^^ is less important than 
might have been anticipated. 

4. Though Table 1 hints that higher powers r = 5 = 4 may not be quite so 
good as r = 5 = 2, at least when a > 0, the difference is small and unreliable. But 
because higher powers increase computation time even if only by a small 
percent, the salient observation is simply that nothing appears to be gained from 
these. (However, I have not explored this facet of parameter variation very 
thoroughly.) 

^ All POL entries in Table 1 were obtained under p = .5 with the exception of pattern B with 
hyperplane-bandwidth target b = .15. The latter usedp = .9, which worked best at the time. But 
more recently, after programming changes which should not have appreciably affected compu
tational outcome, pattern B with target b = .15 gets virtually these same results fromp = .5 while 
p = .9 has become inferior in this case too. 
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We may provisionally conclude that there is no evident reason to bother in 
practice with power settings other than r = 5 = 2 (except perhaps for continued 
testing of the Note 3 option called by negative r), nor with curvature a greater 
than +1. But curvature variation within range -1 < a < +1 is an option worth 
retaining. What is intriguing about this is not that one setting of a gives on the 
whole better hyperplane counts than does another, but that the shape of the 
factor-loading distribution within and near the target hyperplane-band is appre
ciably affected by it. What we might gain from controlling this, I have no idea. 
But it invites us to reflect on our preferences in the matter. 

The largest uncertainty that remains for H Y B A L L applications is when to 
use SCAN rather than POL. Knowing that S C A N works best for complex 
problems, we would scarcely want to aschew it altogether. Yet to S C A N 
exclusively would be to ignore POL's vastly greater speed and frequent near-
equivalence to SCAN. The most effective combination of these alternatives 
would seem to be POL for preliminary rotations, including tests of parameter 
variations, until no further improvement under POL seems possible. It is then 
appropriate to close with SCAN in hopes of kicking up the hyperplane count a 
percentage point or two. Be also advised, however, thatfor patterns whose latent 
simple structure is ambiguous, that is, which have two or more substantially 
different rotations with near-maximal hyperplane counts, which one H Y B A L L 
finds is much affected by starting position (Varimax vs. no Varimax) and how 
POL and SCAN are alternated thereafter. I have recently exploited the basis of 
this phenomenon (namely, convergence to optima that are merely local) for an 
im|>ortant enhancement of HYBALL ' s prowess described in my forthcoming 
The glory of suboptimal factor rotation: A silk-purse-into-sow's ear caper. 

Other single-plane issues 

We still have some unfinished business in the question, raised previously 
but not pursued, whether unequal weights {c.} in Equation 1 are useful even 
when \ is bounded. A l l H Y B A L L ' s current variants give zero weight to 
extreme outliers (more precisely, to points that lie outside STEP'S initial search 
window); however, this is mainly to short out computations that are essentially 
irrelevant, though it also makes negligible the risk of factor collapse. Yet there 
are more consequential ways to assign differential weights in Equation 1, 
indeed, far too many for systematic inventory. Even so, any such weighting 
scheme should be grounded on each point's position in the total pattern 
configuration. And for rotating/j in the fjf^ plane, the prospect for c. that seems 
most promising is some measure of point (a.^, a.^'s prominence in this plane, 
say an increasing function of its distance from the origin. But points at a large 
angle to are mainly ones we want to de-emphasize in rotation ofregardless 
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of their prominence; so it is really just the |fl.j|-component of i's distance from 
origin — that is, this item's prospective salience as a marker of the/j-hyperplane 
— that is our top candidate for c-weighting of hyperplane misfit. Accordingly, 
let us say that Equation 1 is salience weighted if each c. therein is an increasing 
function of |a.j|. There are many such functions, and serious exploration of 
salience weighting would want to examine a number of them. But the class 

(12) c. = | f l , | ' (r>0), 

proposed by Eber (1966) surely provides as much diversity in this respect as we 
are likely to want."* Uniform item weighting is Equation 12's limiting case 
wherein t = 0; while the differential weighting is gentle for t under .5 but 
becomes quite severe if t much exceeds 1. With t = 2, setting a = 0 in Equation 
9 with large hyperplane bandwidth makes Equations 1/2 essentially the Direct 
Quartimin criterion. 

Is salience weighting a good idea when fitting hyperplanes? Eber found it 
to be so, or at least we have his word (1966, p. 118) that Maxplane foundered 
without it. But Maxplane's all-or-none -function yields an exceptional misfit 
measure that can incur large changes from very small axis shifts. In contrast, 
when ijj(e) increases continuously in E . Equation 1 contains an implicit salience 
weighting even when the c. are all equal. For the change in i's loading on 
iproduced by a small /j-shift w is proportional to a.j, that is, 5^ - a.^ = -wa.^, 
whence the more salient i is on/j the larger is fs contribution to change inf^-
hyperplane misfit under small shifts in / j . So for continuous misfit functions, 
ones in which ijj has Equation 9 form in particular, we can anticipate that there 
may well be little if anything to gain from additional explicit salience weighting. 

And indeed, that has been my experience. Except for the outlier exclusions 
already mentioned, all results summarized in Table 1 were obtained under equal-
weights setting r = 0 in Equation 12. But I have also tested t= .5 and f = 1.0 on 
these patterns under the main parameter variants of POL and SCAN, and in no 
case did f > 0 improve the targeted hyperplane counts more than trivially. 
Rather, t> 0 prevailingly resulted in some loss of hyperplane strength, with 
t=1.0 mildly worse than t=.5; and for the most successful rotations of the more 
difficult patterns, replacement of equal weighting by r = .5 or r = 1.0 incurred 
hyperplane-count drops of several percentage points. Salience weighting will 
remain a H Y B A L L option to permit its further study; and of course we may find 
other weighting schemes superior to Equation 12. But provisionally, the word 
on salience weighting when fitting hyperplanes by misfit functions of the sort 
investigated here is: Don 7. 

* Eber further divides |a.j| by hyperplane-bandwidth b before powering. But that is only 
a scaling adjustment having no effect on the weight ratios (c/c). 
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Beyond some technicalities to be outlined without detail in the Appendix, 
I have no further wisdom on the theory and practice of analytic hyperplane 
optimization to share with you at this time. But we have scarcely put an end to 
the matter. In particular, a large apparent weakness in most extant approaches 
to this, including much of the present one, is dependence on an arbitrary choice 
of hyperplane-bandwidth b. Our intent for b, of course, is to discriminate pattern 
coefficients that differ appreciably from zero from ones that do not. But whereas 
what counts as appreciable should not be dictated by arbitrary scaling decisions, 
the numerical values of factor loadings {a.^} are strongly influenced by our 
choice of scale units for both the variables and the factors. (Conventional 
variance normalization is not so much a solution to this scaling problem as an 
evasion of it.) What we want is a logic for selecting an appropriate b for each 
different combination of variable and factor, or, lacking that, at least an analytic 
criterion that prescribes an optimal b for each factor axis without need for an 
arbitrary deus-ex-machina stipulation of this. But until such time as we can 
develop an operational theory of optimized b-settings, restricting misfit mea
sures to Equation 11 form obviates much of this problem in theory even if we 
find other choices of xp preferable in practice. 

References 

Cattell, R. B., & Muerle, J. L. (1960). The "Maxplane" program for factor rotation to oblique 
simple structure. Educational and Psychological Measurement, 20, 569-590. 

Eber, H. W. (1966). Toward oblique simple structure: Maxplane. Multivariate Behavioral 
\Research, 1,112-125. 

Harman, H. H. (1960). Modern factor analysis. Chicago, IL: University of Chicago Press. 
Jennrich, R. I., & Sampson, P. F. (1966). Rotation for simple loadings. Psychometrika, 32,313-

323. 
Katz, J. O., & Rohlf, F. J. (1974). Functionplane — a new approach to simple structure rotation. 

Psychometrika, 39, 37-51. 
Katz, J. O., & Rohlf, F. J. (1975). Primary product functionplane: An oblique rotation to simple 

structure. Multivariate Behavioral Research, 70,219-232. 
Rozeboom, W. W. (1991). HYBALL: A method for subspace-constrained oblique factor 

rotation. Multivariate Behavioral Research, 26, 163-177. 

Appendix 

Several technical issues which have arisen during my study of analytic 
hyperplane optimization are discussed rather extensively in a document avail
able from me on request. This was originally prepared for appending to the 
present article as a prophylaxis against anticipated criticisms, albeit the points 
addressed hold intrinsic interest as well. However, simple mercy urges 
abstention from inflicting these esoterica upon others until such time as popular 
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demand compels their release. Even so, yoii should be apprised in outline of the 
details you have been spared. These fall under two main headings, (a) whether 
appraisal of factor-shift quality should explicitly include consideration of 
variance renormalization, and (b) the relation of Direct Quartimin to the present 
family of hyperplane-optimization criteria. 

Variance renormalization 

On the face of it, the present study of hyperplane appraisal is deeply flawed 
from its outset by insufficient concern for the full pattern effect even of shifting 
just one axis in a single factor plane, let alone the effects in other planes as well. 
For let Y(aj, be whatever function we have chosen to measure the inferiority 
of the/j-hyperplane (i.e., loading configuration on/2) A^fi P^^"^ when the 
column vectors of item loadings on /j and are respectively and a2. My 
presumption that the hyperplane quality resulting from rotation 

(Al) A = / I + H;/2 

of /j into/j with unchanged should be measured by y(a^, a^) = y(a^, a2-H'aj), 
is seemingly myopic on three counts: First, there is no reason why the 
coefficient of/j in this rotation must be unity. Secondly, Equation A l fails to 
give/j the unit variance on which any right-minded factor analyst will insist (and 
which constraint I too accept even though variance normalization is merely a 
convolution). And thirdly, this rotation affects other factor planes as welj. 

I cpmmence rebuttal by pointing out that any rotation of (/j, f^) into (/"^/j), 
where /j is normalized and not collapsed into/j, can always be treated as a two-
stage operation that first replaces/j by /^ defined by Equation A l for some w, 
and then rescales/j into /j = fjs where is the variance of Z^. This variance 
normalization merely rescales the pattern column on the shifted factor as a^ = sa^ 
without further affecting the new pattern column on f^. Even so, it seems to 
follow that the hyperplane quality resulting from this axis shift should really be 
measured by y(a^, a^) = y(sa^, a2-wa2), where 5 = (1 + 2wr^2 + w^)^ is a function 
of w and the correlation r^^ between/j and f^. Moreover, yla^, a^) appraises only 
the rotated factor's hyperplane; whereas insomuch as the pattern loadings 
characterizing /2's hyperplane have also been shifted from aj to a^, our 
assessment of this rotation's quality should include 7(82, â ) as well. Beyond 
that, alterations in pattern columns 1 and 2 also carry into the other planes for 
which one of these two factors is an axis; so Y(a^, a,), Y(aj, a )̂, Y(a^, si^), and 
Y(a2,a^) for k=3,4,m ought likewise to be heeded. 

Apart from one complication, however, this argument can easily be rejected 
for all Equations 1/2 instantiations of Y- The complication concerns configural 
item-weighting under which the c. in Equation 1 are determined all or in part by 
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the full planar positions of the points whose loadings on we seek to minimize. 
(Salience-weighting scheme Equation 12 with r > 0 is the premier instance in 
point.) When Y(aj, a^ does not incorporate configural weighting, however, it 
contains B J only vacuously and can better be written Y(*, a^ to make clear that 
its first argument is irrelevant. In this case, insomuch as Y(aj, a^ after variance 
renormalization is identical with the unnormalized Y(aj, a^, it is pointless to 
reject the second in favor of the first. Even so, there is still the shift from 
Y( ' , aj) to Y(", a,) to consider. But letting that influence our solution for optimal 
repositioning of /j is a bad idea for two reasons: First, change in 5 makes a 
difference for Y(', ̂ â ) merely by altering each aj-element's ratio to hyperplane-
bandwidth parameter b with no affect on these loadings' sizes in proportion to 
one another, and can be undone simply by opting to replace b by sb for the shifted 
factor's hyperplane while leaving it at b for f^. Because choice of b is 
uncomfortably arbitrary in any case (see p. 193), we want to downplay its effect 
on rotation outcome and hence especially do not want what amounts to 
readjustment of b for one factor to intrude into our appraisal of hyperplane 
quality for another. Moreover, it can also be shown that solving for w to 
minimize a composite of Y(", a^-wa^ and Y(', ^a^), rather than just the former, 
pulls the rotated axis away from its subjectively optimal position in idealized 
pattern configurations. (The demonstration's heart is that the dependence of s 
on contaminates assessment of pure pattern quality.) Finally, it will be plain 
how vacuity of Y 'S first argument makes pointless any concern for this shift's 
effects on factor planes other than its primary one. 

If Y(aj, â ) does encorporate configural item weighting, however, the 
analysis becomes much more intricate. For then, explicit renormalization of the 
shifted factor during form-Equation 1 rotation makes not only the e.-terms in 
Equation 1 a function of w but the weights c. as well. There is no great difficulty 
in operationalizing such fluid weighting in search for minimal E^{w); it merely 
complicates the computation. But there is no anticipated benefit to repay that 
complication. Although details are strongly dependent on the particular 
configural weighting scheme at issue, it can be shown that permitting weights 
{c.} in Equation 1 to vary fluidly with w tends to deflect solution for the E^-
minimizing w from its subjectively optimal value unless the c.(w)-functions are 
adjusted to minimize this bias — whereafter it should make little or no 
difference whether the cfyv) are allowed to vary during search for best w rather 
than being held constant at their search-outset values {c.(0)}. 

Conclusion 

Continuous factor-variance renormalization is a pleasant arena for concep
tual games in the advanced theory of analytic hyperplane optimization. But it 
would be perverse to prefer this in practice, much less to insist on it. 
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Direct Quartimin 

The desirability of comparing Direct Quartimin (henceforth DQ) to the 
present criteria for simple-structure rotation has been forcefully brought to my 
attention by referee comments saying, in gist, "Since connoisseurs have found 
DQ so satisfactory, who needs H Y B A L L ? " The bottom-line rejoinder might be, 
"What's wrong with giving H Y B A L L a chance to compete?" But a more 
instructive response is to examine the similarities and differences here in some 
detail. 

The DQ measure of hyperplane misfit in a single plane with factor loadings 
Bj and on respective normalized factors / , and is 

q(a^, a^) = 2 fl.^^a./. 
1=1 

When axis-shjft f^=f^ + wf^ followed by variance renormalization /j = f^fs 
rotates / j into / j , the value Y(a,, §2) of q for the shifted pattern as a function of 
rotation driver w can be expressed in the form of Equations 1/2 as 

(A2) E^(w) = i c.(w) X e^w), 
1=1 

c.(w) = = b%^\l + 2wr^^ + w^), 

with rj2, as before, the correlation between /j and f^. Equation A2 is simply 
Equation 1 under the Identity specification of \p, but with the weights c. that are 
fixed in Equation 1 now allowed to vary fluidly with w. Equation A3 is identical 
with Equation 2. And Equation A4 details how c. changes with w, albeit only 
its fl.2^ component is salient here. Hyperplane-bandwidth parameter b occurs 
vacuously in E^, because it cancels out when Equation A3/A4 are inserted into 
Equation A2, But we show it to maximize the match between Equations 1/2 and 
Equations A2/A3/A4. 

Equations A2/A3 show single-plane DQ to be the same as step-down 
regression except for a rather large difference in how weights {c.} are revised as 
w varies in search of an optimum. DQ's weighting scheme is essentially a fluid 
version of Equation 12 with t = 2, which for salience weighting is quite severe. 
And unlike STEP'S zero-weighting of points beyond its increasingly narrow 
search window, DQ's weights do nothing to lessen the focus of least-squares 
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regression on capturing the most extreme outliers. Consequently, although DQ 
lies within the family of simple-structure algorithms implemented by H Y B A L L 
— or, more precisely, would do so were H Y B A L L expanded to include fluid 
variance renormalization and to heed the secondary shift effects disdained 
earlier in this Appendix — its extreme salience weighting and even more its 
unrelentingly concave misfit curvature places it among the NOT RECOM
MENDED variants. Direct Quartimin should excel at rotation to an indepen
dent-clusters pattern, but high-quality hyperplanes cannot be expected from it 
for data not well-approximating that ideal. 
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