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Factor indeterminacy: The saga continues 

William W. Rozeboom 
Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada 

The much-discussed prevailing failure of a moment decomposition M^z = AMQA' 
to identify just one factor tuple F such that Z = AF and Mpp = MQ is only one of 
many ways in which a selected fragment of a complete factor solution generally 
specifies the solution's remainder only imperfectly. Precise ranges are worked out 
here for the main varieties of such indeterminacies, together with the special 
conditions, if any, under which they shrink to unique determinations. 

1. Introduction 
In the wake of all the hterature, both classical (cf. Steiger, 1979) and modern 
(McDonald & Mulaik, 1979; Rozeboom, 1982; WilUams, 1978), on the much 
lamented failure of common factors to be generally identifiable from the data variables 
from which they are inferred, one might well wonder how anything could remain to 
be said on this matt^. Yet my recent work on quadratic factor analysis (Rozeboom & 
McArdle, forthcoming) has brought home to me that the generic topic of factor 
indeterminacy is considerably broader than what has been foreground in its extant 
literature, and that although comprehensive study of this has little direct bearing on 
multivariate practice, fragments of its returns are relevant to the theory of quad-
factoring and, I should anticipate, other complexely structured models that may be 
forthcoming. 

There are, in fact, three groups of factor-indeterminacy issues: Mathematical, 
Epistemological, and Motivational, the last comprising efforts to say how the others 
matter. Present concern is mainly with the first of these; but the first two have become 
so obscurely fused that I must begin by prying them apart. Specifically, without 
arguing the case in detail, I shall submit that much past distress over factor 
indeterminacy has been an impUcit desire for factors to be identified in an epistemic 
sense much stronger than unique specification, a sense that we don't know how to 
cash out even for data variables. Once freed of this beguilement, we can focus on the 
modest mathematical points of model specification that occasion this paper. 

2. The nature of model 'indeterminacy' 
Precisely what is to be meant by describing a multivariate model as 'identified' or, 
contrastingly, as 'indeterminate' in some particular appUcation is surprisingly 
problematic. The indeterminacies of present concern are in the generic linear factor 
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model which, applied to analysis of a sample distribution of scores on an «-tuple 
Z =<^i,. . of data variables, hypothesizes that the observed second-order Z-
moment matrix M^^ has a decomposition of form^ 

Mzz = AMpfA', (la) 

wherein Mpp is the second-order moment matrix in this sample for some «?-tuple 
F = </i , . . . ,/„> of factors that generate the Z-data according to structural equations 

Z = A F . (lb) 

Given a particular M-zz, before (1) can be solved even for A and Mpp much less F 
additional constraints are needed. In the common-factor species of (1), pattern matrix 
A, factor tuple F, and F-moment matrix Mpp are required to have structure 

A = [A, I], F = <F,,Lr> = < / , , . . . , / „ « , , . . . , « . > , 

' M , 0 ' 
0 Mpp = 

with A of order nxr for r < n and T) nxn diagonal; whence the model can also be 
written as 

= A , M , A ; , Mp,p, = M , , Mu„ = , Mp,^ = 0 (2a) 

Z = A F , -f U . (2b) 

(Alternatively, of course, we can equivalently stipulate M^u = I with D the pattern on 
U.) Without still more constraints, however, even restricted model (2) remains 
indeterminate in that for a given Z with given moments M^^, there are in general 
many different alternatives for <r, A , , M , , D, F , , U) in (2) that satisfy the 
model equations if any does; and the task of model specification is to reduce this range 
of model solutions by stipulation of side conditions. In the Umit, increasing the latter 
may yield a fully determinate model whose solution-set is a singleton. But that is only a 
theoretical ideal never strictly attained nor often even closely approximated in 
practice. Soine of the obstacles to strict model identification verge upon triviality, 
such as that our solution for <A, Mpp> always suffers from rounding error and (what 
is not quite so trivial) that the M^z exactly reproduced by model fit in (la) or (2a) 
comprises not Uterally data moments but at best imperfect approximations thereto 
found by minimizing a loss-function chosen more for mathematical convenience than 
because we beUeve it to be interpretively optimal. But a far more serious problem for 
model identification is that, in a tough epistemological sense, we never know precisely 
what we are talking about when we fit models to data. 

Roughly speaking, we may say that model (1) is (fully) 'determinate' in some 
particular appUcation with side constraints just in case its totaUty of imposed 

^ I write M for second-order moment matrices rather than C or E for traditional covariances because present results 
apply equally to centred and uncentred moments, and some modern models (quadratic factor analysis in particular) are 
best formulated in terms of uncentred variables with the additive constants in linear dependencies treated as 
coefficients on a factor constant at unity. But little will be lost here if you take M to comprise the centred covariances 
between whatever tuples of variables are denoted by M's subscripts. 
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conditions provides identification of exactiy one model solution. But the notion of 
'identifying' something, model solutions in particular, is obscure. In first 
approximation, to identify an entity s is to communicate a name, description, or other 
denotative phrase that picks out this particular s as differentiated from all other things 
we regard as distinct from s. However, not all expressions that refer to the same s are 
equally acceptable as identifications thereof. To give quantitative examples, the 
description 'Mean number of acorns collected per squirrel in Ohio last October' 
designates a specific number while leaving us egregiously ignorant of its identity. And 
if a math student is instructed to find the largest root of equation y!^ — Sx + d = 0, 
the answer 'Three' is correct; but 'The smallest root of this equation plus one' would 
be accepted only if the student can go on to say wbat number that is, and 'The largest 
number whose product with five less its square equals six' would be viewed as abject 
failure to identify the solution even though this description does indeed refer to it. 
Identification requires not merely individuating reference, but reference in whatever 
special way we intuitively require for greatest epistemic illumination. 

The point is this: On pain of dismissing the past factor-indeterminacy literature as 
foolish, we surely do not want to say that side conditions on (1) make the model 
'determinate' whenever they specify a unique solution. For we can always supplement 
our mathematical constraints by 

Moreover, <A, Mpp, F)> is the particular solution of (1) that 
most closely aligns F with an -tuple of Z's causal sources. 

(Degree of 'alignment' here can be made precise as, say, the F-axes' mean 
correlation with the source variables to which they are respectively matched.) Indeed, 
something like (3) already an implicit presumption in most applied multivariate 
research. Although our understanding of causality is still primordial (cf. my 
unpublished 'Mentality and the Deeper Logic of Lawfulness'), there can be little 
doubt that any tuple Z of data variables does in fact have causal sources which, 
moreover, comprise just a vanishingly small subset of the variables with which Z is 
jointly distributed. So we have every reason to presume that in most applications of 
(1) to data on a determinate Y, inclusion of a suitably precise version of (3) among our 
model constraints indeed specifies a unique solution. Yet that does little to allay 
traditional angst over factor indeterminacy. For even if descriptor 

The <A, Mpp, F> that satisfies (1) while having further 
properties [such-and-such], and for which (3) also holds 

picks out just one factor tuple F, it neither identifies that F nor gives any clue to how its 
identity might be found. 

To identify any particular solution of (1), we must designate its <A, Mpp, F ) by 
expressions of whatever canonical forms we have judged to be most useful for deaHng 
with entities of these kinds. Happily, coefficient and moment matrices present no 
puzzles in this regard, insomuch as intuition insists that the canonical form for 
identifying a finite array of numbers is listing for each element thereof a symbol in 
standard numeric notation which designates that number. (Cf. Whereas 'The square-
root of 1.96' specifies x/1-96 without identifying it, '1.4' does both.) But we have no 
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canonicalforms of expression for identifying variables, nor any theory of what should go into one. 
In fact, it is difficult to find paradigm descriptions of variables in research practice that 
specify their intended referents well, let alone identify them. 

The claim I have just put is too contentious for easy probate. So I invite you to test 
it yourself by contemplating how, when preparing an empirical research report, you 
would attempt to identify your study's data variables. Simply publishing your 
observed score matrix would accomphsh little, for that tells nothing about what the 
variables are on which those numbers are scale values. More informative is for you to 
describe the procedures that elicited this output from your sample subjects in a way 
that defines how scores on these very same variables are to be obtained for other 
subjects in whatever population your study is construed to sample. Yet however 
exhaustively you spell out your procedures - and in practice we seldom manage to say 
much - it will always be possible to detail them further in conflicting ways (e.g. 
different constraints on diurnal time of observation, on intensities of ambient heat and 
Ught, on character of background or even foreground stimuh, etc.) that all fit your 
particular sample but make some difference for the scores of other subjects really or 
hypothetically so observed and hence define somewhat different empirical variables. 
Not merely are our descriptions of data variables always imprecise, we don't even 
have much notion of what most saliently belongs in such a description in contrast to 
what should be left out. (If you had unUmited time and patience, how would you 
decide when you had said enough? And do procedures alone suffice to specify data 
variables, or does their individuation require other sorts of information as well?) 

Our failure either to articulate a reasoned methodology for identifying variables -
any variables - or to establish some praxis of doing this effectively has seriously 
impeded ps^hology's development as a hard science (cf. my 'Mentality and the Deeper 
Logic of Lawfulness'), and is undoubtedly the most important of factor 
indeterminacy's neglected facets. It is not, however, my present concern. Rather, once 
it is plain that epistemologically identified solutions of model (1) are an unattainable 
ideal, if only because we never have fully determinate conceptions even of the data 
variables to which we apply this, we are free to explore the mathematics of how M22 
and Z conjoin effective side conditions on (1) to limit its solution alternatives without 
concern for the quaUty of our knowledge of and Z. I stress this point, because the 
primary applications envisioned for the theorems below are cases wherein Z 
comprises not data variables in the most brutely empirical sense but their common or 
true parts, i.e. with the diagonal of containing estimates of communalities or 
reliabiUties. (That is, <A, Mpp, F> will paradigmatically be the <Ai, , F,> part of 
common-factor model (2).) The epistemic indeterminacies of data variables' common-
parts or true-parts differs only in degree, not in kind, from that of the data variables 
whose saUent components they are. 

3. What variables are - sort of 
As you will see, the primary factor indetertninacies at issue here concern identifiable 
solution alternatives just in submodel (la) for moments. But alternatives for F are also 
part of the story, so we need some technical standard of individuality for variables. 
Ontologically, a 'variable' over a population P is a contrast-class of properties 
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(attributes, features, characteristics) that are mutually exclusive and jointly exhaustive 
over P - i.e. any individual that satisfies the conditions for belonging to P necessarily 
has one and only one property in this class. (Our conceptual difficulties in 
individuating properties is why we can so seldom specify variables with much 
precision.) But when a variable is numerically scaled, as we presume here for all 
variables at issue, it defines a function mapping each member of its domain P into a 
number that represents on this scale that individual's particular property in this 
contrast-class. Accordingly, we shall stipulate that mathematically, in a sense that 
philosophers characterize as 'extensional', a (numerically scaled, extensional) variable 
over population P simply is a function that maps each member of its domain into one 
particular number. Then if x andj are both variables over P, they are moreover the 
same variable just in case they are identical as functions, i.e. iff they have the same value 
for the same argument everywhere in P. 

This extensional criterion for the individuation of variables has important 
deficiencies. One is its disallowing the possibility (a more realistic one than you may at 
first appreciate) that two ontologically distinct variables may be in perfect one-to-one 
correlation over P. And it provides no meaningful way to distinguish probabilities 
from relative frequencies in P unless the number of extant P-members (past, present, 
and future) is Uterally infinite. In particular, it does not aUow us to entertain 
hypotheses about distributions of variables under population-defining conditions that 
happen never to be satisfied. Even so, this criterion does individuate variables up to 
extensional equivalence; and that seems good enough for the mathematics of factor 
determinacy. Indeed, it enables us in principle - never mind feasibiUty in practice - to 
identify extensional variables Z over a finite population P by numerically Usting the Z-
defining score matrik in P. And given attainable knowledge (or suppositions) K about 
variables Z and F, notably a solution for all or part of <(A, Mp^^ in model (1), we can 
say that F is (extensionaUy) 'identifiable' from Z given K whenever, from any 
numerically identified value z of Z, we can effectively compute (up to rounding error) 
a numericaUy identified score vector f such that if K is true, f is the one and only vector 
of scores on F compatible for a member of P with score-vector z on Z. This is a relative 
indentifiabiUty of F from Z given K indifferent to whether we ever in fact numerically 
identify the values of Z for any P-members. 

4. Varieties of factor indeterminacy 
Given the second-order moment matrix (in P) for variables Z = <(^i,..., a 
complete order-;» solution of model (1) consists of an « x real matrix A,, and an 
«?-tuple F = ^ i , . . .,/„> of (extensional) variables such that 

M22 = A , M , A ; , Z = A , F , , Mp,.p,. = M , . 

Then the generic issue of factor determinacy is the extent to which, under what 
circumstances, some distinguished fragment of a complete solution specifes the 
solution's remainder. If we say that a 'main' solution-fragment is any that either 
contains all of A, , or of M, , or of F, , or none of it, a complete solution has six main 
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fragments, partitioning the generic determinacy issue into six main varieties: 

Factor-determinacy Question A. Given pattern A, what is the range of solutions for 
M, and F, in (^Mzz = AM-A' , Z = AF , , Mpp. = M,>? In particular, when are 
these solution-sets singletons? 

Factor-determinacy Question M . Given moments MQ, what is the range of solutions 
for A, and F, in <Mz2 = A.MQA;, Z = A ,F , , M^.^. = Mo>? 

Factor-determinacy Question F. Given variables F, what is the range of solutions 
for A, and M , in QA^z = A,M,.A,', Z = A ,F , M^^ = M,>? 

Factor-determinacy Question A M . Given pattern A and moments MQ, what is the 
range of solutions for F, in <Mzz = AMgA', Z = A F , , Mp.p. = Mo>? In 
particular, when is this solution-set a singleton? 

Factor-determinacy Question AF . Given pattern A and variables F, what is the 
range of solutions for M , in <Mz2 = A M , A' , Z = A F , Mpp = M,)>? 

Factor-determinacy Question MF. Given variables F with moments MQ, what is the 
range of solutions for A, in <Mzz = A,MoA,', Z = A ,F , Mpp = Mo)>? 

However, because F uniquely specifies Mpp (in P), Question A F is trivial while M F is 
equivalent to F. The four cases that remain, namely. A, A M , F, and M are herewith 
studied by Theorems 2-5 after Theorem 1 sets out the principle that dominates these 
Questions. 

More specifically, the issues addressed by Theorems 1-5 are respectively 

(1) F o r \n tuple Z of variables with moments M^z, and a distinguished 
pattern matrix A such that M^z = AMgA' for some MQ, under what circumstances is 
the solution for M , in Mzz = AM,A ' unique? And when the M, therein is indeed 
unique (at MQ) for this Z , does that also suffice to specify F? 

Comment. UnUke the epistemic elusiveness of factor identities, any solution 
<(A,, M,> of Mzz = A,M,A,' is in principle numerically identifiable by us up to 
rounding error. If we were to scan the set of all these solution alternatives and 
pick one, <(A, Mo>, whose pattern seems closest to what we want at this stage of 
the analysis, when does choosing A for A, restrict our choice of M, just to MQ? 
And if this A so fixes M„ does it fix F, in Z = AF, as well? Any A having full 
column rank, a property I shall call 'L(eft)-invertibility', does indeed close out 
(l)'s solution alternatives in this way. 

(2) When <A, Mo> is an identified solution of Mzz = A , M , A- with the particular 
A therein distinguished for the purpose at hand but not L-invertible, what is the range 
of moment matrices M, and factor tuples Fj such that <A, M;> is a solution of 
Mzz == AM,A ' , and F, a solution of Z = A F , , for this distinguished A? 

Comment. The practical import of this question is simply that if Mzz A do 
not suffice to specify M , in Mzz = A M , A ' when A is the pattern we want, we 
need to decide which M , is our preferred companion for A in subsequent stages of 
the analysis. Identifying the range of M,-alternatives may or may not help us to 
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conceptualize and solve for the one we favour; but it is technical information 
about this situation that belongs on record. And identifying the range of 
alternatives for F, in Z = A F , helps us to understand the mathematical nature of 
classic factor indeterminacy even though it has little evident practical utility. 

(3) When <(A, MQ) is an identified solution of M^z = A , M , A- with A and MQ both 
distinguished for the purpose at hand but A not L-invertible, what is the range of 
factor tuples F; that are joint solutions of Z = Afv and Mp^. = Mg? 

Comment. This is the classic factor-indeterminacy question that confronts us 
when F, includes both common and unique factors. But in principle, it can also 
arise when A is a pattern just on common factors. Although Guttman (1955) has 
already dealt incisively with this case, Theorem 3 greatly enhances the 
perspicuity of its geometry. 

(4) When Z = A F for some distinguished factor tuple F whose moment matrix 
Mpp is singular, what is the range of alternative patterns A, such that Z = A, F for this 
same F? 

Comment. Rozeboom & McArdle, forthcoming, demonstrate that some structural 
models may well have reason to seek factor axes that contain hnear dependencies. 
For such solutions, the factor pattern is not unique even when the factors are 
fixed, and we need to decide which pattern alternatives on our favoured F best 
serve our interests. The most salient finding in Theorem 4 is that if factors F lie in 
Z-space, the set of patterns satisfying Z = A , F always includes some that are L -
invertible - which tells us that we are free to impose L-invertibiUty of common-
factor pattern as a model constraint even when we allow dependencies among the 
factors. Beyond that. Theorem 4's pattern-range specification may not help 
much for pattern selection in practice; but we get it for free with proof of the 
salient point and it has a certain mathematical charm worth savouring. 

(5) When Z-moment decomposition M^z = AMQA ' distinguishes MQ, what are 
the ranges of A, and i) such that Mzz = A,MoA,' and Z = A,Zy with Mz^^ = MQ? 

Comment. This case's indeterminacies are too exceptionlessly extensive to suggest 
much practical use for its findings beyond its restriction MQ = I long famiUar to 
and heavily exploited by traditional factor analysis. But we include it for 
completeness, especially since it is little more than a corollary of Theorem 4. 

Certain technical concepts and matrix principles to be used here need some outset 
clarification. I have already declared that Mzz, M p p , etc., are to be matrices of 
uncentred second-order moments for scales with arbitrary origins (also arbitrary 
variances). Beyond that, with apologies for belabouring basics, you should be 
apprised: 

(1) Al l 'variables' cited are presumed to have a joint distribution in some given 
population P to which all moments and dependencies among these variables are 
relative. Each tuple of variables Z = , . . . , F = </,,. . etc., is to be 
construed extensionaUy either as a Variables-by-Subjects matrix of real scores in a 
finite P or, alternatively, as a column vector of real-valued functions over a 
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hypothetical infinite P for which a joint probability distribution is somehow defined. 
Under the first reading, M^z = Z Z ' for the/i-columned matrix Z of scores on Z in 
P; under the second, the ijth. element of M^z is exp[;:̂ ,:̂ ] in P. 

(2) Two variables x and j are 'orthogonal' (to each other) in P iff either xy' = 0 
where x and y are the row vectors of scores on x andj in a finite P, or exp[:>9/] = 0 in 
the infinite-population case. This contrasts with the usual definition of orthogonality 
between variables as zero covariance, though for centred variables the difference 
vanishes. 

(3) As usual, a 'space' of variables (in P) is a set of variables that is closed (in P) 
under homogeneous linear combinations of its members - 'homogeneity* meaning no 
additive constants except as coefficients on the unit variable. Likewise as usual, the 
(one-and-only) space 'spanned' by a tuple Y of variables comprises all variables that 
are homogeneous linear combinations of the Y-variables. So an «-tuple Z of variables 
lies in the space spanned by an w-tuple F of variables just in case Z = A F for some 
nxm coefficient matrix A . y is a 'basis' for the space it spans just in case no proper 
subtuple of Y also spans Y-space. 

(4) For any «-tuple Z and w-tuple F of variables, and any particular nxm 
coefficient matrix A , we shall say that F 'A-factors' Z iff Z = A F . Evidently, F A -
factors Z for at least one A just in case all Z-variables lie in F-space. 

(5) To avoid certain ambiguities in extant terminology, we shall say that a matrix R 
is rectimrmal iff it is orthonormal by columns, i.e. iff R 'R = I, and orthomrmal iff both 
it and its transpose are rectinormal, i.e. iff R 'R = RR ' = I. A rectinoripal matrix is 
orthonormal just in case it is square; otherwise, it is vertically rectangular. 

(6) Any matrix designated by some subscripted R or S is stipulated to be 
rectinormalv Any designated by a subscripted D is positive diagonal, i.e. with all 
roots greater than zero. And any designated by a subscripted M is Gramian but not 
necessarily non-singular. 

(7) A 'generalized' inverse of any nxm matrix A is any mxn matrix A*̂  such that 
A A ^ A = A . The 'pseudo-inverse'. A"*", of A 7^ 0 is the special generaUzed inverse of 
A such that A"*" = RzD^^R,' for any basic-structure decomposition A = R]DR2 of 
A, i.e. where R, and R2 are rectinormal and D is positive diagonal. (It is well known 
that A can always be so decomposed, with R, =R2 if A is Gramian, and that the 
column-order Rj, D and Rj is the rank of A.) It can be shown that A"*" not only 
exists but is unique for any A 7^ 0. A has full column rank, i.e. rank equal to its 
column-order, just in case matri?c R2 i n its basic-structure decomposition A = R, DR2 
is square and hence orthonormal. In this important special case, A+ is also a left-inverse 
of A in that A+A = R2D-'R;R,PR^ = R2R2 = I. We shall occasionaUy write A^ 
for A"*" when this is a left-inverse of A , and will say that A is L(eft)-invertible iff A^ 
exists. If A is L-invertible, A^ = A+ = (A'A)~'A'. When A^ does not exist, we shall 
say that A is h{eft)-ambiguous, while the degree of A's L-ambiguity is its column-order 
minus its rank. {Note. A* is not the only generalized inverse A^ of A unless A is non-
singular square. And if A^ exists, every other A^ is also a left-inverse of A . But A * has 
special virtues and is the only A'' we shall exploit here.) 

(8) For any matrix AT^O of column-order =^^fA^A is the 'projector* into A -
row space, while = d e f l — i s the (projective) 'complement' of P.j. We use 
variously subscripted P and Q exclusively for row-space projectors and their 
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complements. (Any A also has a column-space projector AA"*"; but that will not be 
needed here.) From any basic-structure decomposition of A as A = Rj DR2', it is easily 
seen: {a) = R^R^ is a (non-unique) basic-structure decomposition of P ,̂ and 
moreover, for any basic-structure decomposition = S^S^ of P '̂s complement, 
[R^S^] '\& mxm orthonormal. (Occasionally, I will refer to any so related to R^ 
as an 'orthonormal completion' of R^.) {b) P4 and are symmetric and idempotent, 
i.e. Pĵ  = P^ = P̂  and similarly for , with P̂  = 0. {c) for any order-«? row 
vector X, xP^ = x and xQ^ = 0 iff x lies in the vector space spanned by the rows of A, 
whereas xP^ = 0 and xQ^ = x iff x is orthogonal to the rows of A. More generally, 
X = x(P̂  +Q^) = xP̂  + is a decomposition of x into a component xP̂  lying in 
A-row space plus a residual xQ^ orthogonal to A-row space, {d) If r is the rank of P ,̂ 
the rank of is m—r (including hmiting case = 0 when r = m). 

(9) Guttman (1955, Lemma 1) has shown, conditional on a minor requirement 
which he does not make explicit, that whenever the second-order moment matrix M^z 
for variables Z in P has a decomposition Mzz = AMQA ' , there exists a tuple of 
(extensional) variables F over P that A-factors Z while Mpp = MQ. I shall refer to this 
finding as 'Guttman's Lemma'. Its impUcit requirement is that the cardinality of P 
must not be less than the rank of MQ. 

The theorems that follow are primarily though not exclusively motivated by 
multivariate structures wherein the number m of factors in Z = A F is no greater than 
the number n of variables factored. This condition prevails when Z is what remains of 
data variables from which unique factors and sometimes other components have been 
removed. That we do not Uterally know Z as an identified score matrix in such cases 
has no bearing on the relative identifications at issue here, i.e. the degree to which 
scores on F could bê  computed for members of P were we to know their scores on Z. 

Theorem 1. Let Z = . . . , ̂ ,)> be an «-tuple of variables jointly distributed in 
some population P with second-order moment matrix Mzz • And suppose that 
for some integer m, Mzz ^̂ s decomposition 

Mzz = AMoA' 

for some ny.m matrix A and m xm Gramian matrix MQ that may be singular. 
Then if factors F+ are derived from variables Z according to 

^+ = dcf A"'"Z, 
we have: {a) F+ is a tuple of variables in Z-space that A-factors Z, i.e. Z = AF+. 
{b) If A+ is moreover a left-inverse of A, i.e. if A is L-invertible, then 
Mp^F^ =Mo while F^ is the only tuple of variables that A-factors Z. 

Proof. Let G = < ,̂, . . .,g,y comprise the positive-root principal components of the 
Z-distribution in P. (Evidently r ^ n and r ^ m. Any other basis for Z-space would 
serve here almost as well as G.) Then Z = R^G for some nxr rectinormal R^, while 
G's moment matrix M^G is non-singular. And since Mzz = ̂ g^cc^g, out stipulated 
Mzz = AMQA ' entails R^MccRj =AMoA' , whose post-multipUcation by R^M^^ 
yields 

R, = AW, (W, = ,,,MOA'R,MG-^) . 
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Consequently 

Z = AW^G, 
insertion of which into F+'s definition gives F+ = A"^AW,G and hence 

AF+ = AA+AW ,G = AW^G = Z 
as claimed in (a). As for (b), if A"*" is a left-inverse of A, M^^p^ = A"^M2zA + ' = 
A^(AMoA')A^' = (A^A)Mo(A^A)' = MQ; while for any F such"'that Z = AF , if A^ 
exists then F = A t A F = A+ Z = F+. • 

Theorem 1 accomplishes three things. First, it shows for any A that if Z has any A-
factors at all it has a special one, F^, which lies in Z-space and is identifiable just from 
A and Z without need for information about the factor moments. Secondly, Theorem 
1 largely answers the second part of Factor Determinacy Questions A and A M , 
though it leaves open whether the A and A M solution-sets are ever singletons even 
when A is L-ambiguous. (We shall see that this is indeed possible for case AM.) And 
thirdly, the theorem makes clear that so long as A is L-invertible, the unique existence 
and identifiability from <A, Z> of an F that A-factors Z is in no way compromised by 
linear dependencies within F. 

Theorem 2. Let Z , M22, A, MQ, and F+ be as in Theorem 1, i.e. M22 = AMQA' 
and F+ = A"*" Z. Theorem 1 has shown that if A is L-invertible, F^ i s a 
solution and moreover the only solution for F, in Z = A F , . But if A is L -
ambiguous, then there are many m-t\x^\t% F, of variables that A-factor Z . 
Specifically, for any fixed A of rank h and column-order m in M22 = AMQA', 
Z = AF, just in case P^F, = F+ (P^ = A"*" A) or, equivalently, iff 

\. = F^ + 4̂ x, (Ŝ s;, = Q , = I - P ^ ) (4) 

for some arbitrary z??-tuple X , or («? —Z')-tuple Y^ of variables, with S^S^ any 
basic-structure decomposition of . If = m, = 0 and is null. But if 
h < m,%AYi can be made non-zero (so that F, 7^ F+) by choosing Y^ and hence 

Yi to span any arbitrary space of variables whose dimensionality does not 
exceed A's degree of L-ambiguity. 

Corollary 1. Let be as above, noting that the column-order m—hoi^^ is 
the degree of A's L-ambiguity. Then a tuple.F, of variables A-factors Z just in 
case, when F, is partitioned between its projection F,(2) into Z-space and its 
residual EF..2 orthogonal to Z , F^^^^ A-factors Z while J5F..2 = S^E, for some 
(w—i')-tuple of not necessarily-non-zero variables E , orthogonal to Z . 

Corollary 2. Let be as above. Tlien {a) a tuple of variables F, is an A-factor 
of Z in Z-space just in case = F+ -f-S^l^ for some arbitrary (/z?— )̂-tuple X of 
variables in Z-space or, equivalently, just in case = (I-|-WJ)FH. for some 
arbitrary {m—h)xm coefficient matrix W .̂ {b) More generally, is an A-factor 
of Z just in case it has composition 

F, = (I-f-S^W,)F+ -KS^E, (M2H, = 0), (5) 

for an arbitrary {m—h)y.m W, and an arbitrary (w—/6)-tuple E , of variables 
orthogonal to Z . 
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Corollary 3. When M^z = AMQA ' for an L-ambiguous A of rank h, MQ is just 

one of many moment matrices M, that satisfy M^^ = AM,A ' for this same A. 
One is always M^^p^ = A+M^zA*' = P^MQP^. But more comprehensively, 
Mzz = A M , A ' just in case 

M, = (I -fS^W,)P^MoP;(I + S^W,)' -hS^M^S:,, (6) 
where is as above, W, is an arbitrary {m—h)y.m matrix, and M , is an arbitrary 
Gramian matrix of order m—h. 

Proof. Let P^ = A"̂  A be the projector into A-row space, with = any 
fixed basic-structure decomposition of P^'s complement, and note that A P ^ = A 
while AQ^ = 0. For any such that Z = Ai^ , including special case JF̂  = F^., 
F^=A+Z = A+AF,=P^F, and F, = (P^-HQ^)F,=P^F, + Q ^ F , = F ^ - H Q ^ X , . for 
Xj = Fj. And conversely, P^F, = F^ entails AF, = AP^F, = AF^. = Z, while 
for any F; having composition (4), Af; = AF^.-|-AQ^X, = AF+-|-0 = Z. 
The equivalence of Q^X, for some X , to Y", for some Y, is shown by Q^X, = S^ Y, 
for X = S;jX, while S 1̂̂  = Q^X, for X , =S^Y ; . Finally, note that since 
S^(S^1Q = Yj and S^l^ span the same space. • Corollary 1 follows from the 
equivalence of (4) to 

F, =[F++S^t(z)]+[S^-E>;..z], 

wherein the first bracketed component, which satisfies (4), is F;(Z), and the second is 
Ep..z- From there. Corollary 2a follows by observing that an (m —h)-tup\c % of 
variables is in Z-s^ace (so that % = X^z) â d̂ Ey^.z = 0) just in case, since F+ spans Z-
space,it equals W,F^ for some (m—A)xmcoefficient matrix W,. Corollary 2hfollows 
immediately in Ught of Corollary 1. And CoroUary 3 is direct from (5) and Guttman's 
Lemma. 

Theorem 2 and its corollaries exhaustively answer Factor Determinacy Question 
A. But more than that, they do so insightfully, affording strong leverage on how, for 
any distinguished but L-ambigous A, additional model constraints may further Umit 
the range of solution alternatives. In particular, they illuminate the yield of one 
constraint that historically has been of special interest, and another that by rights 
ought to be. Suppose that we have developed a Z-moment decomposition 
Mzz = AMQA ' wherein A, through a pattern we would Uke to retain for further 
analysis or interpretation of these data, is L-ambiguous. Then there are many M , 
besides MQ that satisfy Mzz = A M , A ' for this same A ; and if we are wilUng to accept 
ones that are singular. Corollary 2 shows that we can always require F, in <Z = AF, , 
Mp.p. = M,0> to Ue in Z-space while still retaining a multipUcity of choices not merely 
for F, but also for M , . On the other hand, our theory of Z's causal origin or at least 
our solution methodology may impose factor-moment constraints that are satisfied by 
MQ but by few if any other M, in (6). If Mzz = AMQA ' is the decomposition of Mzz 
we most prefer, we then want to know - or at least the prominence of Factor 
Determinacy Question A M in our past literature urges us to care - which options exist 
for F, in <Z = A F , , Mp.p. = Mo)>. The answer is almost immediate from Corollary 1 
of Theorem 2: 
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Theorem 3. Let the rank-f moment matrix M^z of variables Z (in P) have 
decomposition M^z = AMQA ' , with MQ Gramian of order m and rank s, and A 
L-ambiguous to degree d>Q. And let = Ŝ S_̂  be some fixed basic-
structure decomposition of (=1—A"''A). Then there exists a unique A-
factor FQ of Z in Z-space, and a unique Gramian matrix M , of order d and rank 
s—r, such that an -tuple F, of variables is an A-factor of Z with moments 
MF,P. = MQ (in P) just in case the projection of F, into Z-space is FQ while 
i^—FQ = S^E, for some ^-tuple E , of variables orthogonal to Z and having 
moment matrix M^^. = M, . (How to construct FQ and from the givens is 
shown in the proof.) 

Corollary 1. Let Z, A, and MQ be as above with the cardinality of P no less than 
the rank of MQ. Then there is at least one solution for F, in <Z = A F , , 
Mp.p. = MQ). If there is only one - which obtains just in case = 0 - it lies in 
Z-space though it is not generally . If more than one exists, there are infinitely 
many (unless the cardinality of P is only r-|-1, in which case E , is unique up to 
reflection) and none Ues in Z-space. 

Proof. For any A-factor of Z whose moment matrix is given to be Mp^. — Mg, 
the projection of into Z-space is FQ =defFf{z) =(MF^M/Z)Z = (MoA'M^z)^ or, 
equivalently, Fo = Î (p̂ ) = (Mp^^M+^pJF+ = (MOP^M^^F^)F+, the same for all. 
And when F^ is analysed as = FQ +S^E , in accord with Corollary ̂ of Theorem 2, ^ 
M,.= MP^^%MB^^'A or M , =<,,fMH ,̂. = S : , (Mo-M^)S^, again the same 
for all. Conversely, any F,=F^ +S^E, for some E , orthogonal to Z with M^^^ = M , 
is an A-fact^ of Z for which Mp .̂ = MQ. That M , is Gramian foUows from the 
existence of at least one such so long as the cardinality of P is no less than the rank of 
MQ (Guttman's Lemma); while even if the size-of-P condition is unsatisfied, we can 
alWys construct a sufficiently large and Z, to have Mzjz, = Mzz = AMQA ' and M , 
hence Gramian by Guttman's Lemma. The order of M , evidently equals the degree of 
A's L-ambiguity because the latter is the column-order of S^. And the rank of M , 
equals the dimensionaUty s of -space less the dimensionaUty r of Z-space because the 
space spanned jointly by Z and E , with E , orthogonal to Z is also the space spanned by 
Fi (since Z = Af; and E , = Ŝ (Ĵ  — l̂ z))). • As for the Corollary, its first claim is 
simply Guttman's Lemma. And its second claim is obvious, since M^^. = M , = 0 just 
in case all variables in E , are zero. Finally, for any Gramian M^ 0, there are infinitely 
many ways to choose E , with moments M^^. = M , unless the size of P admits only 
one dimension of variables orthogonal to Z, namely, when P's cardinality exceeds the 
rank of Mzz just by 1. In that case, all variables in E are collinearities fixed by M , save 
for simultaneous reflection of all. 

Beyond study of constraints on M , in Mzz = A M , A' insufficient to specify M , 
uniquely, there seems little more to say about the indeterminacy of Z's A-factors for 
any fixed A. But there remains a complementary indeterminacy in factor pattern which 
also merits scrutiny. We have seen that when Mzz = AMQA ' for some distinguished 
but L-ambiguous A, there are many M, such that Mzz = A M , A ' , some of which may 
well be as attention-worthy as MQ. In particular, some such M, might be singular; and 
in that case any A-factor F of Z for which Mpp = M , also factors Z by various Ay 
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other than A. If our purpose at hand finds A-invertibiHty attractive it should interest 
us to know whether these alternatives forA^ include ones less L-ambiguous than A. 
More generally, in response to Factor Indeterminacy Question F (equivalently, FM) , 
can anything worthwhile be said about the range of patterns by which F factors Z ? 
The answer: 

Theorem 4. Let F be an ;w-tuple of variables that factors variable «-tuple Z, with 
Z-space and F-space having respective dimensionalities r and s. That is, r is the 
rank of M^z while s and m are respectively the rank and order of Mpp so that 
r ^ s ^ m. Then the ranks of the nxm coefficient matrices A, by which F factors 
Z, i.e. for which Z = A,F , range over all integers in the interval from r to 
r+m—s inclusive. Starting from a basic-structure decomposition 
Mpp — RODQRO of F's moment matrix and any A by which F A-factors Z, the 
exact range of A; in Z = A ,F is 

A, = APo -FW,S^ (Po = RgR^, So So' = Qo = I - P o ) , (7) 

where W, ranges over all x (m —s) real matrices. 
Corollary 7. If the F given above Ues in Z-space, it A-factors Z by some L-

invertible A. Put more strongly, Z = A F for an L-invertible A just in case F 
spans Z-space. 

Corollary 2. The L-invertible A of Corollary 1, or more generally the A, in 
Z = AjF at any attainable rank, is not unique unless F is a basis for its space. 

Proof. Let «-tuple Z Ue in a possibly-proper subspace of the space spanned by -tuple 
F, while F's moment matrix has basic-structure Mpp — RQDORQ ' . Then factor j-tuple 
G = del RQ F is a basis for F-space with moments M^^ = while 

F = R o G . 

And since variables Z, too, Ue in G-space without necessarily spanning it, 

Z = BoG 

for some nxs coefficient matrix BQ whose rank is also the rank r of Mzz • Now, for any 
« x;5!? A , , F A,.-factors Z iff BoG = Z = A , F = A,.RoG, i.e. iff 

B o = A , R o , (8) 

since B Q G = A , R o G entails BoM^c = A , R O M C G whose post-multipUcation by Mcc 
yields (8). Define 

A-o == def B Q R O , PQ = def I^O-'^OJ QO — ^ — SQ So 5 

where Sg is any fixed orthonormal completion of R^ so that the order of SQ is 
m X (m-s) while R^SQ = 0. Then (8) holds iff BORQ' = A,RoRo', i.e. iff 

A o = A , P o . (9) 

And A, satisfies (9) just in case A , has composition 

A , =Ao-fW,S^ - (10) 
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for some nx{m-s) matrix Vf̂ .. For (10) entails A,Po = AQPO+W^S^Po = AQ 
since AQPQ = AQ and SQ'PO = 0, while conversely, (9) entails 
A, = A,(Po +Qo) = A,Po + A,Qo = Ao -f^S^ for ^ . = A,So. And (7) is 
immediate from (9) and (10). The solution for A, in (10) is unique (at A, = AQ with rank 
r) just in case m =s, i.e. iff F is a basis for its space. Alternatively, suppose s <m. 
Then it remains to show that choice of in (10) can put the rank h of A, anywhere 
between r and r-\-{m—s), inclusive. Since h is also the rank of A,A/ (cf. the basic-
structure of A, and A, A,') and is easier to analyse in the latter, write 

A , A ; = (BoR^ -f W,S )̂(BoRo' +W,SO' = BoB^ -hW,W/. (11) 
If we choose W, = 0, the rank of A, evidently equals that of BQ, namely r. 
Alternatively, if W, 0, the right-hand matrix products in (11) have some basic-
structure decompositions 

Bo Bo' = R ,D^R ; , w,w/ = R^D^R; 

with the column-order of R^ equalling the rank r of BQ while the column-order of R„ 
is some positive integer k, set by choice of no greater than the column-order 
m—s of Within these limits on k, we can make R,„ and 7^ 0 in the basic 
structure of ^\^ ' anything we wish by taking R„D,„ for For any such choice, (11) 
continues as 

A , A ; = R,D^R; = [R, R J 
D ! [ R . R J ' . (11') 

{Note. (HQ still holds i f . D , = 0, but R^D^R ; is then not a basic-structure 
decomposition of ^' 'K^' as stipulated.) It is clear from (11') that the rank of A,A,' 
cannot exceed the rank of plus the rank chosen for D„, so h ^ (̂ + )̂ ^ {f+ff —s) 
with b = rifDl'is replaced by 0. But for any choice of positive k up to this Umit, there 
exists an « X ^ rectinormal S„ that is orthogonal to R ,̂ namely, the first k columns in 
any orthonormal completion of R .̂ And with this S„ taken for R,, together with any 
conforming choice of D,,,, the right-hand side of (11') becomes a basic-structure 
decomposition of A, A- with r-|-yfe positive roots. That is, taking W, = S,̂  = S„D„ for 
any rank-^ and ^-columned rectinormal S„ orthogonal to R„ {k ^ m~s) yields an 
A, in (10) having rank b = (r+k) ^ {r+m—s). • Proof of corollaries: The first 
version of Corollary 1 follows by noting that when Z-space and F-space have the same 
dimensionaUty, s = r so that the range of ranks attainable by A, includes column-
order z??; it is strengthened into a biconditional by the entailment for L-invertible A, 
from Z = A , F to F = A f Z . And CoroUary 2 is evident from (11') in that with 
R, = aFany attainable tznkb ^ r -f 1 for A, , each different D„ yields a different A , . 
To include case b = r, take R,̂  = R^ with any order-r D„. 

Finally, with no great enthusiasm but for the sake of completeness, we observe 

Theorem 5. Given that the moment matrix of an «-tuple Z of variables has 
decomposition = A M Q A ' for a distinguished mxm Mo, let 

Mzz = R^D^'R; , Mo = RoD ôRo 
be basic-structure decompositions of Mzz ^ îd M Q wherein the rank of Mzz ^nd 
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hence column-order of is r, while the rank of M Q and hence column-order of 
Rfl is J, so that r^s^m. Also, let SQ be any m x(m —s) orthonormal completion 
of this m XSRQ. Then any Fj that factors Z has moments = M Q just in case 

FJ = RoDoT ,G, (Gj = <G,, G,>, G, = D - ' R ; Z ) (12) 

for an arbitrary mxm orthonormal Tj and an arbitrary (J—r)-tuple G, of 
orthonormal variables orthogonal to Z . And a coefficient matrix A, satisfies 
M22 = AyMoA- just in case 

A , = R , D , R ; D O - ' R O ' +W,S^ (13) 

for an arbitrary ^ of order nx{m—s) and an arbitrary m xr rectinormal R̂ . We 
can choose W^ in (13) to put the rank h of A , anywhere in the interval 
r ^ h ^ r + (m—s). 

Proof. An Fj with M ^ ^ of rank s factors Z iff Fj spans some j--dimensional space that 
includes Z ; while then Mp-.p. = M Q = RODQR^ just in case FJ = RQDQTJGJ for some 
sxs orthonormal rotation ij of any fixed orthonormal basis G, of JF,-space. And 
for any such Fj, we can always take Gj to be Gj = <^G^,G,'), where G^=D~'R^Z 
comprises the r variance-normalized principal axes of Z while G, is an arbitrary 
orthonormal (j—r)-tuple of orthonormal variables orthogonal to Z . Since 
Z = R^D^G^ = [R^D^ GjQj while Gj can be recovered from i} by Gj = 'i;'Do-'R^J^, Fj 
A,-factors Z for, inter alia, A, = (R^D^ 0]'i;'Do-'Ro = R,D^R,T)o"'Ro where R̂  

comprises the first r columns of and is hence mxr.So (13) follows directly from (7) 
in Theorem 4, as does the claim about A/s rank. 

The second component on the right in (13) is indeterminacy in A , , given M Q , that 
accrues from singularity of M Q and vanishes if J = r. But the range of A , due to 
arbitrary R, cannot be ameliorated by special properties of M Q . Unlike the other 
varieties of factor indeterminacy examined here, there are no non-degenerate 
conditions on the fixed solution-fragment in this case that shrink its indeterminacy to 
unique specification. Even so, before dismissing this Theorem as utterly useless, note 
that it generalizes a principle which has been basic for traditional factor extraction's 
fixation of initial-factor moments at M,, = I,,. In this special case, G, and W, are null, 
RQ = Do = I „ and R̂  = Ty, whence (12,13) describes the class of all orthonormal 
bases of Z-space, with Tj = 1̂  picking out the normalized principal axes of Z . 

5. Conclusions 
So what do these results signify for multivariate practice? Directly, not much; but 
indirectly, perhaps more than meets the eye. Mainly, they promote abstract 
mathematical comprehension of factor-indeterminacy relations in some breadth and 
depth, which not only is its own intellectual reward but profers moorings for the 
theories of particular structured models yet to appear. (Or at least its findings on L-
invertibiUty are needed to secure the rationale of quad-factoring; and who can say 
where it will help out next.) But more than that, it redirects concern for factor 
indeterminacy from its narrow and - let us be honest - inconsequential classic A F 
focus into a perspective far more consilient with recent multivariate advances. 
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Model fitting in practice is often an iterated whipsawing whereby a provisionally fixed 

estimate of one model fragment is used to anchor a provisional solution for another. 
Frequently, the anchor comprises the current approximation to M^z for just a latent 
component Z of the variables Yon which we have sample scores, together with part of 
a form-(l) decomposition of <(Z, Mzz^; and the immediate task is to find enough of 
the decomposition's remainder to get on with what comes next. (Usually this solution 
reproduces Mzz only as an approximation thereupon taken to update the latter. 
Classically, Mzz is Myy expunged of uniqueness; but modern practice also has more 
elaborate ways to fractionate Myy into additive components estimating moments 
within and Ijetween blocks of Y's latent sources.) However we arrive at this 
provisional Mzz, we no longer need to decompose it first by solving for some A in 
<Mzz = AMQA', Z = AF , Mpp = MQ) under anchoring factor moments MQ = 
for m equal to the (reproduced) rank r of Mzz, and only later search for an interesting 
pattern of Z on some other basis of Z-space. Instead, we can nowadays fit A and 
MQ jointly under constraints spread over both A and MQ without requiring m = r; 
and precisely because so many diverse allocations of such constraints are 
computationally feasible, our choices thereof at particular stages of model fitting need 
to be rationalized with some care. Especially important is to distinguish between 
constraints of convenience that -select a determinate solution from a range of 
alternatives equally good for the purpose at hand and essential constraints that 
preserve anchors or optimize features we take to be distinctive of solutions most 
meaningful for interpretation. 

Accordingly, for each type of solution-fragment such that Mzz conjoined with this 
part of Mzz's running form-(l) decomposition is Ukely to serve as anchor at some 
stage of fitting one or another style of structural model, it is clearly advantageous to 
have on record a computationally effective specification of the range of model-(l) 
indeterminacy given a solution-fragment of this type. To illustrate, suppose that we 
have reached a stage of model fitting at which our provisional estimates of Mzz and A 
are to anchor solution for the M, we think best for the next reproduction of Mzz as 
AM,A ' . Then, disregarding complications due to imperfect model fit under a 
discretionary loss-function, we know from Theorem 2 precisely what our options are 
for M , : We are assured that M , = A+MZZA+' is ideal if A is L-invertible; we can see 
that M , = A'^MzzA'*"' is also most convenient for an L-ambiguous A if it does not 
matter at this point which completion of Mzz's decomposition we select; and finally, if 
A is L-ambiguous but we have a computable criterion for discriminating better from 
worse among the solutions for M , in Mzz = A M , A' , Theorem 2's Corollary 3 tells us 
how in principle to find the best one, namely, by non-linear programming applied to 
the criterion value of function (6)'s output over the range of free parameters <W„ M,> 
(or rather, over certain more computationally efficient equivalents to the latter.) 

Of course, the particular model fragments studied here scarcely begin to cover all 
patterns of solution anchoring that can and probably will arise in practice. But 
Theorems 1-5 do give foundations and direction for whatever elaborations may 
prove to be wanted. Whether they are also relevant to current or imminent modelling 
practice depends largely on the extent to which, if at all, we shall be devising model 
structures wherein patterns on blocks of common factors are allowed to be L-
ambiguous. I know of no specific cases where this has occurred (not even quad-
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factoring breaks that radically with tradition), and it would be fooUsh to abandon the 
security of Theorem 1 without good reason. Yet neither have we reason for 
confidence that Nature shares our abhorrence for L-ambiguity in multivariate causal 
dependencies; so we had best give thought to how we might detect this if it occurs. 

Let me close with a last word - or at least what I hope is my last word - on classic 
factor indeterminacy. Unlike the other cases examined here. Variety A M has no 
relevance for modelhng practice insomuch as we never have use for a determinate 
choice of factor scores at any stage of model fitting. So why, when we are given 
<Z, Mzz> and have identified a distinguished A and MQ such that M^^ = AMQA', 
should we feel disturbed when L-ambiguity of A admits a multipUcity of F, for which 
<Z = A F „ Mpp. = Mo>? If we simply wished to pick out a specific F , in this 
solution-range without much caring which one we get, we could easily close out 
the indeterminacy by an arbitrary stipulation of E, in (5) under Theorem 3's 
constraint M g ^ = M , . Whereas if some of these F , seem more selection-worthy than 
others, it is again straightforward in principle to search out the optimal one 
if we can but devise some computable measure T on score matrices in the M F 
solution-range such that T(F,) appraises the merit of selection F,. (Or at least 
that search would be computationaUy feasible under an identified score matrix 
on Z as presumed by the Indeterminacy-AM hterature). 

I submit that the real problem here has Uttle if anything to do with A M -
indeterminacy of factors construed extensionaUy as number-valued functions on 
whatever population we take to be at issue. We do intuit that some score matrices in 
the A M solution-range are more meritorious than others, yet have Uttle notion of how 
to distinguish them from their less worthy brethren by a computable T on {F,}. But 
such a T would^e of Uttle use even if, contrary to all UkeUhood, we could 
operationaUze it. For what we are seeking here is the factor solution specified without 
identification by some version of causal criterion (3) (p. 211, above). And what we 
want to learn is not so much F,-scores in the A M solution-range most closely aUgned 
with scores in P on causal sources of Z as the non-extensional nature of these causal 
variables - precisely what score matrices fail to tell us about the contrast-classes of 
properties on which they Ust numerical scale values. (If you did know scores in P on 
causal sources F of Z, but nothing else about F save statistics entailed by the <Z, F> 
distribution in P, what good would this information do you?) 

In short, the feeUng of unease occasioned by classic factor-indeterminacy is 
legitimate and indeed important. But its proper target of concern is not Variety-AM 
indeterminacy of factor scores but our flaccid conceptual grip on the logic of causality 
and the ontology of scientific variables. 
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