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CHAPTER 2. THE MEDIATION STRUCTURE OF MULTIVARIATE CAUSALITY

Although Chapter 1 sets out the main conceptual framework within which
traditional notions of multivariate causality can best be reconstructed, we have
scarcely begun to detail the theory of causal strqcture required to make sense of
our intuitive intervretations of computed data parameters. Insomuch as this theory's
motivation arises one level removed from the immediate practicalities of data analysis,
readers whose interests in MODA are primarily applied may prefer to skim this chapter
only lightly or omit it altegether if it distracts from their comprehension of
MODA's operational character. For once we posit a particular model of well-specified
form to explain our observations at hand--the conventional point of departure in
the literature on causal modeling--little remains but to work out solutions for
this model's parameter estimates and to appraise their sampling reliability. Never-
theless, when we move beyond particular solutions to contemplate a diversity of
medels for the sgme data array, or to compasre results from several different studies
purportedly dealing with the same phenomena, and realize that the differences
manifest there may be complementation as much as conflict, we can appreciate need
for a deeper understanding of causal relations.

The objectives of this chapter are really quite limited. Most 1mportant1y,
we want to get clear about what might be called "causal micro-structure,” ngﬁely,
the logic by which one variable x has causal import for énother, {, relative to
some particular choice of supplementary ybsources § that conjoin x in determining
z while doing so through the mediation of still other Zusources that can also,
though need not, be included with <§,§> in assessment of joint effects oniy. Our
primary goal here is to identify the conditions under which the composition of one
causal regularity into another is itself a (g;diated) causal regularity. And we
shall arrive at the wanted composition principle througgdiigzzgesentation of mediation
structure which explicates and generalizes the notion of "causal path" that has 1§ng

been intuitive in the literature on linear structural models. From there, we turn
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to some rudiments of causal macro-structure, which seeks to identify structural
connections among aggregates of variables that are molar counterparts of micro-
structural relationé. What we are mainly after here is just a way to talk about
causal mediation and causal determination among tuples of variables as wholes in

a way that preserves the essentlal partial-order and composition properties of
micro-causality without requiring our formalisms to be explicit about the underlying
micro-structure.

As already acknowledged, none of the material developed in this chapter is
explicitly required for MODA's application to particular data arrays. But some such
theory is needed to explain what we are talking about when using MODA or any other
nultivariate method to make inferences about causal parameters.

To ease into this chapter's technicalities, it may help to review some
presumptions/stipulations about variables and causal order proclaimed in Chapter 1.
Among those worth a reminder are: (1) All variables at issue are Jointly distributed
over some fixed population P, and any regularities, causal or otherwise, that we
hypothesize to g;vern these variables are likewise prima facie relative to this P.
Henceforth, however, explicit reference to population P will be totally elided
throughout this chapter. (2) The causal-source relation on pairs of variables is
transitive, irreflexive, and is defined by same-suﬁject causal regularities (over P).
(3) A1l tuples of variables are finite with no within-tuple repetitions; i.e., the
‘variables within any specified tuple } are all distinct, and if tuples } and ¥ have
any variables in common, <§,¥’ is not the %—sequence continued by the X—saquence
but only what remains of this concatenation after repetitions are deleted from the
right. And (4), when f is a subtuple of X, not only are all Y-variables also in X,
their order in X is also the same as in X,

Treating ensembles of variables as tuplés, rather than unordered sets, is
mandated by certain formal needs. But it has the infelicitous consequence of requiring
recognition of order distinctions even where these are an irrelevant distraction.

Specifically, many of the things we want to say about a given tuple } are true of %
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simply by virtue of what variables are in }, regardless of how they are ordered
therein. In such cases, when we have predicated such-and-such of }, it seems
avkward and artificial to add that such-and-such also holds for any other tuple
containing the same variables as }; nevertheless that addendum is generally needed,
insomuch as if X and X comprise the same variables in different orders, we are
conceiving of them as formally distinct entities, and indeed, the such-and-such
that holds for } may not be iiterally true of } unless adjusted to take the order
difference into account. Even so, when } and X differ only by a permutation, it
is heuristic to think of them as identical for most purposes. So to preserve the
order difference formally while encouraging us to ignore this as a difference in
substance, let us say

2.1,
nginitionﬂ % 1s essentially identical with ¥, symbolized % = X, iff every

variable in f is also in } and conversely, That is, given that the variables

in any tuple are all distinct, X = Tiff X = €(¥) for some permutation €(¥) of Y.

L]

We shall frequently want to refer to the variables in one tuple .

that are not also in another. Although this could be compactly formalized by intro-

ducing a special symbol for tuple subtraction, it seems more mnemonic to say

2.2,
Dgfinitiogk }-not-x is the subtuple of variables § constructed by deleting

from % each variable therein that is also in X. If all %-variables are also in

X, we say that %—not-¥ is the "null" tuple rather than that %—not-} does not exist,

Generally, we allow the order of variables in a tuple to be arbitrary. But
it is occasionally convenient to exploit

203- .
DefinitiogA A tuple X= <f1,...,¥n>ibf variables is causally well-ordered iff,

for all i,j =1,...,n, x5 is a (causal) source of *J only if 1<j. Theorem:

Every tuple } of variables has a permutation that is causally well-ordered.

The causal well-ordering theorem follows from our fundamental premise that the




=24~

causal-source relation is a strict partial order, and is easily proved by induction
on the number of variables in }.

Finally, a distinction that will figure prominently in our forthcoming

account of causal structure is

The
Definition 2.4.( (causal) interior, I(X), of a tuple X of variables is 3('9

subtuple comprising just its variables that have a strictly complete source in
X4 18 in X and

f. That is, Xy is in l(}) iff;some subtuple Xy of % is a strictly complete

source of {3 under some nomically irreducible causal regularity'fj = ¢(§1)°

2

The (causal) exterior, E(}), of X comprises just the variables in § that do

not have strictly complete sources in X, i.e., E(%) = f—not—l(}).

is interior to X iff X5 is in l(¥).

Obviously E(X) = E(Y) and I(X) = I(Y) whenever X =Y. For compound tuples, we
TA A - A »oon (p. 2.16f.),
condense §(<§,¥>) to g(},f) and l(¢§,¥>) to l(§,¥). Later# we shall prove that each

Variable xj
4

variable in l(}) has a strictly complete source in E(%).

&

Causal Micro-gtructure.

So far as we have any reason to believe, whenever one variable causally
affects another, it does so only indirectly through the mediation of others. Accord-
ingly, the theory of causal regularity must above all be an account of mediated
causality. In particular, we want this (a) to clarify what it is for the causal
connection between two variables to be partially/wholly mediated by one or more
“others; (b) to envision how, in principle, a newly identified tuple %'of %-sources
can be interlaced into previously established regularities under which variables X
are determined by variables X; and (¢) to spell out the conditions under which the
composition of one causal regularity into another is itself a causal regularity.
These matters prove to be rather more intricate than one might expect, and I am

far from certain that the treatment now to be sketched is optimal. Nevertheless,

it is a beginning.
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nature
Thekufnartial mediation seems obvious: Variable x has some effect upon

variable y through pediation by variable f Just in case } is a source of g and z,
in turn, is a source of Z' But what is it for f-fy to be wholly mediated by ? or
by a tuple %? Or, when ¥—+?-¢y, what demarks *'s also having some influence upon
y that is not mediated by z?

Consider the case where a tuple } of variables includes at least one, but
possibly more than one, strictly complete source of variable yLAwhere y may or may
not be in X Then meore broadly, there exists a nonempty set {X ? of subtuples of

- transducer
X for each of which there is at least one[function ‘ij that maps each subject's
score tuple on }j into that subject's score on Z; Let us momentarily call any
such factual regularity y= #13(}3) a "binding" of ¥ by Xy vithin X, regardless of
whether it is strictly causal., =~ ’ -(If y is in } y= y also counts as a
binding of y within X, ) For each binding y = ﬁij(x ) of y by Xj, and every subtuple
Xy of X that includes X4, there is also at least one binding y= ‘ik(fk) ofl{ by Xy»
most evidently b?t not in general exclusively the one for which ‘ik(§k) = iijojk(}k)
where OJk is a subtuple-selector function over tuples of appropriate order such that
fj = a (Xk) (Expressed as a matrix-algebraic premultiplier, o 1k is the matrix
whose h_th element i3 1 or O according to whether ﬁhe hth variable in }J is or is
not the ith variable in }k‘) Whenever the function ¢ in a binding y =‘5<§j) can be
decomposed as g = Yo for some subset-selector function o, it will be convenient to

or "zero weight"

to say that the variables in Xj-not-o(X ) have "null weightﬁ(in y= ﬁ(X )y since if
X3 is the subtnple ef"X3 picked out- by a, i .0, Xi" o(XJ), and the variables Xj =3ef
4j'n°t'§j not selected out of Xy by o occur after §J in %3, .e. %5 = <XJ,XJ>,
then ;5(}-3.) = %0(4}{3) is equivalent to ‘“,}‘{j) = ¢.(2‘(5) + 0-}3. [E;presumption, at least

cne of Z's bindings {y = ‘ij(}j)i by subtuples of % is a nomically irreducible causal
A

regularity--but what can we say about the causal status of these other bindings?

It will suffice to discuss the case XJ = X and omit the subtuple subscript.

e e A A e
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Proximalities. 3

Our prior postulation (p. 12) that the transducer of a causal regularity (see
p. 1,21f, ) is uniqﬁe even when its input variables are not fully dispersed entails
that when % is a strictly complete source of !, just one function g* in the multiplicity
of Z's bindings by § is truly causal in the sense of characterizing how the variables
in } work jointly to bring about z. It Seems,enti;gly‘feasqnable to posit more
broadly that even when oan a proper subtuple of ¥ is a strictly complete source of‘
¥s there is just one binding y= g*(X) of y by X that tells how the variables in X
causally determine y jointly, with some §évétigb19S,givén‘ﬁuil‘uéight by g* in d*(})
either because they are not sources of y at all (including y itself when y is in })
or because, relative to the entirety of }, they influence ? only indirectly through
their effects on other !hsources in } and contribute nothing to X over and above the
latter. Let us call this special binding of y by } an inclusive causal regularity
vwhose transducer is g* and under which X is an inclusively complete source of e
(We shall understand inclusive causal regularities, and inclusively complete sources,
to subsume stric% ones as a épécial case--i,e., a strict causal regularity is an
inclusive one in which no input variable has null weight.) Whenever y= #(}) is an
inclusive but not strict causal regularity, there must be at least one variable X
in X that has null weight in 5(%) and which can be deleted froml! = d(}) without
degrading the reduced function's causal status—i.e., g(X) = #000(§) in this case,
where 00(§) = %—not-fo and y= ‘6(§'n°t'fb) is an inclusive causal regularity under
vhich }-not-}b is an inclusively complete source of {. Accordingly, deletion of
null-weight variables can be iterated until the original inclusive causal regularity
is reduced to a strict one whose input variables are just the ones in } that have
effects onlz unmediated by the others. We may call this special subtuple of } the

"proximal® source of y in % and begin to characterize its causal role as follows:
A

Caugal-mediation Postulate 1 [CmP-1], For any tuple } of variables that is
an inclusively complete source of some variable‘?, i.e. of which some subtuple

is a strictly complete source of y, exactly one binding y = ﬁ(%) of y by X is
A A A
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an inclusive eausal regularity under which variables % determine ! jointly; and

- there is exactly one subtuple X* of X such that if o* is the subtuple-selector
function that picks X* out of X (i.e. X* = o*(X)), the transducer of inclusive
causal regulariif;gi;xcomposition g = g** where g* is the transducer of a strict
causal regularity y = ﬂ*(%*) under which %* is a strictly complete source of ;;

- By definition, this special subtuple X* of X is the (complete) proximal source
of y in X, If.z has no strictly complete source in }, we shﬁll say that the

proximal source of y in % is null.
A

v—“_—_—_-é

Just as different subtuples of } can be inclusively or even strictly complete
gsources of X even though among these only one-y‘s proximal source in }-—is causally
immediate for y in }, 8o is there in general a corresponding multiplicity of causal
regularities under ﬁhich y is determined by its sources in X albeit all but one of-
tﬁéseareaderived by composition from others. To study these mediation relations,
it proves most convenient to include output variable y in the tuple § among whose
subtuples we find a diversity of complete y-sources. Then we can say

An
Dgfinitioglz.s.‘inclusive (possibly strict) causal regularityfj = #(}1) is

within (or in) a tuple } of variables iff Xy is in l(}) and }1 is a subtuple of §.

A causal regularity Xy = ﬁ(};) is proximal in X 1ff 1t is within § and §I is the
A

proximal source of x, in X,
2 A

Any causal regularity that is proximal in % is necessarily strict. Obviously, if

variables <fj’}:> are all in }, X% is a strictly complete source of x, just in case

21 23
X; determines X under some causal regularity x5 = ﬁ(%;) that is proximal within at
least one subtuple X' of X, notably X' 2 <xj,
It is manifest in the intuitive reasoning behind CmP-1 that the proximal

source }; of fj in } should also be the proximal source o!f‘,/:tr‘1 in any subtuple of §
that contains %{. The same is not generally true when X is augmented rather than

diminished, however: for if z is a variable that mediates between Xy and some X in

X¥, our intuitions about mediation structure allow that the proximal source of x

11 X in
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<§,f> may well include 3 instead of or--if z mediates only part of the {E—ﬁ; ‘

connection--in addition to'§k. Indeed, intuition insists that the proximal source

of x4 in <X,2> nust include 2 if none of the other variables in }; in turn mediates
1 174

between 2 and Xyge On the other hand, if z does not mediate between fj and any other

variable in }*, then }; remains the proximal source nf‘y in <},f>. Yet these are

just two of many causal-structure principles that seem apodictic. We need to regiment

these intuitions by expanding CmP-l into a complete axiomatic foundation for them.
Consider an arbitrary tuple }_of variables with an interestingly non-null

causal interior l(}). Each variable Xy in l(}) by definition has a strictly complete

source in }; so by CmP-1, fj has a (complete) proximal source }; in }. If we take

note of which §-variab1es are in the proximal sources of which others relative to

%, it is instructive to consider how these proximalities are altered relative to

some minimally reduced subtuple }—not-}c of }. A concept that proves to be remarkably

powerful in thinking through this matter is

2,6,

Definition/ Variable Xy is a direct source of variable X within tuple }

J

(1.e., relative to }) iff fj is interior to § and the proximal source of }j

in X includes x,.
A 21
: source
Given CmP-1, a variable fj is interior to } Just in case it has a direct | within },
whereas if fj is in } but has no direct source within }, fi is in the exterior of }.

And the subtuple of § comprising just the variables that are direct sources of‘fj

within } is fj's proximal source in X, Consequently, we can represent which subtuples
of % are proximal sources of which other §-var1ables by a digraph whose nodes corre-

spond to the variables in % and which includes an arrow from X, to fﬂ just in case

x, is a direct source of x, within X,
21 _—_— A y)

J

Causal-mediation Postulate 2 [CmP-2]. Let Xgs X4» and x4 be any distinct

variables in tuple %. Then deletion of X5 from } affects the direct-source

relation of X3 to fj relative to } vs. %—not—%o as follows: (a) If X is not a

direct source of x, within X, then x, is a direct source of x, within X-not-x
13 A 21 Ad A 10
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if and only if xy is a direct source of %j within %. (p) 1f f and f are both

0 i

direct sources of x, within X, then x; 1s a direct source of x, within X-not-x
AJ A A A A A

h| 0

if but only if ?b is interior to X (i.e., if X, has a direct source of its own
within X but not otherwise). (¢) If X butfnot'fi is p'directfgdurceJef‘fj SEER
within %, then fi is a direct source of X3 within }‘n°t'{b just in case X, is

a direect source of }0 within }.

CmP-2a is equivalent to saying that any proximal regularity within } is also
a proximal regularity in any subtuple of } that contains the requisite variables--the
cogency of which we have already observed in slightly different terms. CmP-2b recog-
nizes that if Xy = ﬁ(%;) is a proximal regularity in X, it cannot be so in }-not-%o
if X0 is one of the variables in‘};. And if }; includes Xy };-not-fo is not a
strictly complete source of fjv(since otherwise xg = ﬁ(};) would not be nomically
irreducible); so either X, has a complete source of its own in ?-—in which case,
replacing §O in }; by fo's own proximal source in § gives a strictly complete source
of X3 that is as, causally close to ¥3 as we can get in_%-not-fb—-or X is in ¥‘s
exterior whence the sources of ¥ in }Lnot-fb are insufficient to determine‘fj fully.
(Note that this argument for CmP-2b is not a proof, but only an exercising of intuitions
that this postulate formalizes.) And CmP-2¢ explains how mediated causality becomes
direct connection relative to a suitably frugal selection of the output variable's
conjoint sources. |

It is routine though somewhat tedious to show (the proof will be omitted here)

that from any admissible structure of direct-source relations within a tuple },

CmP-2 derives the same direct-source structure within (§'n°t'f1)'n°tf}0 as within
(}Anot-fb)-not-fl for any two variables Xy and X, in X--as indeed it must if CpP-2
is to be coherent. Consequently, given the direct-source structure within any
tuple }, CmP-2 identifies a unique direct-source structure within any subtuple
}-not-}o of %. And if }0 = <}1,§2>, the direct-source structure so derived first

within §—not-¥l and from there within (}-not-%l)-not—§2 is the same as within
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}—not-%o. Conversely, if we are given the direct-source structure just within some
subtuple %-not-%o of }, CmP-2 describes constraints on the direct-source structure
vithin X imposed by the structure within X-not-X,.

Case-by-case comparisons show that CmP-2 is equivalent to

Theorem 1. Let Xp be any variable in tuple X, so that X, is either in l(?)
or in E(}) but not both, (a) Suppose that X0 is interior to }. Then all var-

iables other than fo that are interior to ¥ are also interior to }-not—fo, and

all varlables in the exterior of § are also in the exterior of %-not-}o. More

specifically, for any variable X # %o in l(%), the proximal source of f in

J
}-not-xo comprises just the variables other than X, (1f any) that are direct
A 1

sources of }j in } together with, if fb is a direct source of fj within g, the
variables that are direct sources of fo within }. (Corollagx. If }O is a sub-

tuple of I(X), E(%(-not-zro) = _rg(%) and _I(%—not-—;to) = ;[_(})-—not-gic.) (R) Alternat-
ively, let ¥ be in the exterior of }. Then the interior of‘}-not-fo comprises
Just the variables in I(X) of which Xy 1s not a direct source within }, 8o that
E(f'HDt-fo) comprises all variables in %'HOt'fb that are either in §(§) or have
X0 for a direct source in §; and each variable in l(f‘DOt'fo) has the same
direct sources in }-not-fo as it has in }. (Corollary. Statement (b) remains
true if x, is replaced by any subtuple Xy of §(§).)

Theorem 1 is easier to visualize in direct-source digraphs for } and }"n°t'f0 than

is CmP-2, and will be our main point of departure for subsequent theorems.

Causal Paths.
A variable that is the second term in one direct-source linkage within } can

also be the first term of another., Iteration of this notion gives

Definition 2.7. A (causal) path (of length m) in any tuple } of variables is

any sequence §' = <§i,...,¥g+1> of variables in % such that for each k = 1,...,m,

1
Xk is a direct source of Xk+1 within X. Apath X' in X is from x; iff x; 1s the
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iff x
first variable in X', and is to x ‘is the last variable in X' A total psth

. X' = <¢X

to Xy in % is arpath in } to‘f from some variable in §(§) IfA 43’}5> is

a path in X with.}a but not }b possibly null, }b is a terminal segment of }' with
A

}a the corresponding initial segment of }'. A path %' in } pagges through a

tuplelzk of variables iff %' includes at least one varlable in }k'

How these path concepts are represented in a direct-source digraph will be obvious.

Various consequences of this definition too immediate to formalize as theorems
are: (1) For any path X! in X, the variables in %' are all distinct (else the causal-
source relation could not be a strict partial order); hence any path in } can be
characterized as a tuple of variables without violating our convention that the
variables in a tuple are all distinct. Moreover, if § is causally well-ordered,
each path f’ in } is a subtuple of X, i.e. the sequence of variables in X' is the
same as their order in X. (2) 1f Z X, all paths in X are also paths in Z (3) Tuple
%' is a path in } Just in case each adjacent 2-tuple in }' is a length-1 path in }.
(4) A1l variablee except possibly the first in any path in % are interior to §, and
there is a path to Xy in § Jjust in case f is interior to ?. (5) If }a and }5 are
non-null, <}a,$b> is a path in § Jjust in case }5 and }b are paths in‘f with the last
variable in Xa a direct source within X of the first variable in Xb. (6) Each path
qij from xi to Xy in X is the terminal segment of a total path <Xa, ij> to Xy in }
wherein }a is null just in case X, is in g(}). (7) Whenever‘¥ij is a path from‘}i
to }5 in } of length greater than 1,‘}ij-notffi and.fij-not7¥j are also paths in }.
And (8) when i}a’fk’§b> is a path in %, it is possible but not necessary that ‘}a’fb’
is also a path in %. (The latter obtains just in case the last variable in}(a is a
direct source in } of the first variable in }5 as well as of fk’) Thus one path
from zi to ZJ in § can be a proper subtuple of another.

If }0 is a tuple of variables in }5 how does the path structure in }'s
subtuple }-not-}o relate to the path structure in }? This is best seen by starting
with the special cases wherein }O is restricted to variables either (I) all in l(})

or (E) all in E(}). And without essential loss of generality we can avoid certain
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nusiance complications by examining just total paths in } vs. }-not-%b to variables
interior to }—not—}o.

For Case I, assume that Xo contains only variables interior to }. Then from

Th. 2a, by induction on the number of variables in %0, a 2-tuple éfi’f > of variables

¥
in }-not—?o is a (length-1) path in }-not-}o Jjust in case there is some possibly-null
tuple /1\((') of variables in }1(0 such that <fi’}6’fj> is a path in X. From there, together
with the identity of g(%) with E(X-not-X;) in this case (cf. Th. 1la), it is easy to
- - [P -
see that any }' is a total path in § to some X4 in § not }0 only if % not }0 is a
-not- " - X

total path to X4 in % not }0, while } is a total path to fj in } not1’0 only if
Xt = X'~not-X, for some total path X' to x. in X,
A4 20 1 " d 1

For Case E, assume instead that }0 contains -only variables in }'a exterior.
Then by Th. 1b, any total path to X5 in }-not7§0 is also a path to Xy in § and is
hence the terminal segment of some total path to Xy in }. Conversely, let }' be
any total path in } to some X5 interior to § not }0. Although § not }0 differs
from }' by deletion of at most the first variable in }' (since all subsequent var-
iables in %' are in l(}) and hence not in }0)’ %'-not—}o need not be a total path,
or even a path at all, in %—not-}o because some variables after the first in %'-not-}o
may have some }o-variables as direct sources in % and hence (cf. Th. 2b) have no
direct sources in }Qnot-}o at all, Even so, stipuiation that X5 is interior to
%-not-}o with }' a total path to Xy in % entails, from Ih.1p, that‘}' has some
segmentation }' ='<}aﬂ¥b> wherein the first variab1e4xi i“,fb but no other variable

in }b is in E(X-not-fo)--either because §i5;§Tthéi£ ;;im0atwvariab1e‘in §'.of7which

somwn}o;vag;abig is a direet source within %;prgﬁée§§§e, when no }O-variable is a
direct source within } of any variable in }', f%bif~§'lWith,§a nall--so tha# }b.is

- L J Y Sad ‘
a total path to‘fj in % not }b Thus when all }O variables are in Q(%), § is a
total path to Xy in % only if some terminal segment of %' is a total path to Xy in
X—not-Xo, while conversely, as already observed, X" is a total path to x, in X-not-X
A A A ad A 10

in X,

only if %" is the terminal segment of some total path to fj X
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More generally, combining Cases I and E, any tuple %0 of variables in } can
be partitioned as }O = ‘%1,¥2> where X; is some possibly-null subtuple of ;(%), and
X, is some possibly-null subtuple of Q(%) which is then also a subtuple of E(}-not-%l)
(since E(}) 2‘5(}-not-§1) by Th. la). By Case I, a tuple Xt of }-variables is a total
path in X to some Xy that is ih %—nots%b*and hence in }-not-%l only if }'—notffl is a
total path to fj in %—not-%l, which in turn entails under Case E that some terminal

1. - - - = Xt. - - - - -
segment of (§ not }1) not }2 § not }O is a total path to Xy in (} not }1) not fz
= }-not-}o. Conversely, if X" is a total path to Xy in X-not-X, = (%—not-%l)-not-yz,
}" is by Case E the terminal segment of a total path }* to fj in %—not-}l where in
turn }* = }'-not-%l by Case 1 for some total path }' to Xy in %. That is, for some
total path }‘ to xj in §, f“ is a terminal segment of §'-not-}1 and is hence also a
A
. - - - = Y. - - ]

terminal segment of (§ not {1) not-X; = X'-not Xy since no Xy-variable is in X, In
summary, -- what we have shown is

‘Theorem 2.  _.let X5-be any tuple of varisbles in X, ]
and Xy any vgrisble interior to f—not-}o (i.e., Xy is anyrvariable in ;(}) of
which no }o-variable is a direct source within %). Then for each total path }'

to Xy in }, some terminal segment %” of §'-not—§o is a total path to f in

J
}-not-}og and each total path %" to Xy in f—notffo is a terminal segment of

}'-not-}o for some total path }' to {j in }. If all variables in }b are interior
to }, }' is the entirety of ihe correepending {'-aat-fo. Corsllary. Por any

- ° . * ) . - -

supertuple % of %, each path }ij from fi to fJ in } is a subtuple of at least one

# X * * X-variables-th .
path }ij from fi to fj in X*, with }ij containing no f»vaxigblqs that are not in }ij

Mediational disconnection.

We are now in position to say what it is for one variable to have no effect

upon another except through a given tuple of mediators.

Defipition 2.8. Variable X (partially) mediates from variable Xy to variable
fj iff Xy # x, # fj and fk is on some causal path from X3 to fj within some tuple %.

Tnp}¢:§k'totallx mediates from x; to X3 or, equivalently, %k (gicroatructurallx)
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disconnects x X, from Xy ife (a) x, # X5 (b) neither X; mor Xy are in Xk’ and

(¢) for every tqple % that includes all of variables {fi’4k’fj>’ every path
X .

within % from Xy to Xy passes through Xy

This concurs»with our initial description of partial mediation (p. 2.5); for there 4w
§;§5t§¥from Xi;th:pﬁgh fkﬁto'ﬁji;éfgbme~§ just in case x, is included in a striectly
complete source of i while xk in turn is in a strictly complete source of Xy (see below)
And the definition of total mediation is equivalent to saying that when Xk disconnects
Xy from Xjs X3 is neither identical with §32:§ ézrect source Dflfj within any tuple
fﬁéfiihelﬂaéé"éiiigf‘fk. A tighter sense of total mediation could further require
Xy to be a source of each variable in Xk; however, the broader sense given here is
technically more advantageous than also requiring Xy to affect xJ through X 's mediation.
Tt 31T 1ater preve ta -be of great importance that even though total mediation
1s defined in terms of all paths from Xy to xj in al] tuples containing <xi,Xk,xj
a sufficient condition for X

to disconnect x. from x. can be found in the causal
Ak A1 Ad

structure within* just one of these. Specifically,

angzgg 3. Let X3r X5 and variables %k be distinct variables in X, with
fj interior to %. If all paths from X3 to Xy in § pass through }k’ then }k
disconnects zi from fj unless fi is a source (implicitly--not shown by a path
within X) of the first variable in some total path to X within X that does pot
pass through X . Corollary 1. Tuple Xk disconnects variable xi from variable xj
whenever fj is interior to any tuple that also includes all of <x ’Xk> and within

as well as every one to -

which every total path- to X3 x “from X3 passes through X . Cor 11ar 2, If x

is interior to } and f; includes all variables in xj's proximal source within §,

X% disconnects each variable in X-not-X*,x.> from x
Al A A§’1]

13’

Proof. Assume the’ conditions stipulated and hypcthesize that within some g
tuple Z including all of <x1,xk,x3>, some path Zij from xi f“/xj does not pass through

X . This Z is then a subtuple of <Z,X> and this Z,; is the terminal segment of a
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total path to X5 in Z that, by Theorem 2 Corollary, differs from a total path %' to‘}j
4 A
in <Z,X> at most by inclusion in“Z' of f—variables not in % and hence in particular
174 - A

not in } . Hence this total path Z' to xj in <?,§> can be segmented as %' = <Za,Z? >
A 1

ij
wherein terminal segment %;j is a path from Xy to x in <%,}> that does not pass

- _ X
through }k‘ Now if‘?o qeof %—not X comprises just the variables that % adds to )

e *
in <%,§>, some terminal segment %" of %'-not—%b = ‘?a‘“°t1?0’%1j'n°t’§o’ is by Theorem 2

3 = <Z,X>-not~ " * —not-
a total path to Xy in } ( Z,X>-not, ?O)' % cannot include all of %ij not-Z,, else

*
?ij not—?o would be a path from X to fj in X not passing through }k’ contrary to

stipulation. So §“ is a terminal segment of Z;j-not-zo that is a total path to fj

within X which does not include xi but begins with some variable {{ in E(%) of which

fi is a source (since some initial segment of is a path from x

#
Zij 11
So conversely, if X3 is not a source of the first variable in any total path to X5

within X not passing through Xys there is no Z including all of <x,,X »X:> within
) 1 M A127Kk2% 3

! in <«Z,X0),
to x{ in <Z,X )

which there is some path from Xy to X3 not passing through %k——i.e., by definition
Xy disconnects x; from x;. Corollary 1 is immediate; and so is Corollary 2, since
A i Ad

in the latter case every path to X; in X passes through };. |

Theorem 3 is not a biconditional with the premises given, because even when fi
is a source of some }i in E(X) from which there is a path to fj in § not passing through

k’ the xi—axi connection too may be wholly medig{e% 2y1Xk. But it becomes a bicondition
ota
if its condition on X is strengthened to say that paths to xj within X pass through Xk.

Mediated regularity: Path principles.

We have assumed without argument that x5 is a source of x5 whenever there is

a path from x4 to xj in some tuple X. But proof is immediate from Theorem 2: If

0 comprises just the variables between x, and xj in some path from x to fj in I

then’:‘ri is a direet source of xj within X-not-X 3 whereas to the contrary, if there

is no path from xi to xj in X xi is not a direct source of xj within any subtuple

of } So for any fi and fj in }, fi 1s included in a strictly complete source of

}J in f’just in case there is a path from‘}i to/:ltJ in }. (Corollary: x, is a source

11
of.’z\rj just in case there is a path from}1 tc"Jtr.1 in some tuple X.) We now want to
1

generalize this point to cbver‘complete sources of x

Ad°




-2.16-

Definitiop 2.9. Let X; be a subtuplo of X, and Xy 8 variable 1n‘I(X)-not—Xi.
Then the buffer ip X (or X- buffer) from Xi to xj is the subtuple Bij of § comprising
just the variables { ¢ for which some path to X, in X passes through }i while
some path continuing from Xy to { in § does not pass through }i'

That is, Bij consists of all variables that mediate to Xy from the ‘variab1é~—~——
closest to fJ on some path through X to x in X, combined over all such paths.

Evidently, all variables in B are interior to X Hence x. is interior to X-not-B,,;
ij 23 P a1
Corollary,

and by Theorem 2 ~ - each total path X" to x, in X—not—B1 is X -not-B, , for some
- 4 1 44 J 11§
total path X' to xj in }. This }" passes through }i iff }' does and moreover, by

construction of Bij’ if }" passes through X the direct source of Xy within }-not—?iJ

is the variable in }i closest to fj in X Consequently, if all total paths to fj

in % pass through %i’ the variable immediately prior to fj on each total path to fj

in X-not-B,, is in X;--which is to say that all direct sources of x within X-not-B
A A1) 21 ~J 2 21]

*
are in X, or, equivalently, that the (non-null) proximal source }J of:tj in };not-ﬁij

is a subtuple of‘}i and hence that }i is an inclusively complete source of x5 that is

moreover a strictly complete source of fj Just in case all fi-variables are in X%,

13
On the other hand, if some total path X“ to xJ in }Anot-?ij does not pass through fj’
X“ is a subtuple of some total path X' to xj in X that does not pass through X (ef.

if any
,\Theorem 2 Corollary) And Atotal path X' to X in X does not pass through Xi, then

for every subtuple X—not-Xo of X to which Xy is interior, some variable in X' and
- hence not in %i is a direct source of X, in }Anot-¥o--which is to say that in this
case no subtuple of §1 is a proximal source of Xy in any subtuple of § and hence

that §i is not an inclusive source of fﬂ' To summarize,

- Theorem 4. Tétf “be -any $Mﬁmﬂe of X, -%i'mW’”“ -
variable in I(X) but not in }i, and Bij the X-buffer fro?mfiyto xj wfi
is an inolusively complete source of x (a) Just in case "all’ total paehs to x:j

4

4n X pass ‘through Xi, and also (b) 1ust in case Xi includes all variables that
are direct sources of X within X--not-Bij Corollary 1 (from (a)). Q(%) is an
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inclusively complete source of all variables in I(X). Corollary 2 (from (b)).

Under the conditions stipulated, 4Xi is a strictly complete source of x Just in

3

case 4Xi is the proximal source of 411"1 in ,},("n°t"Pij'

Th.-4 explains how, given just the proximalities in a tuple %( whose interior
includes X4» We can proceed to identify whether any given subtuple }:fiié an inclusively.
or strictly complete source of f.‘]’ namely, by eliminating ABij from %( and observing
what proximalities emerge in }-—not-?i j* This verges upon characterizing how causal
regularities that are proximal in ¥—not—4Bij derive from ones that are proximal in
%(--except that our postulates so far (CmP-1,2) parse only the qualitative micro-
structure of causal mediation without telling how the specific transducers of
mediated regularities are determined by the ones from which they derive. To prepare
for that story, it helps to re-describe the conversion of proximalities in 3( to
proximalities in }-not—AB“ » or more generally in X-not-X, for -any subtuple Xg of r_]_f_("X)‘,f
as a series of intermediate derivations.

Let 2(0 =< f{""’f;’ be any non-null tuple of variables interior to },(, and
vrite 4X1 =10t 3(, “qu-l =ief }k-not—zcﬁ for k = 1,...,m. Then }1,...,}m+1 is a nested
sequence of subtuples of ?1( wherein i( is reduced to ,)‘(-not—z(o = }kﬂ by single-variable
deletions and where each variable .fj in ;(/)‘(-not-}h,) (b =1,...,m) has a proximal
source /).(sk in each }k for which k<h. Specifically, 3(3(1( 1) é<}3k-not:x§,};k> if
fk is a direct source of fj in }k; otherwise, 3(3(]( +1) = };k. Different choices
of order in 2(0 give different sequences of intermediate proximal sources %E;ki; and
in particular, if the inversion <f;’f;-1"’ . ,:ri) of 3(0 is causally well-ordered,
each zrg in 3(0 has the same proximal source in each intermediate stage }k (k<h) prior

to x°'

X 8 elimination as it has in the original X,

What this stepwise reduction of 3!( to f—no‘h-}o shows is simply that when the
stage fk is reached for deletion of 'Jirﬁ, the proximal source in }k of each /J‘rj becomes
3‘:3'8 proximal source in }kﬂ upon replacing any non-null occurrence of fk therein
by :tk's own proximal source in }k' This is just an application of the composition

principle that if y = "(42' a') and f' = ¢(§) are both causal regularities, then there
A
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is also a causal regularity y = G(Z X) under which, through the mediation of z'
details of

X conjoins ? to determine y. Articulatingkthag principleals,eurangzt itemfcf‘business.

A A S i

-Meanwhile, in anticipation of CmP-4, below, we can give point to our observations on
the sequence of intermediate proximal sources when X is reduced stepwise to X—not-xo

by letting deletion tuple Xo = <x1,...,xh> be Bij in Theorem 4, andfconclading
A _ " Sy 9nd. cOoN(

Doran 5 It gy TAUy) Ao stelet cemd reps -
larity within } under which subtuple }i of } is a strictly complete source of

Xy X4 = #(§i) is derivable by iterated composition of mediating causal regularities
that are either proximal within } or are themselves derived by composition from
ones that are proximal within X. If wanted, the derivation can be a linear
sequence (..., Xj ﬁk(xk), xy = ¢k+1(xk+1),...> in which at each step some
variable in }k that mediates between }1 and fj is replaced by its proximal source
in the original tuple‘}.‘ (Note. Through suitable provisions for augmenting
proximal regularities by additional sources of the output that have null weight
conjoint with the proximal sources at issue, this composition principle can also
be extended to recover all inclusive causal regularities within § from the ones

that are proximal within X,)
I,

Medisted regularity: Causal transducers.

What 1s it to compose one regularity into another? This is virtually the
same as composing one function into another except for need to identify not only the
resultant regularity's extensional generality but also its transducer (see P. 1.21).
For single-argument regularities, the matter is entirely straightforward: The compo-
sition of 3 = ¢(3‘t) into y = K(%) is just regularity y= pM('J‘t) with transducer gy .
But more generally, when % is a tuple of variables that includes f!;'aay % = <?a{f"%b>
vwhere either or both of ?a and %b can be null, the composition of regularity
3! = %(X) into regularity y= ﬁ(Z) is the regularity y = B(Za,X,Zb) whose transducer

8 is defined over all possible values of W =jef Aa,x Zb> as follows: Let‘}a, i!’

and i, be subtuples of index sequence <1,2y.0491,...> such that any index i is in
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1a (in iy, in 1) 4ff the ith variable in W is in Z, (in X, 1in %,); and for each

value W of }‘J and index subtuple i, let 3'.!1 be the subtuple of W selected by indices
i (i.e., the ith element of W is in &H iff i is in ‘i'.,). Then for each value W of W,
e(W) e “(}aﬂ’ﬂ}x‘—”’}bm’ To illustrate, suppose that "(%a’f",%b) = ¥2, + wo2'

+ ¥32, and ¢(X) = Y33, + ¥,X. Then gl = <?a’3(’42 >y 1, =<1, .{'x = <1,2>, ‘:h) =43,

b’ 8
and for any value W = <ga,_1_r,gb> of KJ, E{aH = <_z_a>, qix! = <_§a,z>, }b‘—' =4z >3 80

0(2,,%,2) = wyz, + u,(v12, + v%) = Wz, = () + vz, + (wv)x + ¥3%, . This
rather tortuous definition of © is required by cases wherein }‘( has variables in
common with <4Za, %b>, since values of <4Za’?1(’ ,%b> are then not just concatenations of
values respectively on Z,, X, and Zp. Evidently 9(,?&,3(,%) = )‘(%a,k/(}‘(),‘Zb) when ©
is so-defined, while the notation ",l(/lza,;l(}),}b)" contains within it a full identi-
fication of © in terms of g and Y. So once the technicalities of transducer composition
are clear, we can say simply that the composition of regulerity /zl' = 54(}) into
regularity z = ‘(?"f",?b) is regularity y= d(%.,)‘(}),}b).

More generally, whenever wé use an expression of form gg_mp(ﬁl,...,,ﬁm,}l,...,;ﬁ)

that defines a composite function on the domain P

of variables <§1,...,}n> by simple
or recursive compositional combinations of functions ‘1""’¢m’§1""’}n’ our notation
Comg(#l,...,6m,§1,...,§n) also uniquely identifies a function © from the logical range
of % = <§1,...,§n), i.e. from the set of all possible }-values, onto the range of
C°m9(51""'¢m’§1”"’fn) such that the value of © for any argument X is the one
into which function C°!2(d1""’dm’§1"'"§n) would map any member of P whose value
of § were to be X. So we can re-conceive Coﬂn(‘l""'dh’fl’""§n) to refer not to
the function on P that this notation most properly denotes but to the associated
transducer ©. Our original composite function on P then becomes the compesition of
X into the re-defined Cgmp(ﬁl,...,ﬁh,}l,...,§n), i.e. into ©; and when ve speak of
regularity y= Comg(#l,...,ﬁm,¥l,...,§n), we refer to the 2-tuple comprising first
the extensional fact that y= Q§ and secondly the transducer 6,

This explication of regularity compositions also applies to the composition

of multiple-output regularity 2' = (zf)—-i.e. ‘fi’ consZp> = <¢1(§), cee ,¢m()4()> where
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' = <z',...,?’;>—-into regularity y = 15(42) when all %'-variables are in Z. But
A

a1

when the %'-variables are scattered and reordered in %, notation for the general
case becomes messy.' So for notational simplicity we shall permute as necessary to
keep the composition's mediating variables in a compact block, Specifically, if
y= ﬁ(%) and 7' = ¢(§) with 2' essentlally identical with a subtuple of Z, 2=
e(?—not-?',%') for some permutation operator €. Then y= ﬁ(%) is logically
equivalent to y= ﬁf(%—not-?',%'); and we can stipulate that the composition of

%' = ¢(§) into y= ﬂ(?) isy= ﬁP(%—not-?',%(})), the transducer of which is defined
by the logic already described, Whenever possible, we shall arrange for @ to be
the Identity permutation,

Having raised the prospect of permuting argument tuples in multiple-input

regularities, we had best put on record

Causal-mediation Postulate 3 [CmP-3]. If % is a strictly or more generally
inclusively complete source of Z'under strict or inclusive causal regularity
y= ﬂ(}), and tuple X is essentially identical with Z, i.e. Z = €(§) for some
permutation operator ¢, then } is respectively a strictly or inclusively

complete source of y under causal regularity y =4 F(Zf);

CmP-3 is not really a substantive postulate, for if % = @(3‘(), "ﬂy = ﬁ(%)" and "y = pf(’(?‘I)"
A
are essentially just different notations for the same regularity assertion.

Our long-deferred principle of causal composition can now be made explicit

as follows:

: Céusalémediatfon.PosﬁglatéfA”EQQE-A]. Let x '(X*) and X = #*(X*) be

13
proximal regularities within X with Xo one of the variables in Xj’ say X* =

13
<§aj’ XSJ> where either or both of X* and ij can be null. Then the compo-
sition, y = ‘;(4aj’ 6({6) X; ) of Xy = ﬁ*(X*) into Xy = #* X*) is a strict
causal regularity under which < 3, 0, j> is the proximal source of Xo in any
permutation e(}-not-?b) of }-notﬁ¥o of which <X*J,X6,ij> is a subtuple.

Corollary. Let Xy and X0 be interior to }' <Xa,xO,Xb> with X0 disjoint from
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and either %a or %b possibly

<X §b> K~nu11. If X3 = Aj(f) and Xo = ﬂéao(f) are the inclusive causal

18’

regularities under which } is an inclusively complete source of fj and fb’

respectively, and in which 00 is the subtuple-selector function such that
then

- - = <X X5 (= X- - f
} not-x, OO(§)?£ }a%§b>m(,»§ not fb) is an inclusively complete source o

x; under inclusive causal regularity x; = ‘j(}a’#6(§a’§b)’}ﬁ)’

The "corollary" here is a routine consequence derived by reducing fj = ﬁj(§) and
Xy = ﬁgoo(f) to the strictly causal regularities they embed, composing these by
CmP-4, and then re-inserting the remaining.variables in }-not-*o with null weights.
If }0 is not a direct source of fj in }, the corollary holds trivially.

CmP-4 seems intuitively obvious, and to avoid lengthening what has already
become an unpleasantly turgid story, we shall not here develop the intrinsic argument
for it that would be appropriate in a deeper study of causality. We should, however,
make clear how CmP-4 differs from simpler but faulty formulations that also seem
intuitively to identify mediated causal regularities. And we also need to show that
CmP-4 covers all, cases wherein identifying which mediated regularities are causal is
a problem,

Consider, therefore, the general case of compcéable strict causal regularities -
y= #(}’fé) (/?d not in '.'1?.) and zg =S¢(§). Evidently y and z; are both interior to
y =Hef'<?’?’f0'§>’ so ? and fd both have proximal sources in H. And since ?O is
interior to y; Z'also has a proximal source in kLnot-fé which is then also a strictly
complete source of‘? in %Ln°t"{’fd> = <§,§). Accordingly, CmP-4 applies to this
general case; and indeed, if <},?d> and } are the respective proximal sources of g
and 26 within H, CmP-4 says that <?,§> is a strictly complete source oflf'under
(mediated) causal regularity y = ﬁ(%,%(})). However, the complexities of multivariate
causal structure allow that <§,3@> may not be the proximal source of {, nor % of.fd,
in the combined tuple H =“<¥,?,fé,§>'even when <%,§07 is a strictly complete source
of‘¥ and X of fd; And if that is so, while y= 6(?,%(})) is still a binding of Z
by <%,}>, it does not qualify as a causal regularity under CmP-4--not because CmP-4

is indecisive in this case, but because CmP-4 implies either that the strict causal
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Figure 1. Figure 2,

regularity mapping <;,}> into Z’has a transéucér,different from the one in binding
y = #(g,}), or, possibly, that only a proper subtuple of <§,§> is a strictly complete
source of y.

CpP-4 is a carefully restricted special case of a much simpler thesis that

on first impression might seem to be all that we need, namely, ~-

Fallacious Thesis 1 [FI-1]. let y = d(?,fo) and gz, = ¢(§) be strict causal
A
regularities with 25 not in %. Then f?,¥> is an inclusively (in fact, presumably

strictly) complete source of y under causal regularity y = d(Z,%(})).
A 1

FT-1 is so intuitively plausible that I, for one, had long presumed it without suspicion
that 1t might be at all problematic. Yet FI-1 in full generality is incompatible

with CmP-1,2,3, as demonstrated by the path structure hypothesized for tuple y =
42’51’30’51’72’ in Fig. 1. Suppose that the proximal regularities in W for the

variables <y,zl,zo> comprising W's interior are
PR 4

= %, +
(2.1) y Y3y * X3 0
(2.2) 3 T BN
(2.3) 2, = B3 + Y%y

with all coefficients nonzero. Then under CmP-4, the other strict causal regularities

in W are
(2.4) y = z + Yoy )z + (v 2)1 (proximal in W;not- O) ,
. = +v -not-
(2.5) y (21_1)x1 YoZo (proximal in y not fl) ,
(2.6) 2z, = (glgl)fl + ¥,%, (proximal in H—not-fl) ,
(2.7) ;*tr = (!1 +y_221)!131(1 + (!0!2)2(2 (proximal in y—nl)t-(fl,fo)) .
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Because the effect of x. upon y is mediated entirely by z, in Fig. 1, <sz,,x,,x.> is
11 A 41 414142

not a strictly complete source of y. But <?1’f2> is; so by inserting x with null
X A A 4

veight into (2.4), we see that

(2.8) y = (y ¢+ _031)21 +0ex + (you )x

is the causal regularity under which {?1,{1,¥2> is an inclusively complete source

of y. On the other hand, it also follows by composition of (2.6) into (2.1) that
A

(2.9) z' = Y%y + (\_rou1 1)x + (v wz)x .

Regularities (2.9) and (2.8) are just two of many different bindings of y by <zl,x1,x2
that result from the linear dependency in €31,X1,Xp>.  But (2.9) and (2.8) have
different transducers; and since (2.8) is inclusively causal by construction, (2.9)
cannot be. Yet under FT-1, (2,9) would qualify as causal because the regularities
(2.1) and (2.6) that compose it are strictly causal. This example not merely illus-
trates the generic untenability of FT-1's claim about causal transducers, but also
shows why, when %?’f0> and § are strictly ebmp%eﬁefsourcggwnf ?'and,?g, respectively,
the entirety of <§,}> may not be a strictly complete source of‘y.

FI-1 fails in Fig, 1 because (11,72> is not the proximal source of fO therein.
That suggests trying to emend FI-1 as

Fallacious Thesis 2 [FT-2]. Let y= A(Z,zo) and 2 = ¢(X) be strict causal
regularities with fo not in %, Then if X is the proximal source of z' in <y,Z zO,X>
<},§> is a strictly complete source of y under causal regularity y = ﬂ(?,%(})).

4 1
But that FT-2, also, is insufficiently constrained is shown by the path structure
t =¢ > !
posited within g Y’fl’fo’% by Fig., 2. 1In y ’ <f1’f0> is a strictly complete
source of y (albeit not the proximal source of y in y‘) and x 1s the proximal source
A A 1
of fO in W'; so FT-2 would conclude from composing the determination of 20 by x into
the determination of y by <zl,zo> that <zl,x> is a strictly complete source of y.

However, intuition and CmP-/ agree to the contrary that <z1,x> is not a strictly
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complete source of y, insomuch as 2 affects y in Fig. 2 only through the mediation
A A

1l
of x. Even if Fig. 2 were to include a direct-source arrow from‘?1 to Zy so that
<?1,¥> is ipdeed a étrictly complete source ofly, or if FT-2 were weakened to claim
only inclusively-complete-causality status for its derived regularity, it is easy to
show for linear structural equations that composing 3, = ¢(f1’f) into’z = 5(;1,30)
assigns the wrong weights (i.e. not the causal ones) to ?1 vs. f in their joint
determination of‘? in this case.

Together, Figs. 1 and 2 illustrate why the full proximality constraints in
CwP-4 are needed if composition of one causal regularity into another is to yleld a
regularity that is also causal,

Demarking which causal compositions are themselves causal becomes even more
intricate when, given strict causal regularities y = d(%,?‘) and fi = ¢1(§1),:..,,
2! = ¢ (X ) with 2! disjoint from 7 and 2' =<z ,...,2;> ve wish to find the inclusive,

Am 4
perhaps strict, causal regularity under which !'15 determined by <?,} ,...,}m>.

1
CmP-4 does apply to this problem, and what it says to do is this: First, establish
the direct-sourc; structure in tuple y ='<;,?,?',§1,...,}h> and identify the proximal
regularities therein. The latter may or may not include y = 5(?,%') and ff{ = %;(}i)f;
1f not, the initially given regularities do not suffice to identify the mediated
causal regularity we seek. But however we obtain ihe needed proximals, we then
reduce ¥ to y-not-§' by a sequence Ek+1 =gef yk-not—f; (yl Z3ef y; k=1,...,m) in
which f;”"’f; is an arbitrary ordering of mediating variables %'. Every causal
regularity that is proximal in Wiy 1s either also proximal in W (cf. CmP-23) or
is identified by CmP-4 from ones that are proximal in yk; hence the so-identified
proximal regularities in yk = y-not-%' include one whose output is }’and whose input

1
is causally well-ordered, i.e. if no }; is a source of any f" (1>1) later in the

h|
compesition sequence, every proximal regularity in each yk (k=1,...,m) is alse

is yunot-ﬁ' or a proper subtuple thereof. In fact, if the inversion of Lz",...,$;>
2

proximal in E. Even then it is complicated to write a formula for the derived

causal regularity y = 9(%’}1""’fm) if some of mediating variables Z' are direct
4
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sources of others within y so that some Z'-variables are also in “Xy50.+,%;>. But
P 1
ifly = 5(?,}') and ?i = ¢£(§1) i=1,...,m }' = <3i,...,55>) are all proximal in
y, and %‘ is disjoint not only from % but also from <}1,...,}h>, it is easy to see
from CmP-4 by induction on m that y = #(z,yi(xl),...,yg(xm)) is then a strict causal
4 A 4 4
regularity that is proximal in some permutation of y-not-§'.

Unhappily, CmP-4's proximality demands are difficult to cope with miero- -~
structurally. But CmP-4 does assure us that gome compositions of causal regularities
preserve causality, and accordingly urges us seek conditions under which this occurs
in well-behaved fashion. In general, that search proves feasible only in macrostructural
terms and will be pursued later. But one strongly special case is helpful at this
point for(appraising the practical difference between CmP-4 and FT-1. Suppose that

z' not in
y = d(Z,z'f‘and z' = ¢(X) are both strictly causal. Then the interior of W =3ef
A ) 7 A 1 Qe
<y,Z,3",X>includes y and 2', so E(W) = E(Z,X). Now, y = g(2,2') or z*' = ¢(X) fails
4 4 11 A 1 A 14 a 11 1 1
to be proximal in y only if some x in X-not—<?}g'> is in the y-buffer from <Z,z'% to
P q 11
y or some z in %—not-} is in the y;buffer from } to ?'. That requires X or z to be
A A

in ;(y) and hence cannot occur if variables <Z,§> are all in E(Y), i.e. if ;(Z,g)
1 A
is null. So

Theorem 6, If y = 5(?,3') and z' = ¢(¥) are strict causal regularities,
1
their composition y = [(E,%(?)) is also strictly causal if 4%,§> has null
A

interior.

As compositional principles go, Theorem 6 is pretty slim pickings . (albeit
1t has a multiple-mediator generalization--Theorem 22, below--that is rather more
impressive). Wevertheless, it prompts the suggestion that so long as we avoid
input arrays containing errorless interdependencies, the difference between §92-4

and FT-1 has little practical significance,
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Does FT—l' 8 defect really matter?

It does indeed. Or at least it should, if our models of multivariate
causality have significant application to the real world. Let us accept that we do
at times either speculate or estimate empirically that a variable y is determined
by variables <Z, z" under some specified causal regularity y= J(g,ﬁ'), and that
by separate hypothesis or experiment we also surmise that 2! ==¢K¥) is a causal
regularity under which input-component g' in y= [(%,%') is determined by sources
of its own. If we have any interest in how Y is affected by %, say because we
wish to control ; and can directly manipulate } but not %', we will almost

surely conclude in practice that the force of } for y conjoint with % is
A
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given by the transducer of 7= d(%,%(%)). We have seen that this inference is not
in principle always correct; but how likely it is to err is another question.

Suspicion that we have 1little to fear on this score may well be evoked by
Theorem 6's suggestin:;Ee problem does not arise so long as we aré working
with inputs- among - which there are no errorless dependencies--for prima facie
that seems inevitable in practice. Indeed, considering how importantly our theorems
in this chapter presuppose not just probabilistic lawfulness but a structure of
complete causal determinations, one might well wonder if the difference between
CmP-4 and FT-1 demarks anything more than the preciosity of an absurdly nonrobust
ldealization. The present subsection will try to make clear through a simple
example that this suspicion is unfounded: So long as we can treat causal-dependency
residuals in traditional fashion ss though they are supplementary sources, violation
of Ip,-6's exteriority precondition can easily arise in ways more subtle than our
usual thinking about these matters is apt to discern.

First, though, let us make the force of what CmP-4 adds to FT-1 more insightful,
One point about égg—L not yet emphasized adequately is that in order for the compo-
sition of strict causal regularities y= 5(?,§') and %[ =s&(§) to be causal, not
only does it suffice under CmP-4 that y = ﬁ(%,f') and i' = %(}) be proximal in y =
4;,%,?',§>, but this is also virtually necessary. For given that <?,§'> and } are
complete sources of‘? and 2', respectively, it follows from CmP-1,2,3 that there
are gome subtuples W) and W of‘y, and transducers g' and ¥', such that y = ﬁ'(y ,z')
and 2' =5¢'(E§) are proximal in %; and only for extraordinarily special parameters
in these transducers can resultant causal regularity-g = ﬂ'(y1,¢ﬁ(¥é)) be consistent
vith y= é(?,%(%()_)';ﬁni_sega W = Z, W, = ,)‘{, g' = g, and ¥' =y, As for CmP-4's

that
proximality requirements, observe from Th.-3 Corollary 2 A‘ ‘?,fﬁ»discounects each

variable in }-not»% from y whenever y
1 A

7= ﬁ(az.,?') fails to be proximal in W = (y,%,f',’IX} only if some variable in AX-not—4Z
A

is a direct source of y in y and is hence not disconnected from y by <Z,§'> .
4 A A :

5(?,3') is proximal in W, while conversely,

(cf. HDéfiniingri2;8); 7. Similarly, f' ='¢(§) is proximal in W just in case
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} disconnects each variable in %—not1¥ from ?'. So CmP-4 can be stated more intui-

tively, without requiring explicit consideration of proximalities, as

Theorem 72;; If y ﬁ(Z z') “and. z‘ ¢(X) -aré  strict . o =
causal regularities, their composition y= #(Z,%(X)) is also a strict causal
regularity if and, virtually, only if ‘%’ft) disconnects y from each §-variable

A

not in % while f disconnects ﬁ' from each }-variable not in }.

This rewording of the causal-composition principle does not urge the conclusion
that violations of its total-mediation precondition are prevalent, but neither does
it warrant confidence that violations are rare. As illustrated by Figs.1l & 2, this
all depends on how intricately the variables at issue are causally interwoven.
Unless, that is, there is something artifactual about these examples due to their
suppression of error terms.

To probe that possibility, envision a structure of causal connections iso-
morphic to Fig. ? except for being probabilistic rather than strictly deterministic.
Common practice in multivariate causal modeling expresses this by conjecturing the

existence of linear structural equations

(2.10) Ay = X + Yo% + ey s
(2.12) x = !2?1 Oy s

in which fy’ fo’ and ey are residuals whose nature we leave unspecified except for
attributing to them whatever orthogonalities or other distributional properties we
need to make the model parameters identifiable. And the conventional digraph repre-
sentation of structural equations (2.10)-(2,12) is shown in Fig. 3. Presuming that
there is an interpretation of these error terms under which the Fig. 3 system behaves

as though ? ’ &y and e are direct sources respectively of y, Zg» and x in tuple

> =

= (Z’fl’fO’%3fy’eO’e > (the cogency of which presumption we shall examine shortly),
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*x o
"1 A Tea y a
$0> %
Figure 3.

Fig. 3 then also gives the path structure in y as understood in our present sense
of this; and by Th.-7 we know that the composition of strict causal regularity (2.12)

into strict causal regularity (2.10) is also a strict causal regularity, namely,
= + +
(2.13) y (uy4,)29 YoZo t (me, + Sy] .

Similarly, Th.-7 assures us that

(2.14) 7 o= (g +rgw)x+ [ygeq + o]
and
(2.15) 7= (o *rg)upm + Uy tagw) e * 308 * gy

(from (2.11) into (2,10) and (2.12) into (2.14), respectively) are also strict
causal regularities,

If variables Y' = <;,§1,?0,¥> are all empifically observable and residuals
<fy’?o’$x> are all orthogonal to y'--as we henceforth assume--all coefficients of
all data variables in structural equations (2.10)-(2.15) can be identified by
erdinary regression analysis (cf. Chapter 3) separately for each equation. Each
bracketed compound in equations (2.13)-(2.15) initially appears in the regression
solution as a single unanalyzed residual; however, once we have solved for coefficients
<Ql’20’!1’!2> and primary residuals ‘?y’?O’fx’ in light of the full Fig. 3 structure,
we can confirm that the bracketed residuals do decompose as indicated.

On the other hand, the composition of (2.11) into (2.13), namely
(2.16) v o= (e + (ggu)x + [xp90 + e, + e,

does not qualify as causal under Th.-7; instead, we have from the proximality of
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(2.14) in W-not-z_ that
K 10

- = . + r 4 +
(2.17) y = 0m lay trgu)y *lrggo * 0py gy

is the (inclusive) causal regularity whose transducer maps the input variables in
(2.16) into y. Moreover, the coefficients recovered by {'s regression upon“(?l,f>
are the causal weights of these inputs in (2.17) rather than their noncausal ones
in (2.16). Yet if we identify just (2.11) and (2.13) by regression, without heed
for the larger system, how do we judge that their composition fails to yield causal
veights? In particular, why isn't this composition approved under the null-interior
precondition of Theerem 67

Confusion on this point is apt to arise in our treatment of the residuals.
When the 2z -mediated composition (2.16) of7(2.11) into (2.13) is evaluated for causal
status under Th.-6, making clear that (2.16)'s input is the 5-tuple <?1’f’?o’fx’?y>
also makes evident, from (2.12), that this input tuple does not have null interior.
But if, without regard for all of Fig. 3, we were to identify parameters in (2.11)
and (2,13) just %y regressing y upon (?1,? >, and 3, upon X, we obtain not the

0 0
entirety of (2.13) but only

(2.17) vy = (muy)z vy, te,
whose residual R is a composite

.18 = +
(2.18) re - Rix Ty

of primary residuals [ and fy but is not given to us with that decomposition.
Now, the composition of (2.11) into (2.17) is

(2.19) 7 = (mupdz + (xoup)x + x50, +ey

the input tuple <?1’¥’?0’?c> of which does indeed have null interior. So (2.19)
would qualify as causal under Th.-6 if its composing regularities (2.11) and (2.17)
‘Were both to be causal. But whereas (2.11) is causal by stipulation, we have claimed

no general principles under which part of a causal regularity can be treated as a
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single variable while preservihg causal status for the regularity in which it is
embedded. What we see here is that (2.13) and (2.17) are indeed not causally
equivalent,

The matter cannot be left there, however. For if we could never successfully
treat molar abstractions as though they are causal variables in their own right, it
is most unlikely that causal models would ever have useful application to the real
world. Even in the present example we began by presuming that X's partial determi-
nation by x and fo could be cogently modeled by a strict causal regularity (2.10)
in which Xbinfluences conjoint with but distinct from contributions from x and 2q
are summarized by a single residual ey that behaves for present purposes like a
single causal factor. More realistically we should presume only that sy is some
logical composite, ideally linear, of an arbitrarily large ensemble {9yig of y-sources
supplementary to <¥,?O>. But if fy is just shorthand for4§ ﬂieyi’ why is this
substitution safe in (2.10) whereas converting (2.13) into (2.17) by substituting
fc for El?x’*fy'gets us into FT-1 trouble?

The answer in brief is that if ey (and gimilarly for €0 and fx) is replaced
by an r-tuple of supplementary y-sources having the same linkages in the expanded
Fig. 3 structure as sy nov has, we can replace ey throughout equations (2.10)-(2.19)
by‘g Qieyi and have everything as before, including in particular which regularities
count as strictly or extendedly causal, except that we have no evident way to uncover
how many syi-variables are composited in ey or what their respective coefficients

may be numerically. Alternatively, if we start with

(2.20) ,3{ = u'].x.‘”“'OAO E:'i,qyi

as our postulated structural equation for y's determination, and introduce fy as -
A

molar abstraction

(2.21) 2y Tdef 4,.,81 vi

the structure of mediated causality among the real variables is undisturbed by
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treating fy as though it is a separate variable, determined (quasi)-causally by the
y1 under (quasi)-causal regularity (2.20), that totally mediates between y and each
fyi-variable. (Precisely why this molar insertion leaves the real structural relations
undisturbed in this instance is an important matter that we shall not pursue here.)

So long as we are not seeking to identify causal effects on X‘that are mediated by

© By Ve then no more need to include e 's own (quasi)-causal sources in Fig. 3 than

y
we do the sources of fl'
But why not treat e, similarly? There is no objection to that in prineiple;
but the details of this case prevent either of these approaches to the residual in
(2.17) from converting (2.17) into a (quasi)-causal regularity from which a causal
regﬁlérity*can?be derived by composition with (2,11). If [-3 is simply replaced by
an oﬁen tuple §c = (""fyi""> of y-sources supplementary to 4?1’f0>’ we must
consider whether fc may nbtlinclude ox or yn§§gyer‘real*snppieggnta:? X=sources are

composited in g . Even without special knowledge of the full Fig. 3 stru#ﬁure, we
cannot conclude from the lack of linear dependency within ‘fl’f’fc’ that <f1’§’§c
has null interior. Alternatively, if we treat fc as a molar variable additional
to whatever real variables are its quasi-causal sources, it remains to be seen
whether any path model for <y,?c>or some supertuple of (y’fc’ both embeds Fig. 3
and admits (2.17) as (quasi)-causal within <Bﬂfc>'

And in fact none does. There are so many ways»to add fy to Fig. 3 that to
inventory them here is impractical. But what can be seen is that any path structure
envisibned for <E,?c> either (a) is incompatible under Ihk-Z with the Fig. 3 structure
for y (as occurs e.g. if e is put on a path from ex to y that does not pass through
X before reaching 20), or (b) fails to yleld (2.18) even as a binding of e, much less
as a (quasi)-causal iegularity in <W,e.> (e.g. 1if e, is put on a path from ox to‘y
that does pass through X before reaching fc)’ or (¢) achieves (2.17) and (2.18) only
as noncausal bindings under constrained model parameters (e.g. when fy =,fc - ﬁx
is taken to be proximal in <y,$c> with e in <y,?c>'s exterior, or when (2.18) is

madé proximal in 4?,?c> without adding a path from oc to g), In case (c), composing
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(2.11) into (2.17) fails to satisfy the causality precondition of any variant of our
causal-cbmposition principle,

The impert of this example 1s threefold. Foremostly, it illustrates why
explicit acknowledgement of causal residuals does not undermine the account of causal
structure here developed in terms of errorless regularities. In particular, it
explains why interiority is more likely to jeopardize causal interpretation of
bindings derived by composition from other prima facie causal regularities than is
evident from just the joint distribution of data variables and regression residuals.
But beyond that, the example urges appreciation of how tricky it can be to interpret
residuals causally, and further demonstrates that we cannot arbitrarily treat molar
composites as though they are causal factors in their own right without disrupting
the causal story we are trying to put together. In later chapters here we shall
have more to say about the practicalities of analyzing residuals, But how best to
treat molar abstractions as conceptually distinct factors interwoven with real
variables in a coherent quasi-causal generalization of molecular causality is a

4

foundational theory whose pervasive neglect we cannot aspire to redress on this

occasion.

Mull weights vs. zerp weights.

When introducing the concept of proximality, we distinguished between strict
causal regularities and inclusive ones that are not strict in terms of the latter
containing input variables that are given "null" weight by the regularity's trans-
ducer., Specifically, y = ﬁ(}) is an inclusive but not strict causal regularity
just in case (a) a proper subtuple }* of § i1s a strictly complete source of‘y under
some causal regularity-z = 5*(%*) and () # = g*o for the subtuple-selector function
o that picks %* out of }. For reasons explained earlier (p.2.15), we can then say
that the variables pot in X's subtuple o(}) have null weight in‘! = 5*0{}). It
would be highly convenient to assert that conversely, whenever y = d(}) is a gtrict

(i.e. nomically irreducible) causal regularity, there is no subtuple-selector o
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for which c(}) omits part of } while g = g*o for some transducer g*. That would be
true if nomically irreducible causal regularities were always functionally irreducible
a8 well (cf. p. 1.9). But unhappily for simplicity, that is not the case--at least
not in prineiple.

Consider again the path structure in Fig. 3 for structural equations (2.10)-
(2.12) and their compositional consequences. Since by stipulation (2.10) and (2.11)
are causal regularities that are not just strict but proximal in Fig. 3, principle
CwP-4 entails that (2.14) too is a strict causal regularity. Now, there is nothing
in this model's open parameters to preclude the numerical value of path coefficient

2
hapoining to equal the negated product of path coefficients y. and w
! Yo
u, does equal -zoglqéeeéZ:;uai (2.14) becomes

(2.22) y = 0Ox+v.e, te (!1=_

1° Yet if

This is not the same as
. s = + H
(2.23) y Yo% * &y 3
for not only do (2.22) and (2.23) have different transducers--one is a function on

y

qualifies as strictly causal under CmP-4 even when f's coefficient turns out to be

the logical range of <f’?0’$ >y the other only on that of‘<eo,?y)--but also (2.22)
1

numerically zero whereas (2.23) is a happenstance binding of y by <?0’?y> that cannot
be counted as causal without disrupting the strict-causality character of (2.22).

It follows that we must distinguish in inclusive causal regularities between oull
weights and numerically zero weights that are not null. A variable fi having null
veight in y= #(%) makes no causal contribution to y except through the mediation

of variables ?—not-gi. But if fi'a weight in y = #(%) is a non-null zero, X, does
have an indevendent effect on z conjoint with }-not-}i even if only one that is
negligible to the highest degree.

In light of possibilities like (2.22), it would be preferable to define the

concept of causal transducer in a way that distinguishes null weights from zero weights
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context permits, however, we shall demote th
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in causal regularities that are functionally reducible. But that opens the broader
question whether the modern set-theoretic construal of functions does sufficient
justice to the ontological character of transducers in natural regularities--an
issue that we can best shun on this occasion. Meanwhile, if the prospect of causal
weights that are zero but not null occasions distress, it will surely do little harm
to posit that as a matter of brute fact, no extended causal regularity'y = ﬁ(%) in
our real world happens to give exactly zero weight to any variable in the subtuple

of % that is a strictly complete source of y. Who can show otherwise?
A

erost

SEwTE L

ructur

In molar mo&éls of causality, we conceive of molar variables {ﬁi} that are
logical abstractions ¥, =Heflxi(§i) (not always recognized as such) from underlying
ensembles 5}13 of molecular variables, and seek to find regularities governing the

%i that are isomorphic or at least homomorphic to causal determinations among the
tuples }i they respectively reflect. A distinguished special case of molar causality
that is both pro;aedeutic for the general theory and of value to multivariaté modeling
in its own right arises when the molar units are themselves tuples of the variables
whose causal microstructure is to be abstracted. Somewhat arbitrarily, we shall
adopt the label "causal macrostructure" for this cése- and define it as the theory
of causal relations among Tuples, where "Tuple" is henceforth shorthand for "tuples

of varisbles”in the special sense stipulated at this Chapter's outset." (Whenever

Basically, the theory of causal macrostructure seeks to identify partial-
order relations among Tuples that usefully capture our intuitive appraisals of one
multivariate complex being causally antecedent to another, and which unfold into
models of multivariate mediation that subsumes- microcausal path . structure
as a limiting case while allowing us to think more generally about causal relationa‘
among groups of varlables in the same formal terms that are effective for simple -

cases of microstructural causality. .. At the core of any such theory must lie

multivariate generalizations of causal-source relations on single vafﬁiables. This
-
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means that ideally, i.e. perhaps with certain qualifications that do not significantly
degrade the microstructural parallel, we want to define binary relations = and —on
Tuples such that: (g) }i%>}'just in case tuple § causally or quasi-causally determines
tuple ¥ in a conceptually natural extension of strictly complete microcausal regularity.
(b) X =Y just in case <X,Z> %>Y'for some possibly-null supplementary tuple Z (so
that X-4>Y'implies X-—*Y though not conversely) and reduces to the causal—source

our macrostructural
relation between single variables when % and X are singleton tuples. And (Q)A—e'is
to have essentially the same partial-order properties over its full domain of Tuples
as 1t does when restricted just to singletons --which entails that =, too, must
be a partial order on Tuples. We also want our multivariate version of the strictly-
complete-source relation to have the qualitative compositional property (d) that if
<Z,Z'> ’>Y and X > Z' then <Z X> =}! (Egughiy speékzgéf zsthe macrocausal counterpart
of Th,-1a (p. 2.10), which is the heart of microcapsal path structure.

' Much of the work for any account of causal macrostructure is ascertaining
vhich relations defined over Tuples in terms of causal connection among their constit-
uents have the p;rtial-order character of causality. So we had best begin by
formalizing the order properties at iasue, especilally since the essential identity
(%) of Tuples differing only b& pprmutation'requires us to use a sense of partial

order slightly more complicated than-tﬁé standard definition of this.

Definition Z.]D. Let R be a binary relation on Tuples. Then R is transitive 1ff XRZ
Qheneyer XEX and YBZ, reZLexivg iff always XRX, irreflexive iff XBK only when
X is null, gxgggﬁg;g iff YRX whenever XRI, anti-symmetric relative to some equi~-
valence relatipn = iff both §B¥ and XE§ only when § = X, and classically anti-
symmetric iff it is anti-symmetric relative just to =. Relation R is a partial
order relative to equivalence relation ¥ iff it is transitive and anti-symmetric
relative to S, a classical partial order iff it is a partial order relative just

to 5, and a gtrict partial order iff it is both transitive and irreflexive.

If R is a strict partial order, i.e. is transitive and irreflexive, then R is
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anti-symmetric relative to every ¥ and is hence also a partial order rélative to
every £, For if ever both §E¥ and ?E% for any such R, it foilows by transitivity
that }B% and }3%, hence } and } are null by irreflexivity and so } 35} for any Z.
(After the model of null sets, we stipulate that there is only one null tuple; hence
X = } whenever § and } are null from the definitional reflexivity of equivalence =
relations.)

Many partial-order relations on Tuples can be defined from causal connections
among their constituents, albeit not all are equally useful. A basic palir is

tuple
Definition 2.11. A 4 } of variables b(roadly) precedes tuple ; iff each

variable in } has a source in }. Tuple } t(ightly) precedes tuple ¥ iff each
variable-in } is a source of some variable in ?. (Note the duality of broad

and tight precedence.)

For singleton Tuples, broad and tight precedence both reduce to the causal-source
relation. Specifically, x is a source of y iff <§>‘b-precedes ¢y> and also iff
. A g

<%> t-precedes <y>. Although } can precede X both broadly and tightly even when
A
some variables in X are sources of variables in }, the broad and tight precedence

relations are nevertheless both strict partial orders.

Proof. If § b-precedes ¥ and }'b—precedes ?, each z in ? has as source some y in
X that in turn has a source in %; 8o by the transitivity of the causal-source
relation, each 2 in ? has a source in }--i.e., b-precédence is transitive. And
if any tuple } were to b-precede itself, we could construct an arbitrarily long
sequence of variables in }, each of which is a source of all variables that
follow it in the sequence. Since } is finite, some variable would eventually
have to recur in this sequence, violating the causal-source relation's irrefléx-

ivity. So b-precedence must also be irreflexive. The transitivity and irreflex-

ivity of t-precedence follows similarly (by duality).

When % broadly precedes X, each variable in X is causally influenced by
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some part of §. If those influences are all complete determinations, we have the
paradigm of errorless multiple-output causality. However, to catch the multivariate
causal ordering thaﬁ results from replacing just part of a tuple of variables by
sources of that part, we want a sense of quasi-causal determination under which, if
§ determines }, then <§,%> determines <¥,§> for any additional tuple % regardless of
how % may or may not be related to % and X. Much of our need in that respect is
nicely served by

tuple
Definition 2.12. A ’(2‘( of variables g(tructurally) determines tuple ¥-—sym—

bolized X 5}Y—-iff, for each variable A in Y-not-X, some subtuple X1 of Xis a
A A A A A 1 A
strictly complete source of Yi- (This is true vacuously if %—not-}\( is null, i.e.
4

if all X—variables are in 2\(.) Tuples 2‘( and X are g(tructurally) interderivable

(}1( é}?) iff }\( s-determines 4Y and X s~determines 3(

It will be evident that if §é>¥, then (a) X, 2 3 4,2> for any Z, (b) gcé);' for
any subtuple X' of X, and (g) %’-’?X'*‘if’}' = }1(. For an example of s-interderivability,
suppose that X i; a strictly complete source of zr which in turn is a strictly complete
source of z. Then 3( is also a strictly complete source of Z, SO ?,qp ¢)<3(,35> even

though there is an intuitive causal-order asymmetry between these two 2-tuples.

It is useful to observe that

Theorem 8. -- Tuple X s-determines tuple 4Y just in case E(?‘() = §(§,¥) (equi-
valently, just in case E_(}\() = E(%,%)). Cerollary. If E_(g‘() = _E_(,}‘(,Y), then (a)
4

s é ]
E(X,2) gg,;,%) for any tuple Z, and (b) E(X) E(’f’}") for any subtuple Y' of r.

~ Proof. We are to show that %(—'—)"Y if and only if ¢X,Y> and X have the same
= = 2
exterior. Let % =jef (?\(,%) while 420 =3ef ¥ not-}‘(. If }4( >4Y, each %—variable has a
strictly complete source in 2\( and hence in %, so all %0-variab1es are interior to E.
T - - = ] = - =X,
hen by Th.-la Corollary, E(%—-not 4ZO) E_(%), or E_(;‘() E_(?\(,AY) since %—not Z 3(
Conversely, in order to have E(}‘(,AY) = EQ\()? i.e. _E,("Z) = E(%—not-%o), all %O-variablee

must be in _]_I_(%) (since otherwise some zg in E_(AZ) would not be in Z-not-Z, and hence
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not in E(%—not-dzo)), whence by Th,-4 Corollary 1, each variable in Zys 1.e. 4Y-not-3(,
has a strictly complete source in Z-not-’.ZO, i.e. };—?gc that ,)‘( s-determines 4Y The
corollary follows from observations (z_a_,l_)) immediately following *Qg;“.ﬁz.l.?‘;‘ -

Now supvose that xé>Y and Y é) Z. Then g(g()
while from the latter E(Y X) = E(Y,ﬂZ, ); so E(g() = _F_:(R(,;I',%) or %(5> 4Y »2> and hence
71

} -QAZ. This proves

Theorem 9, - If 1( s-determines X and Z? s-determines Z, then ?‘( s-determines Z.
R 4 4

That is, s-determination is transitive. Beyond that, however, it is a partial order
only relative to s~interderivability. Although that is no problem for many purposes,
causal-order distinctions within ¢»-equivalence classes also need recognition. We
have already noted one example of s-interderivable Tuples that are causally asym-
metrie. Another instance: If X is a strictly complete source of each variable in Z
while X and Z together are a strictly complete source of y, to acknowledge macro-
structurally that Q‘( §> mediates between 3( and y ve must identify the sense in which
%( is causally prior to <}‘(,%> even though §<="-»><3(,§?.,
The microstructural nature of s-interderivability is plain enough from

Theorem 8: - If §é'>g and Y £X, then g(;\t) = zs_(gt,AY) = _E_(;‘t,gc) = z(p. That is,
any <3 -equivalence class consists of Tuples whose exteriors are essentially identical
to one another., So if X<-'—->Y, any finer-grained Qrd;eringlofi}(“and_ Y_glgmst reflect
some causal asymmetry between I(X) and I(Y). One possibility might be to say that

but not Y > X but not conversely t not
X is prior to Y if X =}Y‘ or if I(X) —>I(Y)‘when X@Y or 1f I(I( X)) = I(I(Y) /conversel;
when X(=>Y and 1(X) (-)_];(Y) » etc. That handles our first example of s-interderivability
(i.e., between <x,y> and <.x,z; when x is a strictly complete source of y and y one of

L 1
,z‘). But it fails to make x prior to <x,y> in our second test case. where f iﬂ a

strictly complete source of y.
A

The basic reason why s-determination misses the intuitive asymmetry between

(some) ¢ -equivalent Tuples as in our two examples is that it is in effect an
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expanded version of broad precedence, i.e, it allows the antecedent of } %}}'to
contain variables that are irrelevant to its consequent. But whereas sll variables
in } are logically or causally relevant to §§3}> when } is a strictly complete source
of (all of) X, the X-part of <§i¥> is not correspondingly relevant to %. More
generally, if } is a complete source of both X and %, so that 4§5¥7 and <§,?7 are
both s-interderivable, <§,}> is intuitively prior to <§,%> if all of‘¥ is relevant

to % with all of Y mediating between £ and %, but not if X and % are independent
effects of %. To formalize this intuition, we need a relaxation of the tight-
precedence relation that leaves unconstrained the variables its relata are allowed

to have in common. Specifically, let us say

Definition-2.13. ~ -A tuple X'is £(ightly) prior to fuple ¥ iff B
there is a possibly-null tuple ? containing just variables common to } and ;
such that %—not-% tightly precedes 3'n°t7%' (By duality, § is b(roadly) prior
to X iff, for a tuple % of variables common to } and }; §-not-} broadly precedes

}-not-%. However, we shall have no interest in b-priority.). - .
This definition is equivalent to what is prima facie a much stronger condition, namely,

Theorem 10, - Tuple % is t-prior to tuple X Just in case‘§-not7¥ t-precedes

Y-not-X.
A 1

Proof. That the right-~hand side of this biconditional entails its left-hand
side is evident from the definition of t-priority. For the converse, let %* consist
of all the variables common to } and X, and let % be any subtuple °f‘?* such that

}-not-% t-precedes X;not-g. If %* = ;, the converse is immediate. Otherwise, let

%' = <}i,...,3&> (m21) be %*—not-% permuted to be causally well-ordered. Then

X—not-% comprises just the variables in X—not—} together with those in }', while

-not-Y is subtuple (Xznot-Z)-not-Z' of X-not-Z.. By assumption’ that X-not-7 t-
fnnot;x,iswsu§$up}gi(ﬂ_npfj%) not-2!. of A.ne-_f_;”By,aS§Pmpti°n that X-not-Z t-precedes

z—gqt—%; ve have'thath&-i t-precedes (i.e. is a source of some variable in) X°n°t'§

£ <Y-not—§,?'> for each i = 0,1,...,m-1. For i = 0, by the causal well-ordering of
A
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%', z; 1s not a source of any variable in Z' and so must t-precede Y-not-X. More
generally by the well-ordering, 2z m 4 Must t-precede <zm i+1,...,z ,Y-not—X) and hence
(by transitivity of the causal-source relation) t-precedes Y—not-X if each variable
after z;_i in Z' t-precedes Y—not-X So by induction on i Z' t-precedes Y—not—X—-

~which by the: ﬁTQHSIfiVity‘ﬁf t-precedence evidéntly egiails that any Tuple- which

&rprecedeSfxfgpt—EJf,é;;nat7§,§'> also t-precedes ¥-not-§. So given that }-not-f
and hence its subtuple f—not-z t-precedes X—not—%, it follows that }-not-} t-precedes
Y-not-X. O

Theorem 11 = says that X is t-prior to Y Just in case each X-variable is
either also in Y or is a causal source of some Y-variable outside of X For singleton

is t-pfior to

tuples, <x>[ <y> 1ff elther X-yy or f’— Yy, where — is the causal—source relation on
A A A ]

single variables as before.
Somewhat surprisingly--since this is not at all evident in the definition-~-

t-priority (and by duality b-priority) turns out to be transitive, anti-symmetric

relative just to.=, and is hence a classical partial order.

Proof. For anti-symmetry, observe that if f is t-prior to } and conversely,‘
then }-not-} t-precedes X-not-% and conversely--which by the irreflexivity of
t-precedence holds qnly if %—notﬁx and }—not—} are both null, i.e., only if

§ = X. To show transitivity, assume that } is t-prior to 3, that g is t-prior
to ?, and take %', }', %' to be the subtuples respectively of‘}, }, g formed by
deleting just the variables common to all three of },},E. Then X' is t-prior

to X' and z' is t-prior to %' (since deleting some or all of the variables
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common to two tuples does not alter whether one is t-prior to the other.) We
next observe that if some variable x in §'-not7%' were not to be a source of any
variable in }'-not-%', X would start an arbitrarily long sequence4§=oy~§? =‘¥L$

Jaz'%»g' = f”Jiy“i95" = ,,, of variables cyclically from X',Y',2"' in which —31is
variously either identity or the cansal-source relation and must be the latter at
least once in each cycle, so that the arrows in the entailed subsequence }"f"ﬁ"--
are all causal. (This is because by definition of t-priority, x must either be
the same as or a source of some y in Y' which in turn must be the same as or a
source of some 2 in %', whence X3 aince x = X =z is precluded by construction
of %',%',%‘. And z must be in }', since otherwise it would be in %'-notf§?
contrary to hypothesis., Similarly, f"f' for some 3’ in ?' which must also be

in 5' if f' is not to viclate the assumption that x is a source of no variable

in %'-not-%’; and so on.) Since tuple %' is finite, this sequence would eventually
violate the causal-source relation's transitivity and irreflexivity. Hence }'

pust be t-prior to %', and restoring the deleted variables in common ylelds that
?\( is t-prior to ;Z-. O

Cleansing §¥det§rmination of irrelevancies by combining it with t-priority
yields the order properties that we seek. Specifically,

Definition 2.14. A tuple X $(igh

N - Y

X =Y — iff X both-s-deterpines ¥ and-is t-prior to X;' s e
SA T T NI ‘ AT = A

It is obvious but worth mention that if } s-de?ermines'}, then some subtuple %' of
} t-determines }. (Proof: Let }' comprise Justhgs variables in X that are either
in }‘! or are a source of some variable in X-_.;not-"-'x.z}', too, s-determines } and by
construction is also t-prior to X.) Note also that s-determination, t-priority,.
and hence t-determination are all vacuously reflexive.

Since s-determination and t-priority are both transitive, so is t-determination;
and the classic anti-symmetry of t-priority makes t-determination also classically

anti-symmetric. Hence t-determination is a classical partial order. This means that
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if a t-determination series is any sequence ... = X = Xa = }1+22} ... of tuples

of variables in which each Xy t-determines X1+1 and does not contain exactly the

same variables as xi*i' no t-determination series ever-makes a “losp.

As background for future macrostruetnral studiQS, it may be worthwhile to put
the main- combinatorial praperties of theﬁe"elations on record.

Theorem 11: Fer any TupleS' (1) <X Z> t—precedes Y iff X and‘Y ' 7
both t-precede Y separately. (2) If Xy b-precedes, or t-precedes, or s-determines
}1, and §2 correspondingly b-precedes, or t-precedes, or s-determines }2, then
<§1,§2> respectively b-precedes, t-precedes, or s~determines <¥1,}2>. (3) 1f
} t-precedes ;, or is t-prior to ¥, then each subtuple §-not-?1 of } respectively
t-precedes or is t-prior to every supertuple <¥,%5> of Y. (4) If X 18 t-prior
to } and no variable in % is in } unless it is also in }, then <},?> is t-prioer
to <},%>. (Corollary. If % t-determines X and no variable in % is in } unless
it is also in X, then <X,Z> t-determines 1,2>.) (4') <X,2> 18 t-prior to 1,2>
ff X-not-2 is t-prior to Y-not-2.) (5) If X and 2 both t-precede Y, then X
‘t-precedes Yrnot-3. (5*) 1f <X,2> t-precedes ¥, then X t-precedes T-not-Z.

(6) 1f X t-precedes Y, then X is t-prior to } 8 (7) if XRY for any of the
relations R defined here in terms of b- or t-precedence and causal determination,

‘while X' £ X and Y' £ Y, then also X'RY'.
A A A A A =3

Proofs. (1) and (2) are obvious, and (7) even more so. (3) is immediate -
for t-precedeace, and frem there for teprierity by ne%ing'that (X—not-%l)-notr<Y,Z2>
is' a subtupleﬁ'of X—nat-Y wbile Y—not-X -is a subtuple of -
<y, ?2>-not-(¥-not-%1)) (4) holds because undef the stipulated conditiona, ¢X,Z>-not~
<¥,§‘7= X-not~§; the corollary is obvious under the definitions of t- and s-deter-
mination. For (4'), since X, Z>-not-(¥,%> = X-not-,2> = (§—not~4z)-not~(§-not.-§),
.<§,?>.is-tiprior;to <¥,%> iff <¥,%7-not-4¥,§> t-precedes <Y, Z>-not-X,Z> iff .
(gt-not-;z)-not-(;-not-g) t-precedes (¥-not-§)-not-(§-not-§) iff X-not-Z is t-prior
to }-not~%. In (5), if X and 2 are as stipulated,vg-f!* for some z' in } and hence

(since y* # f) in Y-not-z, while for each x in X, x»y' for some y' in Y, Either
A A A A A A

>
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this y' is in Y-not-z (if z #y'), or x—»z-y* (if z = y') in which case x is a source
4 A ] AT A A A g 14 4

of y* in Y-not-z. For (5%), assume that <X,2” t-precedes T, i.e., by (1), that X
1

and % = <Z)seensBy) both t-precede Y. Then z also t-precedes Y (cf. (1)), so by

(5) and (3), X and Zyseeesy g’ both t-precede Y-not-z,. Induction on pm thus

concludes that X t-precedes %—not—%. For (6), assume that § t—precedes‘} and let

? comprise just the variables common to § and }. Then f%—not1%,5> t-precedes X

and, by (1) so does %; hence by (5'), X t—prgcedes X—noto%. But Y-not~Z = Y-not-X

by definition of %, s0 % and, by (3), also §-not-¥ t-precedes X;not-f. That is,

E is t-prior to }. O

The interpretive character ‘of t-determipatiop.  --
Using the principles listed in Theorem 11, the macrostructural nature of

t-determination can be explicated as

Theorem 12, For any tuples § and }, } t-determines X Just in case, for some
positive integer n+l, there exist tuples §1’""%n’§n+1’¥l""’¥n’§ (any of which
can be null).such that (a) X £ <§1""’§n’§n+1’%> and Y = <¥1,...,¥n,%>; (p) for
each 1 = 1,...,n, %i_is a strictly complete source of each variable in }i;

(c) Xn41 t-precedes <¥1,...,Xn>; and (d) every variable in X-not-Z that is a
source of some Y-variable in l(%) also t-preceaes <X1,...,}h>-not<;(§). (Notes

If §'s interior is null or disjoint from X, condition (4) is vacuous.)

We shall not bother to prove Theorem 12 here, for the argument is reasonably rout%pé‘é
and enly brief heuristic use will be made of this result here. But when we have
envisioned a structure of macrocausal connectlions among the variables in tuples %

and }, Theorem 12 makes it easy for us to appraise whether % t-determines X.

With only marginal exceptions, whenever % not merely s-determines } but is
intuitively fully antecedgnt to 1t, % also t-determines ?. The exceptions are certain
cases that violate condition (g) or (d) in Theorem 12. The simplest example of
(d)-failure is the relstion between ? = i{,{> and ¥ = {y) when f is a strictly

complete source of y. Here % s-determines X but cannot t-determine it insomuch
A
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as X—not—% is null but %—not—% is not. (This example's violation of (d) in Theorem 12
usefully illustrates the force of that condition.) And cases where } seems fully
antecedent to ¥ without satisfying (¢) are illustrated by } = <fl’f2’?>’ } = <?,?>,
when {1 is a strictly complete source of y, and ?2 is a source of Z but not of y.
Here again % s-determines }, and moreover every variable in } is either in X or is
a source of some variable in X; yet § does not t-determine X because %-not-x (= <§1,¥2>)
does not t-precede T-not-X (=<y).

Even so, t-determination generally excels at the finer macrocausal order
distinctions missed by s-determination. One test, it will be recalled, is the asym- "=
metry between } and <§,}> when § is a strictly complete source of each variable in ?.
Application of Theorem 12 shows that § t-determines <§,}> in this case, while by
t-determination's classical anti-symmetry and the preclusion of f = <§,}> in this
case, <§,¥> does not t-determine f. And if } is a strictly complete source of both
% and X, while each ffvariable“is also a source of some variable in g—-our other
test case-~ <§,%> t~determines <},§> but not conversely.

Theorem i2 can easily generalize upon these special cases of t-determination.
But more fundamental is that if % is any tuple that interests us, say because it
t-determines output tuple X, and some subtuple %' of ? is in turn t-determined by
some tuple } of more remote X—sources, then <%—not;%',§> t-determines ?.' (Proof:

By Theorem 11-4 Corollary, if § t-determines %', then <§,?—not—%'> tédetermines
<§',%—not-%') = % and hence also, by transitivity of t-determination, any } that

% in turn t-determines.) This means in particular that starting with a given output
tuple X, if ... ,‘Zk-lz’) ,\Zk:> g'k+1 D eee 9; is a precession of inclusively complete
X-sources in which each %k—l is obtained from fk by replacing one or more variables
in %k by strictly complete sources thereof, this sequence is a t-determination series,
leading to }, in which each %k-l t-determines ?k+11::2rhence all subsequent tuples

in the sequence through mediation by ?k‘ (We shalljexamine causal compositions for
such t-determination sequences in some detail.) Accordingly, it would appear that
all macrostructural mediation relations of interest to multivariate analysis are

contained in the classical partial order of t-determination.
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Actually, the causal-determination relation that proves to be most vowerful
for macrocausal analysis is not bare t-determination in the absolute sense of Def. 2.14,
but a relativizing of thiSfto the miérccausal;patgigpructhrefwithin a particular
background tuple y that includes all the variables whose causal connections are
explicitly at issue, To define relativized t-determination and establish the theorems
applying thereto, we need merely construe all references to causal-source connections
among single variables in Def. 2.11 et seq. to bear the implicit qualification
"relative to E“ with the understanding that x is a source of g relative to y iff
there is a path from ? to ? within y in the sense of Def. 2.7. With fixed y, this
relativising to y of source-relation —» does not alter its strict-partial-order
character, so all definitions and theorems previously developed in terms of —»
follow exactly as before except that these, too, are now generally relative to y.
In some cases, there is no essential difference between a relation or principle based
on absolute —» and its relativized counterpart. In particular, for- any snbtuples
§ and } of y, § s-determines } relative to H Just in case } g-determines } absolutely.
So when y contaig; all variables at issue, the only difference between } t-determining
X absolutely and doing so relative to % is a strengthening of t-precedence requirements

(¢) and (d) in Theorem 12 to t-precedence relative to Y.

Macrostructural mediation.

According to our introduction, the theory of causal macrostructure aspires to
develop an account of causal connections among groups of variables that parallels the
logic of microcausal path structure. Before seeking to fulfil that promise, however,
we had best make clear just what information a path digraph does express.

Were there nothing more to microcausal path structure than a partial ordering
of causation among single variables, any of the partial-order relations on Tuplea'
already identified here would be a macrocausal parallel. But microstructural path

digraphs say a great deal more than that--enough, in fact, to warrant a list:
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What causal-path digraphs represent.

1. Causal-source connections.
2. Causal mediation.

3. Causal disconnection.

4. Causal determination.

5. Causal composition.

1. That the microstructural path digraph for a tuple }--for convenient
reference call this structure 77&--expresses binary causal-source relations within
} by the directed lines connecting some }-variables to others is the most conspicuous
feature of"n&. But what the arrows in 'W% stand for is not merely the causal-source
relation —> buf a very special instance of this relative to %. A path from f to

i
fj in 17% indeed conveys that }1-—5}3; but a multiplicity of 1ﬁx—paths from x, to

11
fj has a structural significance that it could not have were this just a way to
express X3 >Xj» nor does lack of path from x, to fj in 77% imply, conversely, that
fi is not a sour;e of fj‘ The absence of particular path connections in 77% is not
just an arbitrary omission of source relations that we choose to disregard, but is
fully as essential to what 77% tells us as are the paths that 7ﬂx does contain,

2, Similar remarks apply to 7fx's represehtation of mediation among the
variables in tuplelf. Manifestly, if a Iﬁx-path from fi to fj passes through‘fk,
then ri influences fj through the mediation of Xk' But failure of 77% to contain
a path from fi tc:{j through Xy does not say, conversely, that Xy does not mediate
between fi and fj‘“it is entirely possible for Xy to be a source of fk’ and fk of fj’
without these connections being featured in Ty. And a multiplicity of paths from
X to Xy with some but not all passing through ﬁk says far more about the causal
relations among these variables than just fi'-’fk'—’}j‘

3. How path digraph ffk also represents disconnection (total mediation) is

explained in Theorem 3 (p. 2.14). Mt all disconnection possibilities among }-variables

are ajudicated by-'ﬁk. But if Xy is in l(%) and fk contains at least one variable on
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each total path to fj in %, then for any other variable Xy in }, 'W%:reveals whether

fk disconnects fi from fj’ namely, No if X3 is in the %—buffer from }k to‘fj, and Yes
otherwise. 77&'8 expression of disconnection depends as importantly on which %—varia
ables it does pot link by paths as on those it does, and is where the deeper significance
of path structure begins to emerge. Even so, the abstract definition of total
mediation in terms of path connections manifests little reason to prize this infor-
mation for its own sake. Rather, disconnection's payoff is its import for causal
composition (cf. Theorem 7, p. 2.29).

4L & 5. Mpst fundamentally, path digraph 17k identifies which subtuples of ¥
are complete sources of what other X-variasbles (cf. Theorem 4, p. 2.16), and which of
the strict/extended causal regularities that govern these determinations derive from
which others by compositions of transducers and subtuple selectors (cf. Theorems 5 & 73
more comprehensively, see Theorems 15 & 24, below)., This is where lies the ultimate
challenge for causal analysis: to identify the parameters of (relatively) basic causal
mechanisms from which are composed the overarching causal behaviors of more complex
natural systems. .The logic of causal explanation is multi-leveled: Not merely do
variables (more precisely, instantiations of their values) cause one another according
to lawful regularities, but these laws themselves are generally the way they are as
a logical consequence of more fundamental laws. zggg is what makes partial/total
mediation so central for causality, and what it is that path digraphs most deeply
represent.

It is evident from this review that no partial ordering of Tuples properly
qualifies as a macrocausal counterpart of path structure unless it carries information
about disconnection and causal composition as well as causal determination. We have
looked with some care at the causal-determination ordering of Tuples, but have said
nothing as yet about macromediation. The central concept needed for this--macro-

disconnection--is just micro-disconnection writ large, namsly,

Definition 2.15. Tuple % (macrostructurallx) disconnects tuple § from tuple

} iff % microstructurally disconnects each variable in %—not-% from every variable
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in Y;not—%. Tuple % properly disconnects § from } iff % disconnects } from }
A

and neitherlf-not-% nor ¥-not-% is null.

Note that % cannot disconnect % from X unless all variables common to } and } are

also in 2, since Z falls to micro-diseonnect x, in X-not-Z from y, in Y-not-% if
A A 1 A A Ad T4

i
fi = yJ. (C£. Def. 2.8. This point will prove eritical later.) Also worth making
A

explicit is

Y =<
Theorem 13. (1) If ¥=<X),... %> and ¥ Xl""’zn>’ Z disconnects X
from Y just in case Z disconnects each }i (1 =1,...,m) from each }j (1=1,...,0).
Corollarx. % disconnects } from X Jjust in case % disconnects each subtuple of
% from each subtuple of ¥. (2) % disconnects } from } just in case % disconnects

%—not-% from }-not-%. Corollary. % disconnects each subtuple of itself from

every X, and every } from each subtuple of itself.

Both parts of Theorem 13 are immediate from Def. 2.15.

An intui?ive anomaly under Def, 2,15 is that every Tuple disconnects itself
from itself, But if "% disconnects } from }" is understood as elliptic for “? dis-
connects the non&%éﬁart of % from the non—% part of },“ the discomfort vanishes
except for the residual awkwardness that any singleton tuple <§> macrostructurally
disconnects <¥> from <f) even though it does not disconnect ﬁ from f micrnstructgrally
(Def. 2.8). Proper disconnection avoids this peculiarity--i.e., no Tuple properly
disconnects any subtuple of itself from any subtuple of itself. But for most
technical purposes, the non-nullity condition in proper disconnection is a distracting
irrelevancy.

When coupled with determination, macrostructural disconnection is finitely

identifiable in terms of microcausal path structure as

Theorem 14. If tuple %-s-determines tuple X, then for any tuple %, % dis-
connects % from ¥ just in case (a) %-not-% and X—not-% are disjoint (i.e., every
A

variable common to % and } is also in %), and (b) every path in <X,Z,Y> from
4744
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any variable in X—not-Z to some variable in Y—not-Z passes through }. Corol-~
1§?gggj The theorem also holds if clause(h) is replaced by: (b') every path

in <X Z Y> from any variable in X to some variable in Y passes through Z

Proof. The theorem holds vacuously if either %—notf? or X-not-% is null.
Otherwise, let xi be any varisable in X—not-Z and y‘_j any variable in Y-not-%. Since
’\'?'Y by stipulation, yj is interior to <Z Y> with all total paths to‘yj therein
beginning with a variable in E(Z), hence a11 total paths to yj in <X Z Y7 pass
through Z. 8¢ by Theorem 3, if xiﬁ# yj with yJ interior to- <X Z,Y)~uhile all paths
frbm~?» to yj in <X Z Y> pass through Z then Z disconnects X from Y Conversely,

2l
Xy =<ZJ or if there is a path from x to zj in <§,§,¥> that does not pass through

it is immediate from Def. 2,8 that % fails to disconnect x, from yj either if
4

Z. The corollary follows by observation that (b') is equivalent to (b), insomuch

I\

as a path from } to } in <X,%,Y) that begins with a variable common to‘} and %, or
A 1

ends with one common to Z and Y, thereby passes through (i.e. contains a variable-
A _ .

A
in) 2.0 .
When X s-determines ¥, weoan.combine the inclusive causal regularities -
éfi = ‘i(52} by which X determines the single variables ifiz in X—not-f, together
with noncausal identity-selector functions that pick out °f,§ the };variables also

in X, into a single macrostructural quasi-causal regularity I = #(}) defined as

follows:

Definition 2.16. Tuple X = <x1,...,{h> determines tuple X = <yl,...,yhfunder
A 1

guasi-causal regularity X = #(%) iff (a) $ is a function from the logical range
of X into the cartesian product of the ranges of the variables in Y so that

A(X) = <§1(X),...,d (X)>' () for each ¥-variable yi din Y—not-X, y = ﬂi(X

an inclusive causal regularity under which X is an inclusively complete source of
Zi; and (g¢) for any Xﬁ common to % and %, #j is the aingleton-subtuple-selector

function that picks yj out of %, i.e., if y:j is the kth variable in %, ﬁj(%) =
N

Ox, +,.,, +0°x + x

41 Xl TEHY o'fk+l + ... t O:zm. (Note: If {j is also in f,
= g.(X) is a noncausal identity-selection of y, from X even when y. also

has a complete causal source in f.)




ﬁ(%) can be identified

A

i.e, Iff Y

A

Y-not-Y' are in X

A

The embedding is pre-emptive iff all variables in

from Y' = #'(K') just by insertion of null-weight inputs and identity selectors.
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In proof of the theorem about to follow, we shall need to speak both of quasi-causal

regularities and of the strict causal regularities embedded therein. And since a

generalization of this embedding concept will be needed later, we declare

have the form of,
g (X) are, w,(quasi-catisal
s

regularities in which } = <y1,...,yh> and }' = <y1,...,y >yl Y'.:ﬂﬁ}(X')‘QQQﬁQQ&Q in
A 2

“Definition 2.17. (1) If Y= g(X) and Y

} = 5(}) iff (a) tuples X and X respectively include Y' and X', and (by for
alli=1,...,m and § =1,...,n, if the ith variable ¥y in X 1s identical with
4

the jth variable y: in Y', the ith component functien y; = ﬁé(X)‘ih‘Yqigﬁ(X)iiﬁf 3

Al A A A A D
differs from the jth component function y5 = ﬁ;(%') in X' = ﬁ'(}') only in

4

containing with null weights the variables in X—not-X'--i.e., if o' is the

subtuple-selector function that picks X' out of X there is a permutation

R PO

operator @ such that # = ¢ fo! AZZ(Note that embedding is transitive, i.e.,
if I= ﬁ(f) embeds X' =g (X') which in turn embeds Y" = ﬂ“(X“), then Y = ﬂ(X)
embeds X“ = #“(%“).) (2) A causal regularity yi = Az(x ) is the proximal core
of Y = {(X) for yi iff (a) Y = A(X) is a quasi-causal regularity, (b) yi is a
variable in Y—not-X whose proximal source in X is Xi, and (g) ¥y = = *(X*) is
embedded in } = ﬁ(%). We also say that e = ;(%;) is the proximal core of

the component y, = ﬁi(X) of Y = ¢(X) whose output variable is Yo
A 4 A A 4

For any quasi-causal regularity Y= ﬁ(}) and any variable yi in X—not-% (but not
for any Xj common to X and }), there is exactly one regularity ¥y = ﬁ;(f{) that is
the proximal core of } = d(%) for {i' Since by stipulation }; is the (non-null)
proximal source of Zi in %, this Zi = d*(X ) is a strict causal regularity that is
proximal within <§,{i>. Evidently, a quasi-causal regularity Y' = g (X') is embedded
in quasi-causal regularity Y= 5(%) Just in case X' is in X, Y' is'in Y and for .
each variable z; in X'-not-%', g{ is not in % but has the same proximal source in
}' as it has in the more inclusive tuple %.

Now consider the situatlon wherein % s~determines % and % s-determines }

under respective quasi-causal regularities Z ==¢(§) and X = g(2), i.ee, . .. =
A A .
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Zpreeeszy? =<K X),n 0 (X)> and <3y, .00,y > = <6y (2),.00,8,(2) where Z=4z,0,20
and X = <Zi,...,2h>, These macrocéusal regularities have a well-defined composition,
namely, ¥ = ﬁ%(}). To appreciate the nature of this formalism, observe that the ith
component function in } = ﬁ¢(§) is bl = ¢i¢(§), which in turn can be equivalently
written in expanded notation as ?i = %i(%a(§),...,¢h(§)). If the jth variable in }

is also in }, say § =1 and %1 = fk’ this is in turn equivalent both to,?i =
ﬂi(fl,vz(f),...,¢&(§)) and to,?i = #(fk,¢é(§),...,¥g(§)), with similar identity
replacements holding for any other %—variables common to }. Thus X = #%(%) efficiently
composes into each {i = ﬁi(fl""’fm) the inclusive causal regularities under which

the %-variables not in } are determined by }.‘Wﬂowever, we know from discussion of
FI-1 that the composition of one causal regularity into another does not always
preserve causality. So even when Z =t/(§) and X = ﬁ(%) are both quasi-causal, their
composition X = ﬁ%(}) may not be so. Happily, the conditions under which quasi-
causality status is preserved under composition of s-determinations proves to be

remarkably simple:

Tbeof;ﬁ 15. Let tuple X g-determine tuple Z under quasi-causal regularity
% ¢(X) while Z in turn s-determines tuple Y under quasi-causal regularity
X ﬁ(%). Then if Z disconnects X from 1, % s-determines Y under quasi-
causal regularity X = #%(5).

Proof. Assume the theorem's preconditions and for each variable yj in §
let ¥s # (X) be the jth componentz@gﬁhﬁﬁy An T= #(X) Then we are to show (a)
that if Z is in %, ﬁj¢ is a singleton-subtuple-selector function that picks XJ out
of %, whereas (b) if zj is in %-not-%, Y3 = ﬁj¢(§) is the inclusive causal regularity
by which % is an inclusive source of zj. Case (a) is obvious, since by disconnection
Zj is then also a variable in %, say the kth. Seo ‘j is a subtuple selector that
picks out the kth component of its argument (i.e., éj(Z) =2 = yj), the kth component
transducer % in 2 “‘¢KX) is the subtuple selector that picks Zys i.e. yj, out of %

and 53% is hence the subtuple selector that picks yj out of X In our main case (b),
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it Z X, I
either (hl) Zﬁ is also in % but not in }, or (92) Zj is in neither Z nor X n
= = = ¢X
case (hl), Yy ﬂj¢(§) is identical with the kth component 2y ¢k(§) of % ¢(4),
where Yy is the kth variable in %. But 2y = %&(%) is the inclusive causal regularity
A .
under which % is an inclusively complete source of 2y and hence by identity so is
yi = 8 %(%). Finally, for case (by), let y; = g%(Z%) be the proximal core of
J i Aj 3l
Y= ﬁ(%) for yj, and presume without essential loss of generality that % has been
A A
so permuted that 7 = <Z§,Z—not-z*) and 2% = <§j,?3> where %J comprises just the r

J 1]

variables (r > 0) common to %g and }, and %5 (= %g-not-fjﬁ, if not null, is causally

well-ordered. (There does not generally exist a permutation of Z that achieves these

constraints simultaneously for all variables ¥

ad
Just one arbitrarily selected y, therein and leaving suppressed the permutation that
Ad

in Y—not—Z- but we are dealing with

would have to be made explicit if the present proof were to be given in complete
detail.) Then Iy = ﬁ*(z ) is identical with 7y = ,!*(Xj,z ) where X Xy comprises the

first r variables in Z and 25 is either null or consists of Y-variables.<y +1""’yr+m>

13
not only in <Z,yj> but also, by our disconnection premise, in W& e f.<X Z,yj>.

for some m 2 1. Now, regardless of whether Z! is null, yj ﬁs(xj,z ) is proximal

[Reason: yj has a non-null proximal source W* in Wj, while by assumption, subtuple

4l
> = - - - -
<Xj’zj> of Z is the proximal source of yj in < Z,yj Wj not X where X X0 Zger § not E.

Ad 40
in}\lJ that does not pass through Z, contrary under Theorem 14 to s tipulation that

If some variable xb in XO were to be in WY, then there would be a path from x. to Y3
A

Z disconnects X from Y. Hence yj's proximal source in Wj must also be its proximal
source in Wj-not-Xo = (Z,yj> ] If Zi is null, y:j KJ(XJ,Z ) simplifies to yj = ﬁj(Xj),
and by considering how the relevant subtuple selector picks %j out of % in {j = 53(%)
and accordingly gives non-null welght in ﬁj¢(§) just to the components of'¢(§) that
are variables in }3 picked out of } by the noncausal identity-selector components.
of Y, we can see that yj = [E(XJ) is embedded = in i< yj ¢j¢(x) Hence

= dfé(x) is the inclusive regularity under which X determines yj in this null-2!

43
subcase, as was to be shown. Alternatively, if Zj in yj = ﬁ* Z* = g*(X,,2') is not

323’3
null, we have Zj = <zr+1""’zr+m> for some m > 1, with the causal well-ordering
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stipulated for %j entailing that there is no path in yj ief ‘},},zj> from any Zoy
in %5 to any of the variables Zp4lree o Bpta] that precede Zpyg in Z&. The proximal
core 3& = g* (Yj,z +1”"’zr+m) of Y = 5 (Z) is proximal not only in <Z,yj> but also

in ?3 (= <§,?,yj>) for the reason already given. And if 2.4 = ¢r+1(X ;) is the =

proximal core of Z = Y(X) for 2., 2oy = yr

r+1(4r+1) is proximal not only in

<§¥fr+i? but also in yd’ insomuch as none of variables <zr+2,...,zr+m,yj> is a gsource
of By So by CmP-4, yj = {;(X ¢*+1 4r+1) zr+2,...,zr4m) is a strict causal

regularity that is proximal in wj-not-z e Mbrgeﬁgr,ithe preximsi Qere zr+2

¥* .
5 r+2( r+2) of Z = ¢%X) for Zrip is-proximal not only in (X,zr+2> but also in

4J'n°t’fr+1’ since none of variables <fr 432022y, +m,y > is a source of 2z So

h] gr2°
again by CmP-4, 73 = g* (43’¢*+1(4r+1)’ ;_'_2( r+2)’zr+3""’zr"m) is a strict causal
regularity that is proximal in Hj‘n°t‘ffr+1’fr+2 » Continuing in this way eventually
shows (technically, by induction) thatavJ = §(§J’¢¢+1(};+1)""’ ;+m(§;+m)) is a
proximal regularity in Wj-not-?j = <X,yj>. And the latter regularity is embedded
iny, = ;!j;é(x) (Recall that by our stipulated ordering of Z, ﬁ (z) = 5*(7.*) +
0° Z-not-Zg with ?* = <Xj,z $17°0 2 D while the first r components of Z = ﬁ(X)
are identity-selections of the variables }i common to }; and f.) So ¥ = ﬁj/(§)

is the inclusive causal regularity under which f is an inclusively complete source
of yj a

Much of Theorem 15's proof consists of struggle with trivial but obfuscating
technicalities concerning null weights and noncausal identity selections. But at
the theorem's heart lies an argument that is neither trivial nor obvious. To
aporeciate how this result is surprising yet true, a gratifying macrostructural
tidiness in what might well have turned out to be an intractable snarl of microcausal
proximalities, it is helpful to re-trace the theorem's proof in its special instance
wherein } is a singleton <¥>, and % is a strictly complete source of each variable
in % = <f1""’fm’ (whence also % and % are disjoint). In this simplified case,
if y= d(fl,...,Zh) and {fi = ¢&(§)} are all strictly causal with Z disconnecting
;\r from ys it is evident from CmP-4 that y= d(,él(g\(),...,sém(g\()) would be causal if we




2,56~

vere also to stipulate that all of regularities {?i = %3(%)} are proximal in (y,?,§>
A

However, we do not make this last assumption. Rather, our disconnection premise
allows that some variables in § may well be proximal sources in <y,§,§> of other
%—variables, so that %'s determination of some 2y in % is mediated by ?-not-?i.
Prima facie, this is the very sort of proximality failure that invalidates FT-1 (p.
2,22). But applied to our simplified case, the argument for Theorem 15 observes
that starting with y = ﬁ(zl,...,z ) proximal in W Zief <y,Z,X>, X is the proximal
source in W of at least one Z—variable, say 2,, under regularity %y "% (X), so that

all of
¢(¢a(§)’42""’?m) is proximal in y-not—fl. And [regularities 2, =:¢5(§),...,

>N >¢4

y = yg(%) are not only in y but are also in Xl—not-z1 regardless of whether any are
1

mediated by zl, and at least one, say the first, must be proximal in WLnot-z So

l.

z = d(%i(X) %é(X),zB,...,z ) is proximal in W-not-<z,,2,> while 24 V%(X),...,"

2. = ¢ (X) are all in W-not-(z.,z.> with at least one proximal therein. Iteration
L A A1742

of this reduction eventually gives y = 5(% (X),..L,%’(X)) as proximal within

W-not—Z = (y,X) Need for Z to disconnect X from y here is to yield that if

y = ﬂ(Z) is strictly causal, it is also proximal in :y,Z X>° after that in the

reduction, the proximalities take care of themselves. As for our simplifying

assumption that § is disjoint from and strictly determines all of %, it is not

hard to see that this plays no role in the argument except to suppress irrelevant

distractions.

Composable sequences of macrocausal determination.

Theorem 15 may well be viewed as The Fundamental Principle of Causal Macro-

structurg--or indeed, of multivariate causal analysis in general. Given that causal
structure is of dubious significance unless accompanied by causal composability,
the main task of macrostructural theory is to work out the conditions under which
the composability described by Theorem 15 can be iterated throughout complexes of
Tuples in molar counterparts of microcausal paths,

Consider a sequence X :}X ... #X =>X n+ of s-determinations. Under

what circumstances is the quasi-causal regularity under which }1 s~-determines }m+1
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simply the serial composition of the quasi-causal regularities under which each }1(1

s-determines 2\(1.,.1 in this sequence? The essentlal condition for this is given by

Definition 2.18. A sequence (pot a conjoined Tuple) 2(1;9.(2;...;3(1,1;%.,.1 of

Tuples is a (length-m) composable determination series, or cd-series for short,

iff (a) m 2 2, (b) for each 1 = 1,...,m, 2(1 s-determines %(i-i-l’ and (_c_:_l) 3(2 dis-
connects ’)\(1 from §3 if m =2, or (g,), if m >2, there is some b = 2,...,m such
that }h disconnects %(h-l from }h‘*‘l while 2\(1’"",)\(h-l’?\(h+1"”’§m+l is a length~
(m-1) ed-series. (Note that this definition is a recursion on sequence length

with m = 2 as base.)

We shall also write }1 ... %>3(m+1 for sequences of tuples for which it is given

that each ,}\(i s-determines 3(1_,_1.

Theorem 16, Let 2\(1 > 3(2 ... ':"),\Xm $,¥m+1 be a sequence of s-determinations
in which, for each i =1,,..,m, %(i determines §i+1 under quasi-causal regularity
;\(i a4 = "i (2\(1‘). If this sequence 'is moreover a cd-series, then ,),(i s-determines

%{mﬂ under the quasi-causal regularity ,),(m-i-l = ﬁ*(}l) whose transducer is

#* = ‘mﬂm—l' . '52#1‘

Proof, by induction on m. Given that }\(1;...;2‘(,,14.1 is a cd-series, the induec-
tion's base is immediate from Theorem 15 when m = 2. More generally, for m > 4T |
Hlét"»;‘(hff‘~'_,'.b§-;;a‘. tuple that discomnects X ; from Xp41.vhile Xy5... 3Xpe15Xn 4150 XmaL
is a 1gngth;(§;l);cd—se_riéé. - (Existence 'Qf___.,’g_bi\a_%(b is_stipulated by Def. 2,18.)
Then by the induction hypothé'sj,,g', -the quasi-causal regularity under which 4Xm+1 is
s-determined by 2(1 has transducer g* = gfm...;!hﬂgf Y;Kh_z...ﬁl where g' is the trans-
ducer of the quasi-causal regularity prn = g '(%(h-—l) under which X, , s-determines
}hﬂ‘ But since %h disconnects ?\(h-l from }hﬂ’ we have from Theorem 15 that
g = "h'{h-l' So substitution of ﬂh"h-l for g' in the induction-hypothesis compo-
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For reasons overbriefly sketched earlierz(p. 2.28), the converse of Theorem 16
1z also essentially true--i.e., if X; %) “‘£92¥m+1’ in order for the quasi-causal
regularity under which X, determines §m+1 to have as its transducer the serial compo-
sition of the single~step quasi-causal transducers in'this sequence, it is not merely
sufficient but for all practical purposes necessary that this s-determination sequence
be a cd-series. Whether there are any theoretically significant ways in which
~ violations of this virtual necessity can arise, I do not know.

Theorem 16 makes evident that models of macrocausal structure want their
distinguished sequences of causal determination to be composable whenever possible.
Indeed, the most salient task for the theory of causal macrostructure is to identify
analytically well-behaved structural conditions that suffice for a given s-determination
sequence to be a cd-series. Particularly wanted are principles under which the
sequence's holistic (global) status as a cd-series derives from the local properties
of its proper subsequences. Intuitively, for example, it seems as though composability
should follow if each mediating stage‘}i in %159 ...’%>}h+1 disconnects }i—l from
§i+1' Yet that is not generally so, as illustrated by y = <¥1,Yz>, } = <f” Y = (?>’

A

% = <§1,%2> when the path digraph for <y,§,¥,%> is
rl—afl—af—+y—»yz—+?2.

Here W= X2>Y =5 Z while X disconnects W from Y and Y disconnects X from Z; yet
A A A A A A A A A A
neither X nor Y disconnects W from Z, so W;X;Y;Z is not a ed-series.
A A A A ATATAT A
A more successful intuition is that composable determination is importantly

related to the local-disconnection condition described by

Definition 2.19. A sequence SELEES ) (m > 2) of tuples is a gtandard
cd-geries 1iff (a) X3 Xjq for all 4 =1,...,m, and (k) for all Xi» 3&, and 3‘1:
in this sequence with 1<i <j<kem+l, ?\(j disconnects X; from }k- (Corellary.
Ir %13--~§m+1 is a standard cd-series, every subsequence thereof formed by

deleting m-2 or fewer of its stages is also a standard cd-series.)
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It is easily seen by induction on sequence length that all standard cd-series are
also cd-series. Unhappily for simplicity, however, the converse fails for m > 3,
as demonstrated by y = <y>, § = <¥1,¥2>, X = <?¢, ? = <%> when the path digraph

for <W,X,Y,Z2> 1
or A’4’A’4Z 8

WX,V Xy —2 2
A 41 /.y A2 4.

Clearly WX =>Y2> 7, while W;Y;Z is a cd-series and X disconmects W from Y. So

A A A 4 NTAT4 A A 4
y;§;¥;z is a cd-series, and indeed its composability can easily be confirmed; yet

A

it is not a standard cd-series, for X does not disconnect % from %. Even so, standard
cd-series comprise the broadest category of composable causal sequences that is
analytieally perspicuous, and, as will be seen, include as special cases the
composabilities that are represented in path digraphs.

Standard composability can be characterized in several ways. One useful

variation, an immediate consequence of Def. 2.19 by Theorem 13-1, is

Theorem 17. Let §15$ "°£7'¥m+1 be an s-determination sequence and, for
each 1 = 1,...,mt+l, stipulate

—

a . ¢}
f1 Taet Yue-ofivX s X Taer Fofiwseonn? -

(The superscripts in "}i" and "}i“ are heuristic for "antecedent" and "consequent,"
respectively.) Then fl;"‘;§m+1 is a standard cd-series just in case, for each

i=2,...,0 X disconnects,%? from }: (equivalently, ?i—not-%i from ?g'n°t'§i)'

Henceforth we shall use "%i" and "f;" specifically as just defined, though concern
for %g will be fleeting. Note that for considering whether %i disconnects }; from
%g, the tuple <§a,¥i,§g> whose path structure ajudicates this (cf. Theorem 14) is
Just the sequence's union <§1,...,§m+1>, the same for all i. .
Theorem 17 is a technical convenience, but it does not much illuminate the

nature of standard composability. We now observe, more deeply, that this derives

from the structural properties described by
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Definition 2.20. A sequence }15°"§m+1 of tuples is (repetitionwise) convex

iff, for all qu, %(J’ and %Ik therein with 1 <j<k, every variable common to Xy
and }k is also in Xj. (Equivalently, §1;"'3§m+1 is convex iff, for each 1 =

c
2y 0oyl fi-not-}i and }i-not-§i are disjoint.)

Definition 2.21. A sequence }1;...;§h+1 of tuples is compact within g
(equivalently, Z-wise compact) iff % is a tuple that includes all varisbles in
A

- e ¢
(}1,...,§h+1> and, for all 1 =1,...,m and each variable f in }?—not—%i, }i
includes all direct sources of x within %. (Note that this definition holds
for case m = 1 as well as normal case m22, and that ,)‘(g—not—‘)‘(i 5}g+1—not-2(i.)
Sequence }15"’;§m+1 is %—wise strongly compact iff, for all i = 2,...,m,

§i3§i+1 is %—wise compact. Sequence fl""3¥h+1 is (intrinsically) compact
iff it is compact within <X1,...,§m+1>.
A

Any sequence that is %—wise strongly compact is also %—wise compact; hoﬁever, what
strong compactness adds to compactness gimpliciter will not concern us for some time,
More immediateiy‘relevant is that if sequence fli--'3}m+1 is ?-wise compact, and

%0 contains only variables in ?—not—<}1,...,¥m+1>, no direct source within ? of any
variable x in fg—not-§i for any 1 = 2,...,m is in EO; hence §1§---5§m+1 is also
compact within %—not-%o insomuch as the proximal source within % of each f in each
}i-not—}i is then also a strictly complete and moreover proximal source of‘f within
%—not-%o. So every sequence of tuples that is compact in some E is intrinsically
compact as well, (Conversely, however, a sequence that is %—wise compact may not
be compact within a proper supertuple %' of ?, since %'-not-? may contain mediators
of the direct-source connections in %.) Note also that if %13---?§m+1 is compact,
each variable in %g-not-§i (1 =1,...,m) is interior to %g, 80 %i and §§ have the
same exterior and 3\(1 i)}g 3‘-)3(“.1. Hence any compact sequence of tuples is an

s-determination sequence.
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Theorem 18. Any sequence }15"’5§m+1 of tuples is a standard cd-series
just in case it is both repetitionwise convex and intrinsically compact.
Corollsry. If sequence Xl,..., m+]l is convex and compact within any tuple ?,

?13"'3§m+1 is a standard cd-series.

Proof. First we show necessity. Clearly the sequence must be convex if

it is a cd-series; for if any §J therein lacks some variable‘common to{}i and §k

(L <j<k), }J would not disconnectlfi from }k (cf. Theorem 14). And if, in violation
of compactness, some variable f in }g‘“°tf§i were to have a direct source f' within
<‘§1,’°“’fm+l> that is not in ﬁ (which is possible only if 2 £i=m), 3:* would be a
variable in %g-not-§i that is.a direct source within'<}a,§i,§g>(= 4§1,...,§m+1>) of
a variable in §§-notf}i, namely }, 80 fi would not disconnect }2 from }g and fl""5}m+1
would hence not be a standard cd-series (cf. Theorem 17). Conversely, suppose that
sequence §13"'3§m*1 is both convex and compact. We have already observed that
compactness makes this an s-determination sequence. So by Theorems 17 & 14, it
suffices to show, for all { =2,...,m both that each variable common to X2 and X is

11 21
also in Xi-—which follows immediately from the sequence 8 stipulated convexity--and

4l
in %g'n°t'§i passes through }i' Suprose to the contrary, for disproof, that some

that each path Xjk within <X§,X1,X > from a variable x, in X -not-Xi to a variable Xy
AdE A

such path xjk were not to pass through Xi’ Then Xjk would have to contain at least
one variable }d in Xa-—not-Xi immediately followed by a variable xk in Xi-not-Xi,
which is to say that }5 is a direct source of fk within <§1,...,§m+1>. Unless this
f& were to be in §§, <f3’fé) would violate the stipulation that }13'°'?§m*1 is
compact, But since fj is in f;-not-fi it cannot be in fg wiﬁhout violating convexity.
So convexity and compactness together suffice for_aitgglg sé§ﬁehce to be a standard
cd-series. The corollary is immediate from our previous observation that %~wise’
compactness for any % entails intrinsic compactness. [J

Given a background tuple % within which we know (or hypothesize) the micro-

causal path structure, Theorem 18 Corollary tells us how to construct standard .- -

cd-series of f's subtuples. To make this perspicuous, let us start with a close
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look at the generic structure of any s-determination sequence }1%>'...%>}m+1. For

each 1 =1,,..,m, write

0 — + .
X141 Tger Xgamot-Ky , XU S Xyemot-Xi

Superscripts "o" and "+" here are heuristic for "omission" and "addition," respect-
ively. Our interest in }I will soon transfer to another subtuple §£ of §i more
inclusive than %I} but }; will be important for the remainder of this section.
Moreover, since we shall repeatedly refer to the aggregate of all omissions §°

J
(1 =1i#1,...,m#1) from stages of the series following X35> it will also be convenient

to write

00 = 0 ) 0
X1 Tger Fin¥iapree o fpn’-

Viewing sequence §ﬁ’%> "'ﬁ?'§m+1 from right to left as a precession of quasi-causes,
we can think of };'as comprising whatever variables not already in §i+1 are picked
up by %i’ while %g comprises the variables in X; that are not retained in }1,1.

(f;o accumulates: all omissions back through stage %i.) Thus Xy = <§;}}i*i?-not-§g+l
2 <%;;§i+1-not-¥g+1>. Either or both of %I and §§ can be null; hewever, in the cases
that interest us, any sequence stage gi for which %g is null is a triviality that

can be removed by deleting }1 from the sequence. Hence for simplicity and without
essential loss of generality we presume that each %g is hon—null. In contrast,
assuming %I to be non-null is appropriate only if we impose the additional constraint
that X; 47 has null interior. Given that each %1 s-determines §i+1’ the right-to-left
precessional view of this sequence takes each }i to be constructed--conceptually,

not causally--from %i*l by replacing §1+1's subtuple §g+1 by some inclusively com-
plete source ,J‘Ii of ﬁﬂ’ i.e. 3(:,"_ 52 }1(2_,_1 with 2‘{:{ disjoint from }gﬂ’ while 2’(; then
comprises whatever variables in %{ are not already in }i. Subtuples }; and }2 of

§i may or may not be disjoint; in any case, there is no conceptual tie between them.
That is, if sequence %1’5>... %>3gn+1 is constructed by a recursive precession in

which, for each i = m#l,m,m-1,...,2, we first identify fi;"’;§m+1 and then choose

which tuple fi-l is to s-determine %i’ We are free in principle to put any %i-variables
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we wish into omission tuple %; so long as they are in l(f), regardless of whether

they are new additions in }I or carryovers from §i+1-notf}g+1.

From this precessional perspective on %ﬁ_5> ...5$'§m+1, it is evident that
each Xi comprises, in addition to XT, all variables in X§+1~(= ‘X1+1’°"'Xm+1>) less
some or all of the ones omitted in ngl (= <X;+1""’ m+1>) That is, all variables
in %;-not-§i (= §:+1'n°t'§i) are in §i+1' A variable in }; (k >i) can still be in
X, if it reappears in x; for some 1% j.<k-L But 1f’ X;3...5Xp4 1s repetitionwise
convex and X hence disjoint from Xi+1’ then }i = X; not-Xi 4 and X -ngt-X = §231.

Suppose, now, that starting with a given subtuple §m+1 of f, we wish to
specify by recursive precession an s-determination sequence §1£?""%>}m+1 that is
moreover a standard cd-series. In light of Theorem 18 Corollary this is straight-
forward in principle: For each i1 =m,m-1,... we select any subtuple }: that we choose
to eliminate at this precession stage in favor of its sources in %, let §£_1 include-
every’varigbléfiﬁ §;gotj§g ﬁgaj“iéjaﬁdirectrsburdéﬁyithiggg of some variable

0 : A . 2 f . e ,:':;;*_: ws
in 2(1’ and also put ,AlnﬁQ Xi_,l Tl LB ’ UL e e S

— . P - S e LT e - - d

8By ether X—tariableafwn—may<Want there subjéct to the proviso~that X is net_te
flnelude any variable in X° . Then taking %1 1 = <Xi 1,Xi-not-Xi7continues the
s~-determination precession in'§. Including in each %1_1 all direct sources of %:
within % that are not alregdy“in' §g makes this sequence compact within § and
hence also intrinsically compact, while compliance with the proviso insures that
the sequence is moreover repetitionwise convex and hence, by Theorem 18.Corollary,
a cd-series.

There is, however, one important limitation on this construcfion. At each
precession stage, given X1—> ...=>Xh+1 convex and X-wise compact, and with
some variable in Xi 8till interior to X we can always choose Xi-l nontrivially (i.e.
%i" not- null) to keep the extended sequence §1_1 =>?‘(i D ..l D ?,(mﬂ compact within ?1(

It is not, however, always possible for choice of §i—1 to preserve convexity while

continuing %—wise compactness. For example, suppose that the path digraph for

X =<u,v,w,x,y,2” is
A ATATATATATA
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x/_L\,}z
T \Ay/?ﬁ

>

>d

If we take Xg = <z>, X5 = <y,§,?>, and }4 = <y,y,y> with corresponding omissions
ng = ¢2> and %(g = <x>, sequence X, = Xy = Xg is both convex and X-wise compact. If
we next choose §Z = <yv, continuing the precession by <Y,¥,¥>5$'}4 would violate
convexity; however, since X's proximal,sgurée witbjn_§ is already in §Z,'we;ean instead
take X3 = <w,v> and have X, = X, = X5 = Xg still convex and compact in 3( But the
only }-wise compact continuation of that, in turn, is §§ ==<y> with }2 = <g,¥,y>.
(From there we finish with Xg = <x> and Xl = <u,v>, which is as far as the precession
can be carried in X ) Sequence X £ X2 ->X3 = X4 -7X5 =) Xé is still X—wise compact,
but it is not convex insomuch as x is in both X2 and X5 but not in X3 or XL’ And
neither is this sequence a cd—series, standard or otherwise, when extended backward
from §3. Indeed, this example could easily be used instead of the ones based on
Figs. 1 & 2 to illustrate non-composability,

One way to avoid convexity violations when constructing a standard cd-series
1s to specify a compact s-determination sequence §1£? ...57§h+1 in the fashion just
described without concern for convexity, and afterward, for each %i and }kr to add
each variable common to fi and %k to every fj between }i and }k that lacks it. Thus
in the example just given, if x is added to the original }5 and §4 to convert these
to X3 = ¢W,v,x> and 3@ = <¥’Y{?’§>’ the modified X; 2> ... %>§5 is now a standard
cd-series. However, this afterthought-convexification procedure does not identify
standard cd-series by - iterating their precessions.

Alternatively, if we want standard cd-series whose precessions can be con-
tinued systematically in counterpart to the causal composabilities implicit in
microcausal path digraphp, we need some additional constraints on tuples %g and
§{_1 at each stage of the sequence's precession. These constraints are defined in
terms of the path structure within the background tuple § comprising all variables

in the more local tuples whose causal connections are at issue, and are based on
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relativations to } of causal concepts previously defined in absolute terms (cf.

previous comments on this, p, 2.47):

- “Definitien 2.22. For any background tuple X: (1) Variable‘? is an }-wisg

(causal) source of variable 2 iff there is a causal path from z'to f'within }.
Informally, - we will also say that X is an %—wise source of tuple % iff‘f is
an %—wise source of some variable in Z. (2) Varisble y is an %—glgg direct
source of variable z iff y is a direct source of 2 within %. (3) A tuple } is
%—gggg cfausallx) independent of tuple % iff no variable in } is either in ;

or is an %—wise source of any variable in %. (4) A sequence Xlg...;Xn of tuples
is %—g;gg well-ordered iff, for all 1,1 =1,...,n with 1<j, Xi is }-wise
c-independent of }5. (5) Tuple Y ty-precedes tuple %.(i.e.,‘z t-precedes ?
relative to the %—wise causal-source relation) iff each variable in‘} is an
%—wise source of some variable in % (cf. Def. 2.11). (6) Tuple Y ty-determines

tuple Z (1.e., X t-determines Y relative to the X-wise causal-source relation)

iff X s-determines % and X-not-% ty-precedes %—not-% (ef. Def. 2.14 and Theorem 10).

Evidently, the f-wisa source and §i~precedence relations have the same partial-order
character as their absolute counterparts. And X ty~determines % only if } (absolutely)
t-determines %. Moreover, ty-determination is traﬁsitive and classically anti-sym-
metric by the very same argument that establishes this for t-determination--we

merely replace the (absolute) causal-source relation in the original proof by the
f-wise source relation.

To achieve convexity of molar determination sequences systematically, our
first constraint is that each }i in sequence }13"-3§m+1 of §#subtup1es is not merely
to s-determinev§i+1 but to ty-determine it. This is equivalent to requiring for each
i=1,...,m that there be a path within % from each variable in %; to some variable
in §g+1. And our second comstraint is that the sequence }g;...;%;*i of omissions

from our tx—determination sequence 1s to be f-wise well-ordered. This yields
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Theorem 19. lLet X; =>...% X 4 be a ty-determination sequence of X-sub-
0 =
tuples in which %5""5§m+1 is X-wige well-ordered. That is, each }i 1=1,

eeosn) ty-determines §1+1 and each §; (1L =2,...,m) is f-wise causally independ-

ent of }231. Then sequence %13"'3§m+1 is repetitionwise convex; so if it is

also }—wise compact, it is a standard cd-series that is moreover %—uise strongly

compact (cf. Def. 2,21).

Proof. Let }l;...;§m+1 be as stipulated, and conjecture that for some

i=2,...,mand j >i, some variable X common to }i-l and }j is not in §i'

00 s
variables in <§i+1""’§m+1> but not in fi are in }i+1’ % must be in the latter.

Since all

Now by hypothesis x is in }i_l-not-§i and 8o by ty-determination has to be an }—wise

i

be an %Awise source of some variable in §2, namely x', contrary to presumption that

oo the conjecture is disproved,showing that
%g is }-wise c-independent of }i+1' SoAfor all 1 <j, any variable common to fi-l

source of some variable f' inlf°. But then some variable in }331, namely X, would

and }3 must also be in %1——which is to say that sequence §1E> see>Xpp is
repetitionwise convex. With compactness also stipulated, it follows from Theorem 18
that the sequence is a standard cd-series. Moreover, for each 1 = 1,...,m, all
}-wiSe direct sources of each variable x in §g+1 must be in <§i,§i+1> (= <§1,§g+1)),
for by compactness, every }-wise direct source of X must be in }; and cannot be in
oo )

§i+2 else §i+1 would not be f-wise c~-independent of the latter, I

The special properties invoked in Theorem 19—-tx-determination, §-wise well-
ordered omissions, and }-wise strong compactness--are essential for a sequence of
§-subtuples to have representation in a macrocausal version of path structure. (For

the significance of strong compactness, see Theorem 24 below.) But a little more is

also needed, as realized in two stronger cases that are of special interest.

Definition 2.23. A tuple % is %—wise solid iff all %—variables are in % and
% includes all variables in every path within § from one %—variable to another.

i t X~
(Equivalently, % is X wise solid iff § includes % and, for all fi’ ﬁj’ and zk,

if %; is an X-wise source of Xy and xj is an X~wise source of X, Xj is in 2
A A 1 Ad T ST T T R L 1
if }i and Xy are both in Z, Also, Z is X-wise solid iff every tuple disjoint

from 2 that ty-precedes Z is X-wise causally independent of Z.)
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Definition 2.24. (1) A ty-determination sequence 3(1 D e D fmﬂ is ,)'(—wisg
chained (equivalently, is an }kwise chain) iff the sequence is ¥-wise compact
= ) ) )
and, for each 1 = 2,...,n, }i ty-precedes }1+1 with §i+1 }-wise solid. (2) A
ty-determination sequence §1=9'...%>§h+1 is %—wisg golidly conservative iff the
—rnt_XO - )
sequence is %—wise compact, §m+1 n°t4$m+1 ty-precedes }m+1 (as holds in particular

if Xpig = Xpa)s and for each L =1,...,m, X573 is X-vise solid.

Chained sequences are basic in causal macrostructure; for as will soon be noted, the
ty-precedence ordering }33---5§3+1 of omissions in an %-wise chained ty-determination

sequence is the molar counterpart of a microstructural causal path. First, though,

we observe

Iheorem 20, Let Xy => ... X;4y be a ty-determination sequence that is X-wise

chained, i.e., the sequence is X-wise compact and for each i = 2,...,m, }z
0 o, )

ty-precedes §§+1 with %i+1 %—wise solid., Then %2""’%m+1 is %—wise well-ordered,

and }15”’;}m+1 is a od-series that is not only standard but %-wise strongly

compact,

Proof. Assume the theorem's preconditions and hypothesize for disproof that
some variable X in any %ggi is either in }: or is an %—wise source of seme variable
in §g Since this x in 3{2&1 must be in some %(" with § > 141, and by transitivity of

J

- 0 4 _ ) _ )
ty-precedence }i tx precedes §j-1 which in turn tx-precedes §j’ there would then be

a Ssequence <x,xi,xj_1,xj> of variables wherein x is either identical with or is an

47471 1 is either identical with ¥5-1 (if i = i+1) or °
X-wise source of x, which is in Xg, x.Lis an X-wige source of x which is in X -1
A Al Al i 1 4J-1 73
and X521 is an X-wise source of x, which is in X%, With x and x; both in X°, there

A 1 13 23 1 a3 13
would thus be a path from ¥§ to §; that includes fj-l’ whence by solidity of }ﬁﬁ
o . :

fjwl would be in fj--which is impossible, since Tj'l is in fj-l which is disjoint
from %;. So for all 1 = 2,...,m, %: must be %—wise c~independent of ?;21, which
is to say that }3;...;%;+1 1s X-wise well-ordered. From there and the sequence's

stipulated z-wise compactness, conclusion that }1;...;%h+1 is a standard cd-series

that is %—wise strongly compact is immediate from Theorem 19. OJ
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The precession of stages in an %-wise chained ty-determination sequence can
be continued just as long as the precession of omissions ordered by ty-precedence
can be continued with interior variables of }. Specifically, for any ty-determination
sequence %{i > ?\(iﬂ Dees P fmﬂ that is X-wise chained, let }; comprise the variables
in Xy that are both in I(X) and are X-wise sources of X3, . It may be that X is
null; for although §i includes at least some of the }-wisa direct sources of X°

214’

these may all be in E(%). But if }; is not null, it contains one or more f—wise

solid subtuples (singletons, if no other), any of which ty-precedes §g+1 and can be
0 =¢Xx! - Y0 1 .

taken for 51’ Then if,¥1-1 <Ai-1’}i not §i> where §i is any tuple of f variables

disjoint from ?\(g that ty-determines }](; while including all X-wise direct sources of
fg not already in }i’ §1-1;§i;"’3}m+1 too is an %—wise chained ty-determination
sequence. (At least oge such %{_1 exists because all variasbles in }; are interior
to }.) Note further that whether }i-l continues the chain's precession is judged
just from thevf-wise causal relations among zi-l’ fi’ and §i+1 without consideration
of stages after §i+1' Chained ty-determination sequences are identified just by

local structure in the sense that any sequence }1;"°?§m+i is an X-wise chained
1

ty-determination sequence just in case, for each i = Ryeeeyl, §1-1;§1;§1+1 is an

%—wise chained ty-determination sequence.

When the precession of stages in an %—wise chained ty~determination sequence
¥i=9'§1+1%> "';ﬁ§m+1 has been continued as far as possible, i.e. when fi contains no
%—wise sources of §§+1 that have }-wise sources of their own, §i will in general still
contain variables in l(%) that can~be replaced by some ty-determiner }i-l thereof and
8o extend the precession even though the extended sequence is no longer }~wise chained.
But even then there may not exist any continuation stage }i-l that preserves the
sequence's character as a standard cd-series. To continue the precession of a
standard cd-series' stages until all variables interior to background tuple % have
been replaced by their sources in E(%), we need ty-determination sequences that

are'§-wise solidly conservative.
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Theorem 21. Let 3(1 = ees P ,,Xm+1 be a ty-determination sequence that is
}-wise solidly conservative (cf. Def, 2,24-2), Then (a) for each i = lyace,m, X5
ty-precedes §;+1 angnés X-wise causally independent of X 1; (Q) Xg,'-"xm41 is
f—wise well—ordered,k(g) %13"'3§m+1 is a standard and %—wise strongly compact

cd-series wherein each §g+i i = l,...,m) is }-wise solid,

Proof. Assume the theorem's preconditions. Since each %i tx—determines‘$i+1
(L =1,...,m), each variable X in }i is either identical with or is an }-wise source
0 »
of some variable {‘ in }m and hence not in §m+1’ If }' is not in §h+1, f' and hence

m+l’
)
§m+1—not~§m+1, whence f' and hence f is again an %—wise source of some variable in

X is an %—wise source of some variable in‘§° Whereas 1if f' is in }ﬁ+1 it is in
§;+1 by the constraint on %ﬁ+1 in the definition of solid conservatism. So each

X (1<p#l) ty-precedes §3+1 as claimed first in the theorem. Next, we show that

for each § = 1,...,m, no variable f in }i is either in or has an %-wise source in
};21 If x did have an %—wise source in 3231, since X is an }-wise source of some
varigble in Xpy 1t would follow by solidity of Xi% that X is in the latter; hence
it only remains to disprove that X is in Xi+1 Suppose to the contrary that ¥ is

not only in }i but also in f; for some j>1i. Then j = i+2 because Xi is disjoint
from X;+1. And x cannot be in Xj-l (since this is disjoint from };), so by virtue

of being in Xi’ which ty-determines Xj -1? x must be an f—wise source of some variable
%' in }j-l that in turn is an }-wise source of some variable in Xg+1, whence by the
solidity of xg" this x' in X;_; is also in x§°. But then X, ; is not X-wise c-inde-
pendent of X§°--which is to say that xi fails to be X-wise c-independent of xg’il only
if, for some %,>1, fk is not %—wise c~independent of~§k+1. From there it is a simple
conclusion by induction that for eadh i=np1,...,1, Xi is ﬁ-wise c~independent of
fggi' And since X is a subtuple of X5 each X° too is %—wise c-independent of Xi*i
~-=which from Theorem 19 and the compactness included in the definition of solid con-
servatism yields that %13~'-3§m+1 is a standard and }-wise strongly compact cd-series.
Finally, that each %i (L =2,...,m#) is %-wise solid follows directly from %—wise‘

00 ; o 00
solidity of %i together with the %—wise c-independence of %i from §i41.lj
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Although Theorem 21 does not have the macrostructural importance of Theorem 20,
it is nevertheleass of intereast as a molar counterpart of the microstructural point,
noted pfeviously on p. 2.17 and in Theorem 5, that when single variables are sequen-
tially eliminated from a given microcausal patb“structure;in'inverse order of causal
Independence, the variables that remain retain the same proximal sources before and
after each reduction step. An %—wise solidly conservative tx-determination sequence
e X3 P oo 7 Xppy is in effect comstructed as follows: At each precession stage
Xi, consider the tuple }; comprising all variables in l(})-not-}igl that are }kwise

sources of Xm+1' By the strict-partial-order character of the X-wise source relation,
X¥ is not nhll 1 ‘

‘t ere is at least one variable x in X; that is not an X—wise source of any other

variable in X;, and is hence an X—wise direct source of some variable in Xi+1'
Moreover, this x must be in }i’ since by compactness each %—wise direct source of
any variable in x§21 is in X; if it is not in X§%. And <x x331> must be X-wise
solid, since x is X-wise c-independent of Xi+1 and no path in X from x to Xi+1 can
include a variable not in <x,Xi+1 without violating x's status-as a variable of .
which every other variable in X; is X-wise c-independent. So if XI is not null,
there is at least one non-null subtuple X i of X (possibly but not necessarily a
singleton) that contains just variables in I(X) and for which <Xg,X§31> is §-wise
solid. From there, putting fi—l = 41_1,41—notf§1> for some %{_1 that is disjoint
from but ty-determines fg while including all %-wise direct sources of §§ that are
not already in }g gives §i-13§15"'?§m+1 to be an extension of the ty~-determination
precession that preserves its %—wise solid conservatism,

Finally, to close our present study of composable determination sequences,
there is an especially strong variety of standard cd-series, foreshadowed in

Theorem 6, that also merits explidit recognition. For convenience, say

Definition 2.25. A tuple § is (causally) thin iff § has null interior, A

_sequence §1;...;§h+1 of tuples is essentially thin iff each stage }i prior to
%m therein is thin, i.e., iff I(§i) is null for all i = 1,...,m-1.
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Then,

S & X '%. Corol-
Theorem 22. If } )}?% and ,)\( is thin, then} disconnects X from % oro}
lary. Any s-determination sequence that is essentially thin is a standard

cd-series,

Proof. Suppose that }, ¥, and % are as stipulated. Then } disconnects }
from % if conditions (a) and (b) of Theorem 14 are satisfied. Note also that Q(})
= E(X,Y) = E(X,Y,2) = E(X,2) while all variables in Z-not-X are in I(X,2) and hence

AT 4 A4 4 AT A A 4 1" 1
in l(¥,¥,%) Any variable z4 common to % and } nmust also be in Y; since otherwise,
were z; to be in %—not—,\Y, it would be in l(X, %) (by premise }‘—‘)%) and hence in
;(f,%,%), whence Z3 would also be in ;(%) (since 23 is in X and E(%) = E(%,;,%))
contrary to stipulation that l(%) is null. So condition (a) of Theorem 14 is satis-
fied. To see that condition (b) also holds, let ¥; and z; be any variables in §-not—Y
4
and %—not-}, respectively, and suppose that yij is any path in y =3ef <§,¥{}) from
Xy to z4. Since f has null interior, X; is in §(§) and hence in E(y); so yij is a
total path to 24 in Y starting with fi' Moreover, X, is the only }—variable in r&j’
else some other {fvariable would be interior to y and hence to %. So unless ?ij
contains a variable in X, either 2y is not interior to B;notf}i (which occurs if,fi
is a direct source in H of all other variables in ?13) or some terminal segment of
yij containing only variables in %—not-} is a total path to 23 in E;notffi' Either
way, failure of fij to pass through X entails that some variable in ?—notfy is in
the exterior of ?—not-fi—-which is impossible, since every variable in ?—notf¥ is
interior to ¢¥,Z> and hence (since x; is not in Y or 2) interior to W-not-x, =
AT A A A A A A

< - -, >o b - et .

f not fi'f’f So every path from % not ¥ to %—not X must pass through } The
corollary is immediate from Def. 2.19. [

In view of Theorem 22, thinness is an extremely attractive property for Tuples
to have, one under which the causal composability of an s-determination sequence's
single-step transducers can be diagnosed from Just the local structure of each
constituent tuple considered apart from all the others (together of course with the

s-determinacy between tuples adjacent in the sequence), Moreover, any s-determination
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sequence }i=€>...%>}h+1 can alwgys be reduced to an essentially thin one with the
same terminal stage }m+1 simply by replacing each §i prior to,§m+1 therein by E(fi)’
(Replacement of Z[m by g(%(m) is optional.) However, if Xy ... é>3(,m+1 is a cd=series
that is not essertially thin, its reduction §(§1)5> §(§2)5> cee D g(g{m)é} Xna to
essential thinness is not compositionally equivalent tﬁ the original sequence,
Insomuch as the causal transducers involved are nontrivially different. Specifically,
if‘§59>% (where we take X for any }i and % for any later }j in the series), the kth
component 2 = dk(f) of the quasi-causal regularity under which Y Getermines %
generally fails to embed the causal regularity or noncausal identity-selection
3y = ¢1;(§(¥)) under which _E_(X) determines Zpce

To be sure, given a cd-series %159 e }h+1 that is not essentially thin,
it may be possible to reduce this to one that is while preserving the essentials of
the original series' transducers. The technique for this is to replace first }m by
its subtuple }é that contains only variables that are either in }m+1 or are a direct
source within <§m’§m+1> of some variable in‘§m+1-not-§m, then to replace }h-l by its
subtuple }&_1 containing only variables that are in }& or are a direct source in
<§m-1’§é> of some variable in %;antﬁzm-l’ and so on recursively for i = m,m-1,...,1.
However, these reduced sequence stages }i are by no means certain to be thin in
prineiple even though that may be a not-unreasonable assumption iﬁ most applied
contexts. Considerably more remains to be said about this matter. But more is

not called for on this occasion.

Partial compositions.

Although we have now examined the theory of composable macro-causal regular-
ities in considerable detail, the situation just studied--s-determination sequences
in which each stage is a complete quasi-source of gll variables in its successor—-is
still not the most general form of maefbgausai composition. Microstructurally, the

problem of causal composability arises primarily from mediations wherein the output

variable of one causal regularity is just one of the conjoint input variables in a
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second. Correspondingly, study of mediation at the molar level wants also to con-
sider how quasi-causal regularity %' = %'(%) can be composed into quasi-causal
regularity Y = 5(%) when Z' comprises only some of the variables in %. When need
for the distinction arises, we may call the latter case "partial" composition in
contrast to "total" compositions in which the output tuple of one composing quasi-
causal regularity is essentially identical with the total input to the other.
Technically, however, it is most convenient to understand "partial composition" in
a generic sense that subsumes total compositions as the limiting case wherein %' = %.
Using the notation explained on p, 2.18f., the partial composition of
' =¢'(X) into ¥ = #(Z) vhen all 7'-variables are in ZisY = ﬁ?(%—nbt—%',%'()})),
wherein €~1 15 the permutation operator that rearranges % as <%~not-§',%'>. To
avoid needless complications, we shall assume that € is an Identity permutation,
i.e., that % = <Z-not-Z',Z'> so that the composition at issue is Jjust X = [(%—not-
%',¢'(%)). Given that these composing regularities are quasi-causal, we want to
know the conditions under which their partial composition is also quasi-causal. The
answer is of course already implicit in CmP-4 and Theorem 7. But it takes consider-
able effort to translate these microcausal principles into perspicuous molar terms.
Happily, the bulk of that work has already been accomplished in Theorem 15 for total
molar compositions. It only remains to show how the latter can be extended to
cover partial compositions as well,
The extension is really quite simple. When Y= #(%) and %' = ¢'(§) are

. is
quasi-causal with all %'—variables in %, and for simplicity %Lordered'as g = <%~not—

1
2',2'>, e have 1:‘-»?', Z27Y, and hence <§-not-§',§>='><§-not—§',4z'; = 2% Y. That
is, <%—not-§f,§) s-determines X, through the partial mediation of %', under some - quasi-
causal regularity X = 9(%-not-§',§). So the partial composition Y= ﬁ(%~n0t~§‘,¢‘(}))
of %' = ¢J(§) into ¥ = d(%) is quasi-causal just in case this composition's transducer
is 6. Let us assume that % disconnects % from %, since by Theorem 7 this is for all

practical purposes a necessary condition for the partial composition to preserve

cauéality. (Making clear how Theorem 7 has this molar implication is somewhat
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tedious, and will not be attempted here.) This is equivalent to presuming that % dis-
connects <Z-not~Z',X> from }. Then if 2 = %(%—not-}',%) is the quasi-causal regular-
ity under which <%—not-%',%§> determines 7, Theorem 15 entails that ¥ = ﬁ%(%—not—%',})
is also quasi-causal, i.e., that © = g¥. So given this disconnection premise,

} = ;5(?—1'101‘.-%',54'()})) is quasi-causal just in case its transducer is gy . Finally,
this partial composition's transducer is indeed g¥ if and, with few if any signifi-
cant exceptions, only if 2' = ¢'(§) is seswwssstmsss embedded (cf. Def. 2,17) in

% =s£(%knot-§',§). (I can't find any simple way to verbalize why that is so. One
just has to think through the formalisms and see (i) that the transducers in } =
5(%~not-%',¢'(§)) and X = ﬁ%(%-not—}',§) are both functions on the logical range of
4%-not-%',§>; (11) that <Z-not-2',¢'(X)> = ¢(Z-not-Z',X) for all arguments of these
compositions just in case Z = ¢(§—not-?',§) embeds 7' = ¢ﬂ(§); and (iii) that for
any functions « and /3 whose values are arguments of ¢, gec = g/3 if and, for all
practical purposes, only if % =/3, To get clear on (ii), it must be understood
both that if the ith variable Zy in % is in %—not-%' then the ith component function
in % = ¢(%—not-§',§) is an identity selector that picks 2y out of <%—not-§',§>, and
that %' =,L'(§) is embedded in 2 = ¢(§—n2t-%',§) just in case each component function
in the latter for a variable in ?' differs from the function in the former for that
same variable only in including variables in %-not;%' with null weights.) So

Theorem 15 also implicitly covers partial composition in the sense that

Theorem 23. If T = d(%) and 2' = ¢'(§) are quasi-causal regularities
wherein % includes all variables in 2', the (partial) composition of g = 36'()4()
into X = {(%) is also quasi-causal if and, for the most part, only if % discon-
nects 5 from } and the quasi-causal regularity under which <%—not—?',}> determines
"’% embeds %' = ¢J(§). (Note that if %' = %'(%) is embedded in X = ﬁ(%), the -

embedding is pre-emptive.)

The structural conditions that satisfy Theorem 23's embedding requirement are

stralghtforward from the definition of embedding: Given that these regularities are
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both quasi-causal with all Z'-variables in Z, 2' = ¢'(§) is embedded in 7 = ¢(%—not-

%',%) just in case, for each variable ?i

z = ¢(%—not-%',§) and %' = %'(%) determine zy by noncausal identity-selection from

in 2', either z! is in X (in which case both
7] 41 A

their resvective input tuples) or ?i has the same proximal source within % as it

has within <§~not—%',§'. This either/or condition for the embedding holds for all
variables in %' just in case all paths from %—not-%' to %' within <?,§> pass through
g. And since }i? %’ with %' disjoint from %—not—%', the latter is in turn equivalent
(cf. Theorem 14) to saying that § disconnects %—not-%' from %'. So Theorem 23 can

be rewritten as

Theorem 23a, If I= 5(%) and %' = ¢J(§) are quasi-causal regularities wherein
Z includes all variables in Z2', the (partial) composition of 2! ==¢'(§) into
T= #(%) is also quasi-causal if and, for the most part, only if % disconnects

X from Y and X disconnects Z-not-Z! from Z'.
A A A A A 1

It only remains to show how partial composition works out in development of
cd-series, Recall that any s-determination sequence %15> ...57Xh+1 can be viewed
as a precession X —)HX1+1 (i = m,m=1,...,1) in which at each stage a subtuple Xi+1
of Xi+1 is replaced by an s-determiner ; X‘ thereof with X' and X 14 disjoint, i.e.,
Xi+1 = Xi+1-not-Xi, ‘>IX1+1, and Xi = <Xi’xi+1'n°t'xi+1 If }i+1 = '(X’) is
the quasi-causal regularity by which }i determines %i*i’ when does that suffice to
identify the regularity §1+1 = #i(§i) under which all of }i s-determines all of
§i+1? This identification obtains just in case Xg+1 = ﬁ;(x') is pre-emptively = .o
embedded - in Xi+1'= ﬂ (X ); i.es, just in case the 1atter can be constructed- from
the other just by null-weight insertions of variables Xi-not-xi into the determination
of X§+1 by Xi, together with identity selectors to pick variables in Xi+1-not-xi*1
out of }i' We shall now see thgt with only routine care in selecting %{, this
desired embedding always holds for, inter alia, sequences satisfying the preconditions
of Theorems 20 & 21.

First, let us clarify how Theorem 23/23a applies to a standard cd-series
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§I'>‘""5>§h*1 of }—subtuples. As before, §i+1 “def §1+1'not—}i, and we also
presume that owr interest in the s-determination of each §i+1 by §i is focused on a

distinguished subtuple §£ of }i that s-determines X2.. while being disjoint from the

1ifa
latter, (Before we are done, X{ will receive an additional constraint.) To subsume
X S5XanY X; 4o under Theorem 23/23a, we take Xj4p for Y, Xi+l for Z, XH’1 for Z
and X{ for X, whence Z—not-?' becomes }1+1-not-§i+1 and some permutation of
<Z—not-Z' X> becomes Xi‘ By stipulation that this cd-series is standard, Xi+1
disconnects Xi from Xi+2’ So if Xi+2 = ﬁi+1(Xi+1), Xi+1 = ﬂi(Xi), and Xi+1 d;(%{)
are the quasi-causal regularities under which §i+1’ %i’ and %{ respectively deter-
mine §1+Q, §i+1’ and §g+1, Theorem 23/23a tells us that the quasi-causal regularity
§i+2 = ﬁi+1¢i(§i) under which %i determines %142 through the mediation of §i+1 is
logically equivalent to the partial composition of §g+1 = ﬁ;(%{) into §i+2 = ﬁi+1(4i+1)
if and for all practical purposes only if }g+1 = d{(f{) is (pre-emptively) embedded

in Xi+l = 5&(X )s i.e., if and essentially only if X; disconnects Xi+1-not-xg+1 from

§g+1 -&nd since (X1+1-not-Xi+1)-not-Xi = Xi -not- Xi’ X! disconnects Xi+1-not-xi+1 from

Al
X1+1 just in case X' disconnects X, from )44

i+,

To obtain this disconnection under macrostructurally normal circumstances,
leﬁ ¥13"'3§m+1 be an §—wise compact ty-determination sequence that achieves standard
cd-status through }—wise well-ordering of %g;...;§3+1 (cf. Theorem 19). Then for

= . yO = )
each 1 = 1,...,m, all %—wise direct sources of }i*i are in <§i,}i+i?(— ‘§1’§i+1))
by the strong-compactness consequence in Theorem 19. So without further constraining
the %i we can presume also that the %{ part of each %i has been chosen to ty-determine
Xg+1 by ineluding all X—wise direct sources of Xg+1 that are not in Xg+1. The latter
'is equivalent to making each X:{'X“_l X-wise compact;.and indeed, to attain the
properties wanted for X13"'3xm+1’ it suffices to stipulate that each Xi tx-precedes
Xi+1 with Xi’ X % X-wise compact and Xg,...,Xm+1 X—wlse well-ordered. Then %13"°3}m+1
in its entirety is an %—wise strongly compact ty-determination sequence that is more-
over a standard cd-series. Finally, let us also require each §g+1 1= 1,...,m) to

be }—wise solid, as holds for sequences to which Theorem 20 or Theorem 21 applies.
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Then solidity of }§+1 combined with compactness of }';§§+1 entails that every path

in X frem X; to X0 ., has @ terminal segment consisting of a variable in X' followed
A A i A4l i
by one or more variables in }gﬂ 3 hence from Theorem 14, since 2(1 and 3(2_,_1 are

disjoint, ;l(i' disconnects X; from ;‘cg 4+ In short,

Theorem 24. Let }15"’3§m+1 be a sequence of }-subtuples assembled from
the variables in quasi-causal regularities f§;+1 = #;(%i)f (1 =1,...,m) and
some possibly-null subtuple };}1 of } in compliance with the following constraints:
(a) }3;...;§g+1 is X-wise well-ordered with each %g therein X-wise solid. (k) For

= 1 - 0 1 0 1,30

each 1 = 1,...,n, %i ty-determines %i with %i and'§i+1 disjoint and }1,4141
X-wise compact. And (c) Yo = ‘3,(1?1 +1’3|(;+1>’ while for each 1 =1,...,m,

2 ) .
§i = <§£,}i+1-not—xi+ib i.e., %i comprises }i together with whatever }141-var-
iables are not in §§+1. Then %13"‘;§m+1 is a standard cd-series in which, for
each 1 =1,...,n, §§+1 = ég(ﬁi) is pre-emptively embedded in the quasi-causal

= O = gafyd

regularity X; ;5 ‘i(fi) under which %i determines {1+1. That is, fmii «j#§4$m)
is pre-emptively embedded in %m*l = ﬁh(}m):(and is identical with the latter in
the paradigm case of null };}1); the quasi-causal regularity §m+1 =1ﬁ;_1(§m_1)
under which }m—l determines §m+1 through the partial mediation of ?; is the
partial composition of }; = #;_1(%é~1) into Xy = ﬁh(fm); and more generally,
recursively for i = m,m-1,...,1, the quasi-causal regularity'¥m+1 = ﬁ;(§i) under
which }1 determines ¥h41 through the partial mediation of <§g+1,...,§;> is the

partial composition of §2+1 = #; (%3) into Xpy = ¢§+1(§i+1)°

Conversely, whenever §1=? ...%>§h41 is an §7wise compact ty-determination
0, .yO0 = _ ) =
sequence in which %2""’§m+1 is % wise well-ordered and each §i+1 (L=1,...,n) is
%—wise solid, notably when the preconditions of Theorem 20 or Theorem 21 are satisfied,

i
can be selected for which {f{}, é%i?’ and {§g4ﬁgsatisfy the preconditions of Theorem 24.

the sequence is also strongly compact (cf. Theorem 19) so that subtuples %' of the %i

If we want, the tobal compositions for this cd-series }1;"‘3§m+1 in Theorem 16

fashion can be reformulated as an iteration of partial compositions as described
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in Theorem 24. But iterated partial compositions are difficult to handle conceptually.
The singular charm of standard cd-series--a prime reason to think about causal relations
in molar rather than microstructural terms--is that these allow us to formalize
iterated partial compositions by linear strings of total compositions whose constit-
uent quasi-causal transducers contain their strietly causal information in the form

of embeddings.

Molar path structure.

Previously (p. 2.48) we reviewed the manifold aspects of microcausal structure
represented by path digraphs. We are now in position to consider what a molar
counterpart thereof might be. .

Evidently, to be usefully isomorphic to its microcausal prototype, a macro-
causal path digraph must comprise on the one hand a finite set L = §§1} of Tuples,
and on the other hand a partial-order relation —-e» on Iy that directly or indirectly
represents causal connection/mediation/disconnection/determination/composition
relations among tuples in ;X in fashions corresponding as closely as we can manage
to the microstructural path manifestations of these. To develop such an isomorphism,
we can best seek first of all a molar counterpart for the microstructural model's
most essential character, and then consider whether that gives us all we want or
at least all that we can have,

The interpretively deepest feature of a microcausal path digraph ’W&, in which
are joined all five facets of its representations, is that a path therein of length 2
or greater demarks the microcausal version of a chained cd-series. For, suppose that
<f1’°"’fm+1> is a path from Xy to fm+1 within tuple f. Then for each { =1,...,m,
X34 has a proximal source }; within f that includes Xi' If we put §m41 =3ef <Xp41>
and }i =3ef (§;’§i+1'n°t"fi+i? for i = m,m-1,...,1, each %i is formed by replacing
X4 in X34 by X; together with the other %—wise direct sources of x

i#a°

§13'°'5§m+1 here is a ty-determination sequence in which %g = ‘fi’ for L =2,,..,m+l.

o _
(Unless <x1,...,{m+1> is a total path to XmH in %, putting also X; = <§1> selects

fl as the omission for continuing the precession.) It will be evident from Theorems

So
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3 & 17 that this }1;...;$h+1 is a standard cd-series. But more than that, since
the sequence is.g;§§;13?§éﬁ%aéiqpmpact while singleton tuples ‘fé)”"’ffm+1) are
all %—wise solid and each fi ty-precedes 5141 (1=1,...,m), %1;...;§ﬁ+1 is an }—wise
chain of ty-determinations whose special character has been described previously '
(p. 2.67f.) And the fact that any path to Xn4] in } is the terminal segment of a
total path to fm+1 is just a special case of the molar principle that the precession
of stages in an %—wise chain of ty~determinations can always be continued until its
initial stage %1 contains no variable in 1(}) that ty-precedes %g.

Accordingly, we take our guiding directive for molar path theory to be that
& macrocausal pathrdigraph 'ﬂ% is above all to represent sequences of omission tuples
in chained cd-series, while reducing to a microcausal path digraph in the limiting
case wherein all its nodes are singletons. The technicalities in Theorem 20 largely
dictate what any such 7Tx must be like. First of all, its nodes must be tuples {fif
of variables from some base (background) tuple %. Secondly, Ty must contain a
partial-order relation —e» on Tly-nodes signifying direct antecedence in T,. It
will be convenient to call —e» the direct-source relation in ]7%, though we must
take care not to confuse this with microcausal direct-source connection in § proper,
Any node %i on 8 -e-»-path to any node‘1Xj in 1Tk must ty-precede and be f-wise causally

independent of §j; hence in particular fi and %j must be disjoint. The aggregate }3
of all nodes directly antecedent to node %j in 1Ti must tx-determine §j while discon-
necting all other TTi-nodes‘from‘}J. (Here and subsequently, the super-bar in f;
denotes a subtuple of § that is not necessarily in Zk.) And last but far from least,
interior nodes of 1ﬁk must be X-wise solid.

Let us say that a set = ffil of tuples is a partition of tuple f Just in
case (a) each fi in Iy i1s a subtuple of X, and (b) each variable in % is in exactly
one tuple in Zy. (Condition (b) entails that any tuples %i and %j in % are disjoint
unless }i =:$j’ whence in particular fi = %j only if %i 2143. And (a)'s requiring
each fi and 55 in Zx not merely to contain only %—variables but to be subtuples of

% has the convenient but nonessential consequence that fj contains all variables in
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%i only if 3(5_ is a subtuple of ,,Xj’) Then the requirements on '\TX Jjust noted are
fulfilled 1f we stipulate that an (ideal) molar path structure (i.e. macrocausal
path digraoh) on base f is any 2-tuple 'ITX (¢ Ix,-o»? satisfying the following

conditions:

1) Zx is a partition Iy = 5)4(13 of /\X in which every node (tuple) Xi is
X—wise solid; and —e» is a binary relation on Zx (I Xi—e-’Xj, we say that
Xi is a direct source of Xj in Trx and that Xj is an interior node of TTX. If

/\X is in Zy but has no direct source in T+, 45 is an exterior node of Tlv.)

2) For every node Xy of Ty, define the T x-wise proximal source, }'-(3*, of ?1( 3

to be the (pessibly null) subtuple Z(-; of 3\( such that each Tly-node 3(1 is either dis-

J,Qi;é?f iff Xi—e-»xj. That 1is, )-(§ comprises just the variables in all direct-sources

of X;] in- VX' Then for each Vx-node Xj’ if X; is non-null, X* tx—determines X

with X; disjoint from Xj and Xg'Xj X-wise compact (cf, Def. 2 21)

ad

3) Whenever X —e) Xj in 7&, 2‘(1 contains at least one X-wise direct source

3(; and is the latter

from or is a subtuple of

of some variable in ?\(j'

4) Each exterior node of TT;( is X-wise causally independent of all other

hodes of ’ﬂ'r

An immediate consequence of Condition 2 is that Xi-e-rxj only if Xi ty-precedes Xj

with Xi # X;)’ hence from the class:LCal-partial-order status of ty-precedence and the

equivalence of = with = on Zy» —o> 1s a strict (i.e. irreflexive) partial order on Zx.
S Given any @értition Ex of ?r( ‘whosg;iﬁﬁéé};j_a_xje;?r(_{-_wisé‘jsblid, _Conditions'g-:fy_‘"~

provide an qipli_cﬁ: definition ‘f‘or.?/';a“;;l' on Iy that may net, however, satisfy the entirety

of Condition 2. Specifically, Conditions 2-4 entail that for any nodes Xi and Xj

some variable in ')t{ _{The or I—lf part of this is just Conditlon 3.with irreflexivity
a’ddedflfrom Condition 2; its if part holds because if 2(1 75 3(5 when ?1(1 contains an

X-wise direct source of some variable in f j? Condition 4 disallows X* to be null,

A ad

whence the compactness stipulated in Condition 2 requires X; to be included in f}*
1 1
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Taking this biconditional to define —e» gives us that whenever Xj is non-null,
X; s-determines X3 with Xjéx - X-wlse compact and X; disjoint from Xj It does not,
however, insure that X; ty-vrecedes X. whenever X;-e+ X., as needed for X*'s g-deter-
A 13 1 ad 7]
mination of }j to be tx-determination as Condition 2 also requires. So what Con-
ditions 2-4 really stipulate, beyond explicit definitions for -e» and {g:f, is
that ;X so partitions X that whenever Xi # Xj therein, Xi contains an X-wise direct
1 1 1 A 1
source of some variable in fj only if each variable in }i is an %—wise source (not
necessarily a direct one) of some variable in Xj.
The organization of an ideal molar path structure on § is gratifyingly tidy.
First of all, each path 3‘(1 - 2(2.0-. ees *,ﬁnﬂ in 'IT}'( identifies an X—uise chained
ty~determination sequence 2(1=> 4?29 e D i 2> X m+] Wherein X° a = X m+] 8nd precessing

from there, for each i = m,...,2, gi = Xi and Xi—l £ <X*X, —not-X°> = <X* Xi-not-§i>.

ai’ai 11 11’

(Proof is immediate from Def. 2.24-1, since %-wise compactness of 8114};;§i entails
that ?i;...;§£+1 is X-wise compact, %—wise solidity of each }i is a'basicfgﬁipulation,
and each omission tuple }i ti-prec?desf§i41 #p the4F4*f*P§th as already noted.) This
is exactly like the chained tx-determination sedﬁences demafked by microcausal digraph
paths except for generalizing single-variable omissions to §-wise solid omission -
tuples. Also as in the microcausal case, the quasi-causal regularity under which

each ?? determines §i is pre-emptively embedded in the one under which.?i_l determines
?;. (For the significance of that, see Theorem 24.) That this ty-determination
sequence Xl D e P X 9 m+]1 ldentified by molar path Xl-e-> vos "°”xm’°"xm+1 is

a cd-series with the pre-emptive embedding just noted is the molar version of causal
composition principle CmP-4, and for m = 2 reduces to the latter when the omission
tuples are singletons. Also worth making explicit is that for each interior node

%5 of 17%, all microcausal paths within % from any variable in K-nOtffi to any
variable in Ei:pass through g}ﬂ(since ?g;fj is X-wise compact), so that zg disconnects
X-not—Xj from Xj. Moreover, from Condition 3, i; is the smallest (least inclusive)
aggregate of 17k-nodes having this disconnection property. That is, for any X-subtuple

j comprising the variables in some subset of Iy not including Xj’ if Xj disconnects
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X-not-X, from X; then X¥ is a subtuple of i+. In the limiting case where X; =<x,>
A 23 13 13 ad A3 779

and all nodes agpregated into ?; are singletons,‘?; is the microcausally proximal

source of %j in }--just as needed if molar path struetures are to include microcausal

ones as limiting cases,

Secondly, for any two variables X3 and fj in distinct 77;—nodes'§i and }j’
respectively, X5 is an %—wise source Dflfj only if there is a —e--path in 17§ from
fi to }j’ (Proof': ‘We;havelé%ready:observgd 1n'gligptlgjdiffbrentﬁﬁe#ms thg}/whenever
‘jhéfé,iéja length-2 path within } from a variable in 'ﬂi-node }h to a variable in
1Tk-node }k’ either }h = }k or }h'**’}k’ From there, completion of the argument is
obvious.,) Consequently, for any two distinct 77k—nodes fi and %J’ §1 is }-wise

causally independent of }J Just in case there is no —e>-path in 1T§ from § to §

i
And from there, under the partial-order character of ~o->, 1t follows that every

jn

sequence of nodes in 7Ti has at least one permutation under which the sequence is
X-wise well-ordered (cf. Def. 2.22-4)--just as holds for any sequence of single
variables in %. Using this well-ordering principle, for any node %j to which there
is a -e>-path in lﬁi of length 2 or greater, we can construct from the nodes in 7Tk
an %—wise solidly conservative ty-determination sequence (cf. Def. 2.24-2 and
Theorem 21) that precesses from %3 to the aggregatg of exterior 77i-nodes that
ty-precede %j’ Specifics on this point need not detain us, however, for they are
Just an instance of the most basic isomorphism between ideal-macrocausal and micro-
causal path digraphs.

Most fundamentally, if 17& is an ideal molar path structure, an exact
counterpart of Theorem 1, and hence of all ensuing microcausal theorems, holds for
77%. Detailing that correspondence would be unnecessarily tedious here. But the
point is simply this: If %m is any nodef§f7ﬁif_eijher;intefib:ggr exterior, there
is also an ideal molar path structure 7Tk-not-xm whose nodes.are just the nodes of
17% excluding }m’ and whose direct-source connections are derived from those in
77; exactly as described by Theorem 1 for microcausai direct-source connections in

¥ vs., %—not-fo. (Proof will be omitted here, but it follows straightforwardly from
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the relation just noted between any microcausal path within 2\( and the derivative
macrogausal pathin EH:X‘} “Amd whenever z(m is an interior node of 77;(, the proximal
quasi-causal regularities { 3\(1 = ,{;(f;*)? in fo generate the ‘proximalities in

/\ R

Ty

not-X_ in exact isomorphism to how this occurs microcausally when ?ti is reduced

to }'Mt',’fO' Specifically, each W}—node ,)\(j of which ,)](m is not a direct source in
_)TX has the same proximal source ;\f; in -n;(-not—Xm as 1t has in 77;(. But if
}m-l"‘"’z(m“e"%m*l in VX: and we write Efm = ,?:1 1’ gm-l = <§;,;fm-not—3(m2 in accord
with our prior observations (p. 2.81) on the compositional import of -e» -paths,
Em._]_=> ,}:im:} ,)\{mﬂ is an %—wise chained ty-determination sequence of length 2 whose
stage gm—l becomes the proximal source of §m+1 in reduced molar digraph T];I-not-xm
under the quasi-causal regularity derived by composing into Xpa = ":ﬁl(};ﬁﬂ) the

one under which :‘im-l determines :);fm and in which }m = ﬁ‘i(%-(,:) is pre-emptively embedded.
In such fashion, the quasi-causal regularity %k = ’{khqfh) under which any given
interior node %k of 7Tx is determined by an aggregate gh of Trx—nodes not all proximal
for ,}‘(k in 77;( can be derived from 77’X's prpximal regularities by iteratively
eliminating from T)} the buffer nodes that are on —e-)-paths between ?h and 2,(k"

(Cf. Def. 2.9 and Theorems 4 & 5.) If gh tx-determines }k and the sequence of
omission nodes (deleted from right to left) is %‘-wise well-ordered, it can easily

be seen that X = '{kh(gh) is the composition of a cd-series (in fact an ?‘(-wise

solidly conservative one) whose single-step regularities are, or derive by pre-emptive
embedding from, ones that are proximal in 77'x.

The goals set for this chapter have now been essentially achieved. We have
studled the logic of causal composability in some depth, and have seen how the
complexities of recursive compositions that preserve causality, which are largely
intractable in microcausal terms, can be effectively conceptualized as cd-series _
of quasi-causal molar regularities. And we have observed reasonably general con-

ditions under which, with t-precedence taken as our molar counterpart of the causal-

source relation on single variables, the ty-precedence structure of nodes in a
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molar partition of base tuple § is characterized by principles that are virtually
word-fersword tran¥Yatichs of the principles that govern microcausal paths in %.
That is quite enough for this occasion. Nevertheless, there is a great deal more
to be said about causal macrostructure, and some of what remains for molar digraph
theory deserves parting acknowledgment.

First of all, the version of molar path structure defined on p. 2.80 has
been labeled "ideal" to recognize that alternatives to Conditions 1-4 may also
ldentify patterns of molar causality that usefully resemble microcausal path
structure. What might such alternatives be? Conditions 3 & 4 contribute little
to the isomorphism, and can be waived with only minor complications for Tfk'a
representation of disconnection and X-wise causal independence. But Conditions 1 & 2
do not easily submit to relaxation. Even so, we do not want disjointness of molar
path nodes to be obligatory; for molar attributes that we treat as causally distinet
often appear to have overlapping microcausal abstraction bases. There is no evident
reason why molar path models cannot admit interlocking nodes, but it will take work.

Then there is the question of how a molar path digraph 7fx on } can best
be embedded in ones on supertuples of %. The theory of this should be largely
routine, but it still awaits accomplishment. | |

Above all, given the microcausal path structure qfx within tuple }, is there
any insightful algorithm that can extract from 17& the partitions 58&3 of § for
which TZ§ = {2y, -8»» with -e» suitably defined (cf. p.'2.80), satisfies ideal
digraph Conditions 1-4? Let us call such an 17} a "molar derivative" of T,. Any

V has two trivial molar derivatives, the degenerate one having just X itself for
its- only node, and the one in which Iy consists of X's singleton subtuples. (The
latter is not degenerate, but differs from 17* merely in replacing each f in % by. ¢¥>.)
But Tﬁk also generally has nontrivial molar derivatives as well. Can these be found
by some technique more efficient than generating every partition of % for separate
appraisal? We have already identified the essential criterion for Zy to comprise

the nodes in & molar derivative of 7fx: Each node }3 in Zx must be X-wise solid,
1
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and any other nodelfi (# }j) that contains an<§-wise direct source of any variable

“ting with some TTk already known to be a molar derivative

of 7fx, is there some way for us to determine with comparative ease that combining
certain nodes of 7rk into coarser nodes (or, alternatively, splitting certain nodes
of 7Fk) generates another molar derivative TTi of 7ﬁx? What 1is envisioned here is
the following: For any two molar derivatives 77& and ffi of 77&, say that 7Ti is a
"coarsening" of 7TX iff each node of 7TX is a subtuple of some node of 77%. Then
the coarsening relation is a classical partial order--in fact, a lattice with the
two trivial cases already noted as extremes--on the set MQC&%) of 7YX'8 molar
derivatives. And MD(My) is finite, so for each 7Tk in MD(Ty), the-subset of MD(Ty)
gompxig?ﬁ?%ﬁﬁgiiﬁbéé}é@édiate;su@césSors (alternatively, the immediate predecessors)
of TTX in fhe éoérsening order is not only finite but in all likelihood no more than
a very small fraction of MD(7}). A method for converting any Ty in M(My) into a
list of its immediate successors (or predecessors) then provides orderly identifi-
cation of all molar derivatives of TTX. Whether insightful procedures of this sort
exist and, if they do, just what their value may be for the theory of molar causality,

1s far from clear. But the abstract question is intrinsically challenging.




