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CHAPTER 2. THE MEDIATION STRUCTURE OF MULTIVARIATE CAUSALITI 

Although Chapter 1 seta out the main conceptual framework within which 

t r a d i t i o n a l notions of multivariate c a u s a l i t y can best be reconstructed, we have 

scarcely begun to d e t a i l the theory of causal structure required to make sense of 

oxxr i n t u i t i v e interpretations of computed data parameters, Inswnuch as t h i s theory's 

motivation arises one l e v e l removed from the immediate p r a c t i c a l i t i e s of data analysis, 

readers whose interests i n MODA are pr i m a r i l y applied may prefer to skim t h i s chapter 

only l i g h t l y or omit i t altogether i f i t d i s t r a c t s from t h e i r comprehension of 

MODA'8 operational character. For once we posit a p a r t i c u l a r model of well-specified 

form to explain our observations at hand—the conventional point of departure i n 

the l i t e r a t u r e on causal m o d e l i n g — l i t t l e remains but to work out solutions for 

t h i s model's parameter estimates and to appraise t h e i r sampling r e l i a b i l i t y . Never­

theless, when we move beyond p a r t i c u l a r solutions to contemplate a d i v e r s i t y of 

models for the ŝ me data array, or to compare re s u l t s from several d i f f e r e n t studies 

purportedly dealing with the same phenomena, and r e a l i z e that the differences 

manifest there may be complementation as much as c o n f l i c t , we can appreciate need 

for a deeper understanding of causal r e l a t i o n s . 

The objectives of t h i s chapter are r e a l l y q t i i t e l i m i t e d . Most importantly, 

we want to get clear about what might be ca l l e d "causal micro-structiure," namely, 

the l o g i c by which one variable x has causal import f o r another, y, r e l a t i v e to 

some par t i c u l a r choice of supplementary y-sources Z that conjoin x i n determining 

y while doing so through the mediation of s t i l l other y-sources that can als o , 

though need not,* be included with <:x,Z> i n assessment of j o i n t effects on y. Our 

primary goal here i s to i d e n t i f y the conditions under which the composition of one 

causal r e g u l a r i t y into another i s i t s e l f a (iwdiated) causal r e g u l a r i t y . And we 
digraph 

s h a l l arrive at the wanted composition p r i n c i p l e through Sj^representation of mediation 

structure which explicates and generalizes the notion of "causal path" that has long 

been i n t u i t i v e i n the l i t e r a t u r e on l i n e a r s t r u c t u r a l models. From there, we turn 
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to some rudiments of causal macro-structure, which seeks to Identify s t r u c t u r a l 

connections among aggregates of variables that are molar counterparts of micro-

structural r e l a t i o n s . What we are mainly after here i s just a way to t a l k about 

causal mediation and causal determination among tuples of variables as wholes i n 

a way that preserves the essential partial-order and composition properties of 

micro-causality without requiring our formalisms to be e x p l i c i t about the underlying 

micro-structure. 

As already acknowledged, none of the material developed i n t h i s chapter i s 

e x p l i c i t l y required for MODA's application to p a r t i c u l a r data arrays. But some such 

theory i s needed to explain what we are t a l k i n g about when using MODA or any other 

multivariate method to make inferences about causal parameters. 

To ease into t h i s chapter's t e c h n i c a l i t i e s , i t may help to review some 

prestmtptions/stipulations about variables and causal order proclaimed i n Chapter 1. 

Among those worth a reminder are: ( l ) A l l variables at issue are j o i n t l y d i s t r i b u t e d 

over some fi x e d population P, and any r e g u l a r i t i e s , causal or otherwise, that we 

hsrpothesize to govern these variables are likewise prima facie r e l a t i v e to t h i s P. 

Henceforth, however, e x p l i c i t reference to population P w i l l be t o t a l l y elided 

throughout t h i s chapter. (2) The causal-source r e l a t i o n on pairs of variables i s 

t r a n s i t i v e , i r r e f l e x i v e , and i s defined by same-subject causal r e g u l a r i t i e s (over P). 

(3) A l l tuples of variables are f i n i t e with no within-tuple r e p e t i t i o n s ; i . e . , the 

variables within any specified tuple X are a l l d i s t i n c t , and i f tuples X and Y have 
A h 

any variables i n common, <X,Y> i s not the X-sequence continued by the Y-sequence 

but only what remains of t h i s concatenation a f t e r repetitions are deleted from the 

ri g h t . And U), when Y i s a subtuple of X, not only are a l l Y-variables also i n X, 

their order i n Y l a also the same as i n X. 
A A 

Treating ensembles of variables as tuples, rather than unordered sets, i s 

mandated by certain formal needs. But i t has the i n f e l i c i t o u s consequence of requiring 

recognition of order d i s t i n c t i o n s even where these are an irr e l e v a n t d i s t r a c t i o n . 

S p e c i f i c a l l y , many of the things we want to say about a given tuple X are true of X 
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sintoly by v i r t u e of what variables are i n X, regardless of how they are ordered 

therein. In such cases, when we have predicated such-and-such of X, i t seems 

awkward and a r t i f i c i a l to add that such-and-such also holds f o r any other tuple 

containing the same variables as X; nevertheless that addendum i s generally needed, 

insomuch as i f X and Y comprise the same variables i n d i f f e r e n t orders, we are 

conceiving of them as formally d i s t i n c t e n t i t i e s , and indeed, the such-and-such 

that holds for X may not be l i t e r a l l y true of Y vmless adjusted to take the order 
A A 

difference into account. Even so, when X and Y d i f f e r only by a pemiutation, i t 
A A 

i s heinristic to think of them as i d e n t i c a l f o r most purposes. So to preserve the 

order difference formally while encouriaging us to ignore t h i s as a difference i n 

substance, l e t us say 

2.1. 

De f i n i t i o n j;̂  X i s e s s e n t i a l l y i d e n t i c a l with Y, symbolized X = Y, i f f every 

variable i n X i s also i n Y and conversely. That i s , given that the variables 
A A 

i n any tuple are a l l d i s t i n c t , X = Y i f f X = f(Y) f o r stxne permutation f(Y) of Y. 
A A A A A A 

^ 

We s h a l l frequently want to r e f e r to the variables i n one tuple 

that are not also i n another. Although t h i s could be compactly formalized by i n t r o ­

ducing a special symbol for tuple subtraction, i t seems more mnemonic to say 
2.2. D e f i n i t i o n / X-not-Y i s the subtuple of variables X constructed by deleting 
^ A A A 

from X each variable therein that i s also i n Y. I f a l l X-variables are also i n 

Y, we say that X-not-Y i s the " n u l l " tuple rather than that X-not-Y does not e x i s t . 

Generally, we allow the order of variables i n a tv^le to be a r b i t r a r y . But 

i t i s occasionally convenient to exploit 

2.3. 

D e f i n i t i o n ^ A tuple X = <Xj^,...,x^> of variables i s causally well-ordered i f f , 

for a l l i , j . = l , . . . , | i , X. i s a (causal) source of x^ only i f i - i l . Theorem; 

Every tuple X of variables has a permutation that i s causally well-ordered. 

The causal well-ordering theorem follows frcan our fundamental premise that the 
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causal-source r e l a t i o n i s a a t r i e t p a r t i a l order, and i s e a s i l y proved by induction 

on the nuBber of variables i n X, 

F i n a l l y , a d i s t i n c t i o n that w i l l figure prominently i n our forthcoming 

account of causal structure i s 
The 

D e f i n i t i o n 2.A. / (causal) i n t e r i o r . I ( X ) , of a tuple X of variables i s X's 

subtuole comprising just i t s variables that have a s t r i c t l y complete source i n 
Xj i s i n X and 

X. That i s , Xi i s i n I(X) i f f y some subtuple X* of X i s a s t r i c t l y ccaaplete 
A A J " A A ^•'•'y 

source of Xj under some nomically i r r e d u c i b l e causal r e g u l a r i t y Xj = )^(Xj). /^"^ 

The (causal) exterior. E(X), of X comprises just the variablea i n X that do 
A A A not have s t r i c t l y complete sources in X, i . e . , E(X) = X-not-I(X). (Variable x* 

K " " A A ~ A 4 J 

Is intMdor to X i f f i s i n I(X) 
-t 4J - 1 

Obviously E ( X ) = E ( T ) and I ( X ) = I ( Y ) whenever X = T . For compound tuples, we 
^ " - A ^ (p. 2 . l 6 f . ) , 

condense E(<X,Y>) to E ( X , Y ) and l (*X,Y>) to I ( X , Y ) . Later/ we s h a l l prove that each 
A 1 A ^ A A •— A A ^ 

variable i n I ( X ) has a s t r i c t l y canplete source i n E ( X ) . 
" " A " A 

* 

Causal MLcro-struoture. 

So f a r as we have any reason to believe, whenever one variable causally 

affects another, i t does so only i n d i r e c t l y through the mediation of others. Accord­

ingly, the theory of causal r e g u l a r i t y must above a l l be an account of mediated 

causality. In p a r t i c u l a r , we want t h i s (a) to c l a r i f y what i t i s f o r the causal 

connection between two variables to be p a r t i a l l y / w h o l l y mediated by one or more 

others? (b) to envision how, i n p r i n c i p l e , a newly i d e n t i f i e d tuple Z of Y-sources 

can be interlaced into previously established r e g u l a r i t i e s under which variables Y 
A 

are determined by variables X ; and {o) to s p e l l out the conditions under which the 

composition of one causal r e g u l a r i t y i n t o another i s i t s e l f a causal r e g u l a r i t y . 

These matters prove to be rather more i n t r i c a t e than one saight expect, and I am 

far from certain that the treatment now to be sketched i s optimal. Nevertheless, 

i t i s a beginning. 
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nature 

ThefofTaartlal mediation se«ns obvious: Variable x has aome effe c t upon 

variable y through mediation by variable z just i n case x i s a source of z and z, 
i . 4 4 A 4 

i n turn, i s a source of y. But what i s i t for x-*y to be wholly mediated by z or 

by a tuple Z? Or, when x-»z-#y, what demarks x's also having some influence upon 
A A A 4 A 

y that i s not mediated by z? 
A 

Consider the case where a tuple X of variables includes at least one, but 
4 

possibly more than one, s t r i c t l y complete source of variable ŷ ^ where y may or may 
A 1 

not be i n X. Then more broadly, there e x i s t s a nonempty set {X^f of subtuples of 
transducer 

X f o r each of which there i s at least onej(function j^^^ that maps each subject's 

score tuple on X. in t o that subject's score on y. Let us momentarily c a l l any 

such factual r e g u l a r i t y y ~ ^ i j ^ J j ) ^ "binding" of y by X^ within X, regardless of 

whether i t i s s t r i c t l y causal, ( I f y i s i n X, y = y also counts as a 

binding of y within X,) For each binding y = ̂ ^(X,) of y by X,, and every subtuple 
i\ ^ X J 4 J ^ /I J 

Xj^ of X that includes X*, there i s also at least one binding y = jrf.. (Xv.) of y by X^, 
A*^ A A J ^ I K A l t ^ 4 K. 

most evidently but not i n general exclusively the one f o r which i^-^^^;) - ^ i j ' ^ j k ^ ^ ^ 
where a^^ i s a subtuple-selector function over tuples of appropriate order such that 
Xj ~°^y^^^}^)' (Expressed as a matrix-algebraic p r e m u l t i p l i e r , a^^ i s the matrix 

whose hit h element i s 1 or 0 according to w hether the feth variable i n X^ i s or i s 

not the i t h variable i n Xj^.) Whenever the function / i n a binding y -^i^^) oan be 

decomposed aa )6 = jCo for some subset-selector function o, i t w i l l be convenient to 
or "zero weight" 

to say that the variablea i n X^-not-<j(X.) have " n u l l weight"/in y = ̂ ( X , ) , aince i f 
A J 4 J ' V A A 3 

Xj i s the subtuple 6 f ^ } p i c k ^ and the variables X^ =jgf 

X^-not-Xj not selected out of Xj by a occur a f t e r Xj i n X j , i . e . Xj = <Xj,X»>, 

then /(Xj) = )̂ «̂ (Xj) i s equivalent to /(Xj) = j^(Xj) + 0»X*. jT^^^^esumption, at~least 

one of y's bindings ^y ~ V i j ( ] J ^ j ) ^ ^7 subtuples of X i s a nomically i r r e d u c i b l e causal 

r e g u l a r i t y — b u t what can we say about the causal status of these other bindings? 

I t w i l l s u f f i c e to discuss the case Xj = X and omit the subtuple subscript. 
A J A 

U-ater, we s h a l l define n u l l weights to be a special case of zero weights.) 
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Proxlmalities. 
Our p r i o r postulation (p. 12) that the transducer of a causal r e g u l a r i t y (see 

p. l,21f. ) i s unique even when i t s input variables are not f u l l y dispersed e n t a i l s 

that when X i s a s t r i c t l y complete source of y, just one function /* i n the m u l t i p l i c i t y 

of y's bindings by X i s t r u l y causal i n the sense of characterizing how the variablea 

i n X work j o i n t l y to bring about y. I t seems e n t i r e l y Reasonable to posit more 

broadly that even when only a proper subtuple of X i s a s t r i c t l y complete source of 

y, there i s just one binding y = /"(X) of y by X that t e l l s how the variables i n X 
A A " A A 4 

causally determine y j o i n t l y , with some X-variables given n u l l weight by /* i n /*(X) 
A A 

either because they are not sources of y at a l l (including y i t s e l f when y i s i n X) 
1 A. A i 

or because, r e l a t i v e to the e n t i r e t y of X, they influence y only i n d i r e c t l y through 
A 

t h e i r effects on other y-sources i n X and contribute nothing to y over and above the 
A " A 

l a t t e r . Let us c a l l t h i s special binding of y by X an ine;^•^givg sSSSSl r e g u l a r i t y 
A A 

whose transducer i s /* and under which X i s an i n c l u s i v e l y complete source of y, 
A ^ 

(We s h a l l understand inclusive causal r e g u l a r i t i e s , and i n c l u s i v e l y complete sources, 

to subsume s t r i c t ones as a special c a s e — i . e . , a s t r i c t causal r e g u l a r i t y i s an 

inclusive one i n which no input variable has n u l l weight.) Whenever y = /(X) i s an 
A A 

inclusive but not s t r i c t causal r e g u l a r i t y , there must be at least one variable X Q 

i n X that has n u l l weight i n /(X) and which can be deleted from y = /(X) without 
1 A /I A 

degrading the reduced function's causal s t a t u s — i . e . , /(X) = firpA^) i n t h i s case, 
A 0 0 "1 

where C T Q ^ P ~ ^"""^'fo J ~ ^Q^^'^^^'^O^ i n c l u s i v e causal r e g u l a r i t y under 

which X-not-x^ i s an i n c l u s i v e l y complete source of j . Accordingly, deletion of 

null-weight variables can be it e r a t e d u n t i l the o r i g i n a l i n c l u s i v e causal r e g u l a r i t y 

i s reduced to a a t r i c t one whose input variables are just the ones i n ̂  that have 

effects on y immediated by the others. We may c a l l t h i s s p e c i a l subtt5>le of X the 

"proximal" source of y i n X and begin to characterize i t s causal r o l e as follows: 
A A 

Causalnnediation Postulate 1 [CmP-ll. For any tuple X of variables that i s 
A 

an i n c l u s i v e l y complete source of some variable y, i . e . of which acane subtuple 

i s a s t r i c t l y complete scu-ce of y, exactly one binding y = /(X) of y by X i s 
A A A A A 
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an inelusive eausal r e g u l a r i t y under which variablea X determine y j o i n t l y ; and 

there i s exactly one subtuple X* of X such that i f a* i s the subtuple-selector 
Q A A 

• H 

x^A^ function that picks X* out of X ( i . e . X* = a*(X)), the transducer of inclu s i v e 

o 
S ° I causal regularity/has' composition / = /*a* where /* i s the transducer of a s t r i c t 

& f causal r e g u l a r i t y y = /*(X*) under which X* i s a s t r i c t l y ctmplete source of y. B 

E|jr d e f i n i t i o n , t h i s special subtuple X* of X i s the (complete) proximal source 

^'>i of y i n X, I f y has no s t r i c t l y complete source i n X, we s h a l l say that the 

» proximal source of y i n X i s n u l l . 
i l l . " ' ~ 0 \-~ 7 
8Q O 

^ n Just as di f f e r e n t subtuples of X can be i n c l u s i v e l y or even s t r i c t l y c(»Bplete 
-p « 
H CO sources of y even though among these only one—y's proximal source i n X — i s causally 

8 ^ immediate for y i n X, so i s there i n general a corresponding m u l t i p l i c i t y of causal 

^ !c r e g u l a r i t i e s under which y i s determined by i t s sources i n X a l b e i t a l l but one of 
^ ^ these ape derived by composition from others. To study these mediation r e l a t i o n s , 

•p 
" *S i t proves most convenient to include output variable y i n the tuple X among whose 

x<^^ " subtuples we f i n d a d i v e r s i t y of complete y-sources. Then we can say 

1 § i An 
H b 
I B o 

§ I De f i n i t i o n 2.5./ i n c l u s i v e (possibly s t r i c t ) causal r e g u l a r i t y x. = /(X.) i s 
^ O \J 4 1 

B « within (or in) a tuple X of variables i f f x. i s i n I(X) and X. i s a subtuple of X. 
D - P A ' I J — ' I A J - •j 

o% \ causal r e g u l a r i t y x. = /(X*) i s proximal i n X i f f i t i s within X and X* i s the 
/ ( J / l X A, A - 1 1 

c " proximal source of x. i n X. •p >» AZ A 
eo r-i 

•H « 
•O > 

* g Any causal r e g u l a r i t y that i s proximal i n X i s necessarily s t r i c t . Obviously, i f 

variables <x.,X*> are a l l i n X, X* i s a s t r i c t l y complete source of x^ just i n case 
A J - f l A A l A j 

X* determines x. under some causal r e g u l a r i t y X4 = /(X*) that i s proximal within at 
AX A J A j / | i 
least one subtuple X' of X, notably X' = <x,,X*>. 

I t i s manifest i n the i n t u i t i v e reasoning behind CaaP-1 that the proximal 

source X* of x^ i n X should also be the proximal source of Xj i n any subtuple of X 

that contains X*. The same i s not generally true when X i s augmented rather than 

diminished, however; for i f z i s a variable that mediates between x^ and some x, i n 

X*, our i n t u i t i o n s about mediation structure allow that the proximal source of x^ i n 

c 
CO C 

• P c 
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<J.z> may well IncltKle z instead of o r — i f z mediates only part of the x,—»y 

connection—in addition to x, . Indeed, i n t u i t i o n i n s i s t s that the proximal source 
/|k 

of x i i n <X,z> must include z i f none of the other variables i n X? i n turn mediates 
/ j J / t A A A l 

between z and x<. On the other hand, i f z does not mediate between x. and any other 
A A J A 1 J 

variable i n X», then X* remains the proximal source of y i n ̂ XfZ>. Yet these are 
A 1 / ^ l /\ A 

just two of many causal-structure p r i n c i p l e s that seem apodictic. We need to regiment 

these intviitions by expanding CmP-1 i n t o a complete axiomatic foundation for them. 

Consider an a r b i t r a r y tuple X of variables with an i n t e r e s t i n g l y non-null 
A 

causal i n t e r i o r l ( X ) . Each variable Xj i n l ( X ) by d e f i n i t i o n has a s t r i c t l y cwnplete 
A A J " A 

source i n X; so by &|P-1, x. has a (cOTiplete) proximal source Xf i n X. I f we take 

note of which X-variables are i n the proximal sources of which others r e l a t i v e to 

X, i t i s i n s t r u c t i v e to consider how these proximalities are altered r e l a t i v e to 
A 

some minimally reduced subtuple X-not-x^ of X. A concept that proves to be remarkably 

powerful i n thinking through t h i s matter i a 

2.6. 
Definition j Variable x. i s a d i r e c t source of variable x. within tuple X 

A J - A J A 
( i . e . , r e l a t i v e to X) i f f x. i s i n t e r i o r to X and the proximal source of x, 

' I 1 J ^ 'I j i n X includes x., 
A ^ i 

source 
Given CmP-1, a variable x. i s i n t e r i o r to X just i n case i t has a dir e c t i within X, 

A J A ^ ') 

whereas i f x. i s i n X but has no di r e c t source within X, x. i s i n the exterior of X. 
A J I A ' / ) 3 /J 

And the subtuple of X comprising just the variables that are di r e c t sources of Xj 

within X i s x^'s proximal source i n X, Consequently, we can represent which subtuples 

of X are proximal sources of which other X-variables by a digraph whose nodes corre-
A A 

spend to the variables i n X and which includes an arrow from x. to x. just i n case 
A /11 ^ J X. i s a di r e c t source of x. within X, ^ j ^ 

Causal-mediation Postulate 2 [CmP-2l. Let X Q , X ^ , and x^ be any d i s t i n c t 

variables i n txrple X. Then deletion of x„ from X affects the dlrect-sotirce 
A ^KJ A 

r e l a t i o n of x. to x. r e l a t i v e to X vs. X-not-x« as follows: (a) I f x^ l a not a 
' I X <1 /\U A ' J 

d i r e c t source of x. within X, then x. i s a d i r e c t source of x^ within X-not-x« 
/|j /(i A J A AO 
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i f and only i f x. i a a di r e c t source of x. within X. (b) I f x. and x. are both 

dir e c t sources of x. within X, then X4 i s a d i r e c t source of x, within X-not-x-
A J A ' A 1 A J A A O 

i f but only i f X Q i s i n t e r i o r to X ( i . e . , i f X Q has a d i r e c t source of i t s own 

within X but not otherwise), (c) I f Xf. but not x. i s a di r e c t source of x* " 
A - AO / l i / ) J 

within X, then x. i s a d i r e c t source of x. within X-not-x^ just i n case x. i s 

a direct source of x_ within X. 
A 0 4 

CinP-2a i s equivalent to saying that any proximal r e g u l a r i t y within X i s also 

a proximal r e g u l a r i t y i n any s u b t i t l e of X that contains the r e q u i s i t e v a r i a b l e s — t h e 

cogency of which we have already observed i n s l i g h t l y d i f f e r e n t terms. GmP-2b recog­

nizes that i f Xj = /(Xj) i s a proximal r e g u l a r i t y i n X, i t cannot be so i n ^-not-XQ 

i f X-, i s one of the variables i n X*. And i f X? includes x„, Xf-not-x^ i s not a 
>|0 4± 1 1 AO A± AO 

s t r i c t l y complete source of x. (since otherwise x. = /(X*) would not be nomically 

i r r e d u c i b l e ) ; so either x^ has a complete source of i t s own i n X ~ i n which case, 

replacing i n X* by x^'s own proximal source i n X gives a s t r i c t l y complete source 

of X J that i s as, causally close to x. as we can get i n X-not-x^—or x_ i s i n X'a 

exterior whence the sources of Xj i n X-not-Xg are i n a u f f i c i e n t to determine Xj f u l l y . 

(Note that t h i s argument f o r CmP-2b i s not a proof, but only an exercising of Intuitions 

that this postulate formalizes.) And GmP-2o explains how mediated causality becomes 

direct connection r e l a t i v e to a suitably f r u g a l selection of the output variable's 

conjoint sources. 

I t i s routine though somewhat tedious to show (the proof w i l l be omitted here) 

that from any admissible structure of direct-source r e l a t i o n s within a tuple X, 

CmP-2 derives the same direct-source structure within (X-not-x,)-not-Xrt as within 
A 4I ,^0 

(X-not - X Q)-not-x^ for any two variables X Q and x̂ ^ i n X—as indeed i t must i f CmP-2 

i s to be coherent. Consequently, given the direct-source structure within any 

tuple X, CmP-2 i d e n t i f i e s a unique direct-aource structure within any subtuple 

X-not-X-, of X. And i f X Q = <JnfXo>f the direct-aource structure so derived f i r s t 
A ' 1 ^ A A ^ ' I T 

within X-not-X, and from there within (X-not-X,)-not-Xo i s the same as within 
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X-not-XQ. Oonversely, i f we are given the direct-source structure just within swne 

subtuple X-not-Xg of X, CniP-2 describes constraints on the direct-soxirce structure 

within X imposed by the structure within X-not-X^. 

Case-by-case comparisons show that CmP-2 i s eqtiivalent to 

Theorem 1. Let ncn be any variable i n tuple X , so that Xo i s either i n l ( X ) 

or i n E ( X ) but not both, (a) Suppose that x^, i s i n t e r i o r to X . Then a l l var-~ 1 i 

iables other than x̂ , that are i n t e r i o r to X are also i n t e r i o r to X-not-x-., and 

a l l variables i n the exterior of X are also i n the exterior of X-not-x^. More 

s p e c i f i c a l l y , f o r any variable x. ̂  x^ i n I { X ) , the proximal source of x. i n 

X-not-X^ comprises just the variables other than x_ ( i f any) that are dir e c t 
som-ces of x. i n X together with, i f x„ i s a d i r e c t source of x, within X , the i j ^ iO /fj i ' 

variables that are d i r e c t sources of x- within X . (Corollary. I f X „ i s a sub-
/)0 /) y[0 

tuple of I ( X ) , E ( X-not-x_) = E ( X ) and l ( X-not-x^) = l(X)-not-x„.) (b) Altemat-
A /\ A A ^ U ~ " / 1 -lO ~ 

i v e l y , l e t x^ be i n the exterior of X , Then the i n t e r i o r of X-not-x^ comprises 
"1U A /I i{ V 

just the var^Lables i n I ( X ) of which x^ i s not a di r e c t source within X , so that 

E(X-not-Xr,) comprises a l l variables i n X-not-x^, that are either i n E ( X ) or have 
A A A^ ~ A 

X Q for a direct source i n X ; and each variable i n l(X-not-x-,) has the same 
A A ^ 

direct sources i n X-not-Xf, as i t has i n X . (Corollary. Statement (b) remains 
A A ~" 

true i f X Q i s replaced by any subtuple X Q of E ( X ) . ) 

Theorem 1 i s easier to v i s u a l i z e i n direct-source digraphs for X and X-not-x„ than 
A A AO 

i s CmP-2, and w i l l be our main point of departure for subsequent theorems. 

Causal Paths. 
A variable that i s the second term i n one direct-source linkage within X can 

A 

also be the f i r s t term of another. I t e r a t i o n of t h i s notion gives 

D e f i n i t i o n 2.7. A (causal) path (of length m) i n any tuple X of variables i s 
A 

any sequence X ' = <x^f,.,,7[^^^> of variables i n X such that for each k = l,...,m, 

i s a direct source of x^+i within X . A path X ' i n X i s f r ^ x^ i f f x^ i s the 



-2.11-

f i r s t variable i n X«, and i a tf i f j [ i s the l a s t variable i n X«. A t o t a l path 

to X4 i n X i s a path i n X to from some variable i n E(X). I f X' = <X_,X. > i s 

a path i n X with Xg but not X^j possibly n u l l , X̂ j i s a terminal segment of X' with 

X^ the corresponding i n i t i a l segment of X«. A path X' i n X paggga 1î lr̂ >̂ gh a 

tuple Xj^ of variables i f f X' includes at least one variable i n Xy, 

How these path concepts are represented i n a direct-source digraph w i l l be obvious. 

Various consequences of t h i s d e f i n i t i o n too immediate to formalize as theorems 

are: (l) For any path X' i n X, the variables i n X' are a l l d i s t i n c t (else the causal-
A A A 

source r e l a t i o n could not be a s t r i c t p a r t i a l order); hence any path i n X can be 
A 

characterized as a tuple of variables without v i o l a t i n g our convention that the 

variables i n a tuple are a l l d i s t i n c t . Moreover, i f X i s cauaally well-ordered, 

each path X' i n X i s a subtuple of X, i . e . the sequence of variables i n X' i s the 
A A, A A 

same as t h e i r order i n X. (2) I f Z = X, a l l paths i n X are also paths i n Z, (3) Tvqple 
A A A A <f 

X' i s a path i n X just i n case each adjacent 2-tuple i n X' i s a length-1 path i n X, 
A A A A 

(4) A l l variables except possibly the f i r s t i n any path i n X are i n t e r i o r to X, and 
A A 

there i s a path to x^ i n X just i n case x. i s i n t e r i o r to X. (5) I f X. and X. are 

non-null, <Xg,X^> i s a path i n X just i n case X^ and X̂ , are paths i n X with the l a s t 

variable i n Xg a dir e c t source within X of the f i r s t variable i n X. . (6) Each path 
A A '1 O X.4 from x^ to x. i n X i s the terminal segment of a t o t a l path <X_,X..> to x^ i n X ^ i j l i i j 1 ^ A^ A^l Ai 4 

wherein X^ i s n u l l just i n case x. i s i n E(X), (7) Whenever X^j i s a t«sth from x. 

to Xi i n X of length greater than 1, X..-not-x^ and X..-not-x. are also paths i n X, / ) J i 0 0 '/113 /(I ^ 1 3 ^ 3 ^ / 

And (8) when <X_,x, ,X. > i s a path i n X, i t i s possible but not necessary that <X _ , X L > 
^ f^K. A^ A A A 

i a also a path i n X, (The l a t t e r obtaina just i n case the l a s t variable i n X„ i s a 
A, A^ 

direct source i n X of the f i r s t variable i n X̂ j aa well aa of Xĵ .,) Thus one path 

from x^ * ° ^3 \ ® proper subtuple of another. 
I f X_ i s a tuple of variables i n X, how does the path atructure i n X's 

^ W /y A 

subtuple X-not-XQ relate to the path structure i n X? This i s best seen by st a r t i n g 
with the special cases wherein XQ i s r e s t r i c t e d to variables either (I) a l l i n I(X) 

Ay " A 

or (E) a l l i n E(X). And without es s e n t i a l loss of generality we can avoid certain 
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nusiance complications by examining just t o t a l patha i n ̂  vs. X-not -XQ to variables 

i n t e r i o r to X-not-X<^. 

For Case I , assume that X Q contains only variables i n t e r i o r to X. Then frwn 

Th., 2a, by induction on the number of variables i n X Q , a 2-tt;5>le <X£,Xj.^ of variables 

i n X-not-XQ i s a (length-l) path i n X-not-Xp just i n case there i s some possibly-null 
A A A 

tuple X' of variables i n X« such that ̂ X4,X',x.> i s a path i n X. From there, together 

with the i d e n t i t y of E(X) with E(X-not-XQ) i n t h i s case ( c f , Tii. l a ) , i t i s easy to 

see that any X» l a a t o t a l path i n X to swue Xj i n X-not-XQ only i f X*-not-XQ i s a 

t o t a l path to Xj i n X-not-Xg, while X" i a a t o t a l path to Xj i n X-not-XQ only i f 

X" = X'-not-X^. for some t o t a l path X« to x. i n X. 

For Case E, assume instead that X Q contains o n l y variables i n X's exterior. 

Then by Th. l b , any t o t a l path to x^ i n X-not-X-, i s alao a path to x^ i n X and i s 
A J A A*^ A J ' I 

hence the terminal segment of some t o t a l path to X i i n X. Converaely, l e t X' be 
A J ') 1 

any t o t a l path i n X to some x* i n t e r i o r to X-not-X,,. Although X'-not-XQ d i f f e r s 

from X' by deletion of at most the f i r s t variable i n X' (since a l l aubsequent var­

iables i n X' are i n l(X) and hence not i n X^,), X'-not-X^ need not be a t o t a l path, 

or even a path at a l l , i n X-not-Xg because some variables a f t e r the f i r s t i n ]['-not-XQ 

may have some XQ-varlablea as d i r e c t sources i n X and hence ( c f . Th. 2b) have no 

dire c t sources i n X-not-XQ at a l l . Even so, s t i p u l a t i o n that Xj i a i n t e r i o r to 

X-not-X- with X' a t o t a l path to x. i n X e n t a i l s , from Tfculb, that X' has some 
segmentation X' =<X ,Xu> wherein the f i r s t variable x^ i n XY, but no other variable ' 1 4 * 4 " A ^ A ^ 

i n X. i s i n E(X-not - X Q ) —either because x^ i s therrlt^tmost variable i n X' of which 

some XQ-variable^is a d i r e c t source within X or,because, when no XQ-variable i s a 

direct source within X of any variable i n X', X^ =̂ '̂ with Xg null--so that X̂^ i s 

a t o t a l path to Xj i n X-not-XQ, Thus when a l l XQ-variables are i n S(X)» X' i s a 

t o t a l path to X J i n X only i f some terminal segment of X' i s a t o t a l path to x. i n 
A J \

X-not-X^, while conversely, as already observed, X" i s a t o t a l path to x. i n X-not-X 

only i f X" i s the terminal segment of some t o t a l path to x. i n X, 
A J 1 
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More generally, combining Cases I and E , any tuple X Q of variablea i n X can 

be partitioned as X-, = 'X, X,> where Xn i s some p o s s i b l y - n t i l l subtuple of l ( X ) , and 

X, i s some pos s i b l y - n u l l subtuple of E(X) which i s then also a subtuple of E(X-not-X,) 
A *• A A -J X 

(since E ( X ) = E(X-not-X,) by Th* l a ) . By Case I, a tuple X» of X-variables i s a t o t a l 

path i n X to aome Xj that i s i n X-not«X^ and hence i n X-not-X, only i f X'-not-X, i s a 
^ A /) J A AQ A A X ^ A /| i 
t o t a l path to x* i n X-not-X,, which i n turn e n t a i l s under Case 1 that some terminal 

A J A 'I X — 
segment of (X'-not-X^)-not-X5 = X'-not-X« i s a t o t a l path to x. i n (X-not-X,)-not-X^ 

A A - L ' A A ^ ^ A J A - t l ^2 
= X-not-XQ. Conversely, i f X" i s a t o t a l path to Xj i n X-not-1^ = (X-not-X^)-not-X2, 

X" i s by Case E the terminal segment of a t o t a l path X* to Xj i n X-not-X, where i n 
A A ^ J A O X 
turn X* s X'-not-X-i by Case I f o r some t o t a l path X' to X4 i n X, That i s , f o r some 

A A A'i- - ^ A AJ A 
t o t a l path X' to x, i n X, X» i s a terminal segment of X'-net-Xi and i s hence alao a 

A A J A A A A 

terminal segment of (X«-not-X,)-not-Xp = X'-not-Xr, since no X^-variable i s i n X". In 

summary, what we have shown i s 

Theorem 2,̂  . Letfc-^Xj|0ije any ti;qple of variables i n X, 

and X. any variable i n t e r i o r to X-not-XfN ( i . e . , x- l a any variable i n l( X ) of 
" J A A^ A J —4 

which no XQ-variable i s a d i r e c t aource wi t h i n X). Then f o r each t o t a l path X' 
A "J A 4 

to X J i n X, some terminal segment X" of X'-not-Xn i a a t o t a l path to x. i n 
A J A A A A " /J J 

X-not-Xp; and each t o t a l path X" to Xj i n X-not-XQ i s a terminal segment of 

X'-not-X^ for some t o t a l path X» to x. i n X. I f a l l variablea i n X^ are i n t e r i o r 
A A A J A A O 
te I , Z" i s the enti r e t y ef *km earr««pmtiaf p-4Mt-]^. QmmUMZ* <^ 
supertuple X* of X, each path X.4 from x. to x* i n X i s a subtuple of at least one 

A A A X J ( ^ X / | J / j 

path Xf. from X4 to x, i n X*, with X*. containing no X-variables that are not i n X.4 
A X J 1 X ,) J A 4 X j ^ / ( X J 

Mg4^9tj.Offa?. 4is9PBngcti|,9T?. 

We are now i n position to say what i t i s for one variable to have no eff e c t 

upon another except through a given tuple of mediators. 

D e f i n i t i o n 2.8. Variable x, ( p a r t i a l l y ) mediates from variable X4 to variable 
A K <f 1 

Xj i f f Xj^ ̂  Xj^ ̂  Xj and Xj^ i s on some causal path fron x^ to Xj within some tuple Z. 

Taple X̂ . t o t a l l y mediates ftrom to Xj or, equivalently, Xj^ (microstructurally) 
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dlsconnects x. from Xj i f f (a) x. ^ x., (b) neither x^ nor Xi are i n X, , and 

(c) f o r every tuple Z that includes a l l of variables <;x-,X, ,Xj>, every path 

within Z frcan Xj^ to Xj passes through Xj^. 

This concurs with our i n i t i a l description of p a r t i a l mediation (p. 2.5); for 45fief% iw 

a path from x. tta'ough Xv. to x. i n sosi& Z just i n case x. i s included i n a s t r i c t l y 

complete source of Xĵ . while x̂ ^ i n turn i s i n a s t r i c t l y complete source of x^ (see below) 

And the d e f i n i t i o n of t o t a l mediation i s equivalent to saying that when Xj^ disconnects 
nor i s 

x^ from X j , Xjĵ  i s neither i d e n t i c a l with ^J^A^ d i r e c t source of Xj within any tuple ; 

that'iBcludes a l l of Xv.. A ti g h t e r sense of t o t a l mediation could further require 

x^ to be a source of each variable i n Xj^; however, the broader sense given here i s 

technically more advantageous than also requiring Xj to af f e c t x. through X.'s mediation. 

I t M i l l a t e r prove :t&̂ ^ of great importance that even though t o t a l mediation 

i s defined i n terms of a l l paths from x^ to x^ i n a l l tuples containing ' ^ ^ i J ^ k ' ^ j ^ * 

a s u f f i c i e n t condition for X, to disconnect x. from x. can be found i n the causal 

structure within*just one of these. S p e c i f i c a l l y , 

Theorem 3. Let x., x., and variables X, be d i s t i n c t variables i n X, with 
A -•• A J A A 

Xj i n t e r i o r to X. I f a l l paths from x^ to Xj i n X pass through Xj^, then X̂ ^ 

disconnects x. from x. unless x. i s a source ( i m p l i c i t l y — n o t shown by a path 
A 1 4 J A^ 

within X) of the f i r s t variable i n some t o t a l path to x- within X that does not 
A A J 

pass through X, . Corollary 1. Tuple Xj. disconnects variable x. frcan variable x. 
A " - A 1 ^ J 

whenever 3fj Is i n t e r i o r to any tuple that also includes a l l of ̂ x^,\ and within 
^ as we l l as every one to ; ^ ^ 

which every t o t a l path to x ^ j X j from X j passes through Xj^. Corollary 2, I f x^ 
i s i n t e r i o r to X, and X* includes a l l variables i n x.'s proximal source within X, 

A A2 Ai A 

X* disconnects each variable i n X-not-<X*,x.> from x.. AJ ^ Aj'-fj ^ j 

Progf. Assume the conditions stipulated arid - ' 

tuple Z including a l l of ^ ^ i ' ^ k ' ^ j ' * * P®*^ ? i j J i ^ ^ j P®^^ through 
X, . This Z i s then a subtuple of <Z,X> and t h i s ^ i s the terminal segment of a 
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t o t a l path to x. i n Z that, by Theorem 2 Corollary, d i f f e r s from a t o t a l path Z' to x. 

i n <Z,X> at most by in c l u s i o n i n Z' of X-variables not i n Z and hence i n pa r t i c u l a r 
4 A 4 1 A 

not i n X, . Hence t h i s t o t a l path Z' to x^ i n <Z,X> can be segmented as Z' = <Z ,Zf4> 

wherein terminal segment ^ i s a path from x. to x^ i n <Z,X> that does not pass 
^ X J / \  / i j 4 A through X,. Now i f Z^ = - Z-not-X comprises just the variables that Z adds to X 

° /iK- 4 u del A /I A 1 

i n <Z,X>, some terminal segment X" of Z'-not-^^ = <Zg-not-ZQ,Z*j-not-ZQ> i s by Theorem 2 

a t o t a l path to x. i n X (= <Z,X>-not-Zn). X« cannot include a l l of Z?.-not-Zn, else 

Z* -not-Z^ would be a path from x. to x. i n X not passing through X, , contrary to 
A X J A U 4 X A J A -^K 

s t i p u l a t i o n . So X" i s a terminal segment of Z^^-not-Zg that i s a t o t a l path to x^ 

within X which does not include Xj but begins with some variable x.' i n E(X) of which 
A 4 X 4 1 — A 

X J i s a source (since some i n i t i a l segment of Zf. i s a path from x. to x.' i n ̂ Z,X>). 
^ X A i j 4.1 4^ 4 4 

So conversely, i f x^ i s not a source of the f i r s t variable i n any t o t a l path to Xj 

within X not passing through Xj^, there i s no Z including a l l of <x. ,X, ,Xj> within 
A A ^ A A ^ ^ A V 

which there i s some path from x, to Xj not passing through X , — i . e . , by d e f i n i t i o n 
A X 4 J A K 

Xw disconnects X J from X j . Corollary 1 i s immediate; and so i s Corollary 2, since 
A " - A A J 

i n the l a t t e r case every path to x. i n X passes through X*. • 
4 J A A J 

Theorem 3 i s not a biconditional with the premises given, because even when 
i s a source of some xj i n E(X) from which there i s a path to x. i n X not passing through 

A J - A 4 J A Xi-, the X J —»x! connection too may be wholly mediated by X. . But i t becomes a bicondition 
A>^* A± 4i. a l l t o t a l * ^ 
i f i t s condition on X i s strengthened to say that / paths to x. within X pass through X, . 

4 A J 1 4 
Me4iated r?CT3.ar3,ty; Path p r i n c i p l e s . 

We have assumed without argument that x^ i s a source of x^ whenever there i s 

a path from x. to X4 i n sooe tuple X, But proof i s immediate from Theorem 2: I f 
A X A J A 

X Q co^xriaea just the variablea between x. and X J i n •tmm path from x^ to x, i n I . 
' I X A J A i A J - 1 

then x^ i a a dir e c t source of x^ within X-not-XQ- whereas to the contrary, i f there 

i s no path from x̂ ^ to x^ i n X, x̂ ^ i s not a d i r e c t source of x^ within any subtuple 

of X. So for any x^ and x^ i n X, x^ i s included i n a a t r i c t l y complete source of 
A j ^" ̂  ^^^^ ̂ " ® ^^^^ * j i n J ' (Corollary: x^ i a a source 
of Xj just i n case there i s a path fl-om x^ to Xj i n some tuple X.) We now want to 
generalize t h i s point to cover complete sources of X j . 

/|j 
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De f i n i t i o n 2.9. Let Xj be a wcftjtuple of X, and Xj a variable i n j(X)-not-X.. 

Then the buffer i s X (or X-buffer) from to Xj i a the aubtuple B^^ of X comprising 

just the variables fx, ? for which some path to x, i n X passes throtigh X. while 

acMBe path continuing from x^ to x* i n X doea not pass through X.. 

That i a , B^j consists of a l l variables that mediate to Xj from the X ^ - ^ a i d a b l e - — ~ 

closest to X. on some path through X. to x. i n X, combined over a l l auch paths. 

Evidently, a l l variablea i n Bs ^ are i n t e r i o r to X. Hence x, i a i n t e r i o r to X-not-B. 
Corollary, ^ 1^ A ^ i j 

and by Theorem 2 / each t o t a l path X* to Xj i n X-not-B. . i s X'-not-B.. for a m e 

t o t a l path X« to X. i n X. This X" passes through X. i f f X« does and moreover, by 

construction of B.., i f X " passes through X. the d i r e c t sotipce of x^ within X-not-B. . 

i s the variable i n Xj^ closest to Xj i n X". Consequently, i f a l l t o t a l paths to x^ 

i n X pass through X., the variable immediately p r i o r to x. on each t o t a l path to x, 
A /\X Ai A2 

i n X-not-B.. i s i n X.—which i s to say that a l l d i r e c t sources of x. within X-not-B.. 
A A^J /)! " AZ A A I J 

are i n X. or, equivalently, that the (non-null) proximal source X* of x. i n X-not-B. . 
A^ A J A J A A J - J 

i s a subtuple of'X. and hence that X. i s an i n c l u s i v e l y complete source of x. that i a 
A AX J 

moreover a s t r i c t l y complete source of x. just i n case a l l X.-variablea are i n X*. 
A J /\ A J 

On the other hand, i f some t o t a l path X* to x. i n X-not-B. . does not pass through x., 
A AJ A A^J A J 

X" i s a subtuple of some t o t a l path X' to x. i n X that does not paaa through X ( c f , 
i f any " J 1 

Theorem 2 C o r o l l a r y ) . And / t o t a l path X' to x. i n X doea not pass through X., then 
h ^ A J A ^X 

for every subtuple X-not-Xp of X to which x, i s i n t e r i o r , some variable i n X' and 
A A A AJ ' r, 

hence as* i n X. i s a dir e c t source of x. i n X-not-X^—which i s to say that i n t h i s 
A I AJ t A^ 

case no subtuple of X. i s a proximal source of XJ i n any subtuple of X and hence 

that X. i s not an in c l u s i v e source of Xi. To summarize, 

theorem A. Jhet.'X^i^Cm subituple^ of X, x^ &nyi 

variable i n I(X) but not i n X., and B^ 1 the X-buffei" from X̂  to X4. Then X. 

i s an i n c l u s i v e l y complete source of x, (a) just i n case a l l t o t a l paths to ̂ . 
1 J J 

i n X |>ass through X., and also (b) just i n caae X J includea a l l variablea that 
A /\X - ^ J . 

are d i r e c t sources of Xj within X-not-B... Corollary 1 (from (a)), E ( X ) i a an 
A J A A ^ J ~ A 
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i n c l u s i v e l y complete source of a l l variables i n l ( X ) . Corollary 2 (from (b)), 

TJnder the conditions sti p u l a t e d , f i i s a a t r i c t l y complete aource of x just i n 

case Xj, i s the proximal source of Xj i n X-not-Bj^j. 

Tb.-A. explaina how, given just the proximalities i n a tuple X whose i n t e r i o r 
of X 

includes X j , we can proceed to i d e n t i f y whether any given subtuple ^ ^ j ^ i s an i n c l u s i v e l y 

or s t r i c t l y complete source of x^, namely, by eliminating B^^ from X and obaerving 

what proximalities emerge i n J-J^ot-Bj^j. This verges upon characterizing how causal 

r e g u l a r i t i e s that are proximal i n X-not-Bj^j derive from ones that are proximal i n 

X—except that our postulates so far (CmP-1.2) parse only the q u a l i t a t i v e micro-

structure of causal mediation without t e l l i n g how the s p e c i f i c transdiwers of 

mediated r e g u l a r i t i e s are determined by the ones from which they derive. To prepare 

for that story, i t helps to re-describe the conversion of proximalities i n X to 
A 

proximalities i n X-not-B^,, or more generally i n X^not-X^ f o r ^ n y subtuple X* of I(X), 

as a series of intermediate derivationa. 

Let X Q = ^ X J , . . . , ^ > be any non-null tuple of variables i n t e r i o r to X, and 

write X J -^^f X, Xjc+i ~^Qf ^ k'^'^^-fk - ~ 1,... ,l. Then X^,... ,X^^j i s a nested 

sequence of subtuples of X wherein X i s reduced to X-not-XQ = Xj^^j by single-variable 

deletions and where each variable x> i n l(X-not-X^.) (J^ = l,...,m) has a proximal 

source X*^ i n each X^ for which k i f e . S p e c i f i c a l l y , Xj^j^+j) =/X»^-not-xJ,Xj^> i f 

Xj^ i s a d i r e c t source of x^ i n Xj^; otherwise, - ^Jj^.. Different choices 

of order i n X Q give d i f f e r e n t sequences of intermediate proxiiaal sources ^X* |; and 

i n p a r t i c u l a r ,. i f the inversion <̂ 3t°,3̂ _j,... ,x£> of X Q i s causally well-ordered, 

each x^ i n X Q has the same proximal soturce i n each intermediate stage Xj^ i^ik) p r i o r 
to x°'8 elimination aa i t has i n the o r i g i n a l X, /) h 

What t h i s stepwise reduction of X to X-not-X« shows i s simply that when the 

stage Xj^ i s reached for deletion of xP, the proximal source i n X. of each x* becMiea 
A >1 * 4 * A *' 

Xj'a proximal soiurce i n X I . + T upon reolacing any non-null occuzrence of Xv therein 

hy xj^'s own proximal source i n X, . This i s just an application of the composition 

p r i n c i p l e that i f y = /(Z,z') and z' = ^{J) are both causal r e g u l a r i t i e s , then there 
^ A A A A 
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i s also a causal r e g u l a r i t y y = 9(Z,X) under which, through the mediation of z', 
" * d e t a i l a of " 

X conjoins Z to detennine y. Articulatingj^that p r i n c i p l e i s our nesrt item of busin 

Meanwhile, i n anti c i p a t i o n of CmEr-A. below, we can give point to our obaervationa on 

the sequence of intermediate proximal sources when X i s reduced stepwise to X-not-X^ 

by l e t t i n g deletion tuple X-, = <x°,...,x°> be B. . i n Theorem 4, and concluding 
Ai- /(HI -

T h e i a ^ J ^ : . I f x. =/(X^ ) i s ̂ a s t r i c t causal' regu-
A 2 "1 - • • : 

l a r i t y within X under which subtuple X̂  of X i g a s t r i c t l y complete sotirce of 
A A A 

X., X. = / ( X J ) i s derivable by i t e r a t e d composition of mediating causal r e g u l a r i t i e a 
A J A J A 

that are either proximal within X or are themselves derived by composition from 

ones that are proximal within X. I f wanted, the deri v a t i o n can be a l i n e a r 

aequence <..., Xj = /]j(̂ k̂ » ^ j ~ ̂ k+l^?k+l^» * * i " which at each atep some 

variable i n Xj^ that mediates between X^ and x^ i a replaced by i t a proximal source 

i n the o r i g i n a l tuple X. (Note. Through auitable provisions f o r augmenting 

proximal r e g u l a r i t i e a by a d d i t i o n a l sources of the output that have n u l l weight 

conjoint witjj the proximal soiurces at issue, t h i s composition p r i n c i p l e can alao 

be extended to recover a l l i n c l u s i v e cauaal r e g u l a r i t i e a within X from the onea 
A 

that are proximal within X.) 
1 

M94iat?4 £S£2&arlt£: C a ^ a l trqnadiyyyrp. 

What i s i t to compose one r e g u l a r i t y i n t o another? This i s v i r t u a l l y the 

same as composing one function i n t o another except for need to i d e n t i f y not only the 

resultant regularity's extensional generality but also i t s transducer (see p. 1.21). 

For single-argument r e g u l a r i t i e a , the matter i s e n t i r e l y straightforward: The compo­

s i t i o n of z = ̂ (x) into y - /(z) i s just r e g u l a r i t y y = //(x) with tranaducer // , 
A A /{ A A A 

But more generally, when Z i a a tuple of variables that includes z', say Z = <Z.,z',Z. > 
A A. A A™ -K A" 

where either or both of Zg and can be n u l l , the composition of r e g u l a r i t y 

z' = /(X) i n t o r e g u l a r i t y y = /(Z) i s the r e g u l a r i t y y = e(Z,,X,Zj,) whose transducer 
A A A ' V A ^ A A^ 

e i s defined over a l l posaible values of W =^^f ̂ Zg,X,Zjj> aa follows: Let i g , i^, 

and i^ j be subtuples of index sequence <l,2,...,i,...> such that any index i i a i n 
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i g (in i j f , i n i ^ ) i f f the i t h variable i n W i g i n Zg ( i n X, i n Z^j); and f o r each 

value W of W and index subtuple i , l e t iW be the subtuple of W selected by indices 

i ( i . e . , the i t h element of W i s i n iW i f f i i s i n i ) . Then f o r each value W of W, 

=def '^(|;aH»5^(ixM),i^,W). To i l l u s t r a t e , suppose that /(Zg,2',Zij) = w^z^ + 

+ vf3Z^ and 0(X) = v^z^ + v^x. Then W = <z^,x,z^>, i g = <1>, i , , = < 1 , 2 > , i ^ = < 3 > , 

and for any value W = <z^,x,z^> of W, i^W = ^5g>» j-̂ W = ^S^*3L>* } ^ = ^° 

e(5g,2,Sb) = WjZg + W2(vjZg + V2X) = W3Zb = (w^ + W2Vj)z^ + (wgVg)^ + ŵ ẑ .̂ This 

rather tortuous d e f i n i t i o n of 0 i s required by cases wherein X has variables i n 

common with <Z ,Zu>, since values of <Z ,X,Zh> are then not just concatenations of 
A ^ A /i A A 

values respectively on Z , X, and Zt,. Evidently e(Z.,X,Zu) = ^(Z.,</(X),Z^) when 9 
A * » A A*^ A^ A A*^ A >F D 

i s so-defined, while the notation 'V(Z^,/(X),Zh)'' contains within i t a f u l l i d e n t i -
/I a 4 A 

f i c a t i o n of 0 i n terms of ^ and So once the t e c h n i c a l i t i e s of transducer composition 

are clear, we can say simply that the composition of r e g u l a r i t y z' = /(X) into 

regularity y = ^(Z,,a',Zb) i a r e g u l a r i t y y * ^(Z-./(X),Z. ). 
A A A A A A^ « 

More generally, whenever uaa an expreaaion of fens Comp(^j.... .i^^ .X^ X^) 

that defines a composite function on the domain P of variablea <Xj,...,X^> by simple 

or recursive compositional combinations of functions l^i*"' *^ni*^X* "' notation 
Comp(it{j '^m'^FlMn^ uniquely i d e n t i f i e s a function 9 from the l o g i c a l range 
of X = <Xj,... ,Xjj>, i . e . from the set of a l l possible X-values, onto the range of 

Comp(<^j " ^ m ' i ^ l ^ n ^ ^̂ '̂ ^ value of 9 f o r any argument X i s the one 

into which ftmction Comp(t(j "^m'^l would map any member of P whose value 

of X were to be X, So we can re-conceive Comp(^j '^m'^l *° refer not to 

the function on P that t h i s notation most properly denotes but to the associated 

transducer 9. Our o r i g i n a l composite function on P then becomes the composition of 

X into the re-defined Comp(i^^.... • • • '^n^ • i ^ ^ ^ ®» and when we speak of 

re g u l a r i t y y = C O T J E ( ^ J , .., , ^ j ^ , X j , . . . ,Xjj), we refer to the 2-tuple comprising f i r s t 

the extensional fact that ^ = 6^ and secondly the transducer 9, 

This explication of r e g u l a r i t y compositions also applies to the composition 

of multiple-output r e g u l a r i t y Z' = </.(X)—i.e. ^z',...,z'> = (X),... ,f̂ „(X)> where 
A A A X. X A in A 



-2.20-

Z' = <'z',...,z'>—into r e g u l a r i t y y = ^{Z) when a l l Z'-variables are i n Z, But 

when the Z'-variables are scattered and reordered i n Z, notation for the general 

case bec(SBes messy. So for notational s i m p l i c i t y we s h a l l permute as necessary to 

keep the cwnposition's mediating variables i n a compact block. S p e c i f i c a l l y , i f 

y = f!>{Z) and Z' = ^ ( X ) with Z' e s s e n t i a l l y i d e n t i c a l with a subtuple of Z, Z = 

?(Z-not-Z',Z') for some permutation operator f . Then y = f^{Z) i s l o g i c a l l y 
A A A A A 

equivalent to y = /^f(Z-not-Z',Z'); and we can stipulate that the composition of 
A A A 

Z« = y^(X) into y = fi{Z) i s y = /P(Z-not-Z ' , / ( X ) ) , the transducer of which i s defined 
A A i\ A A f\ 

by the logic already described. Whenever possible, we s h a l l arrange for f to be 

the Identity permutation. 

Having raised the prospect of permuting arganent tuples i n multiple-input 

r e g u l a r i t i e s , we had best put on record 

Cauaal-mediation Postulate 3 [CmP-3l, I f Z i s a s t r i c t l y or more generally 
A 

i n c l u s i v e l y complete source of y under s t r i c t or i n c l u s i v e causal r e g u l a r i t y 

y = /^(Z), an^ tuple X i s e s s e n t i a l l y i d e n t i c a l with Z, i , e , Z = f ( X ) f o r swne 
A A A A A A 
permutation operator f , then X i s respectively a s t r i c t l y or i n c l u s i v e l y 

A 

complete source of y under causal r e g u l a r i t y y = ^ f ( X ) . 
A A ^ 

CmP-3 i s not r e a l l y a substantive postulate, f o r i f Z = f ( X ) , "y = ^ ( z ) " and »y = ji^f ( X ) " 
A A. A A A A 

are e s s e n t i a l l y just different notations for the same r e g u l a r i t y assertion. 

Our long-deferred p r i n c i p l e of causal composition can now be made e x p l i c i t 

as follows: 

Causal-mediatiPH Postulate 4 iGmP-4L Let x. = /*(X*) and x- = /*{X*) be 
- I J j A j 4 0 0 * 1 0 

proximal r e g u l a r i t i e s within X , with x^ one of the variables i n X * , say X* = 

^ K j ' f o ' f b j ^ where ei t h e r or both of X j ^ and X * ^ can be n u l l . Then the compo-

causal r e g u l a r i t y under which <Xjj ,X*,Xgj> i s the proximal source of X Q i n any 

permutation f ( X - n o t - X Q ) of X-not-x^ of which <X* , X » , X * . > i s a aubtuple, 
A A A A AajAU/^Dj 

Gorollarv. Let x. and X Q be i n t e r i o r to X = < X . , X Q , X V > with X Q d i s j o i n t from 
A J A A A*^ A _ A A 
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and either or X^ possibly 

<Xg,X̂ ,> / n u l l . I f Xj = l^jip and X Q = ^Q^i^) are the i n c l u s i v e causal 
r e g u l a r i t i e s under which X i s an i n c l \ i s i v e l y complete source of Xj and x^, 

respectively, and i n which o i s the subtuple-selector function such that 
then " 

X-not-XQ = *l^^a^t^h^ (~ "̂"''°*~̂ 0̂  ®" i n c l u a i v e l y complete aource of 

X . under in c l u s i v e causal r e g u l a r i t y XJ = J^4(?.»)<^A(?«»^)»?h)• 
i\ A J J /\a {J Aa 4 u /\u 

The "corollary" here i s a routine consequence derived by reducing x^ - /.(X) and 
AJ J 1 

X Q = f^Q'^Q^^) *o *he s t r i c t l y causal r e g u l a r i t i e s they embed, composing these by 

CmP-4, and then r e - i n s e r t i n g the remaining variables i n X-not-x_, with n u l l weights, 
A AO 

I f X Q i s not a d i r e c t soiurce of x^ i n X, the c o r o l l a r y holds t r i v i a l l y , 

CmP-4. seems i n t u i t i v e l y obvious, and to avoid lengthening what has already 

become an unpleasantly turgid story, we s h a l l not here develop the i n t r i n s i c argument 

for i t that would be appropriate i n a deeper study of causality. We ahould, however, 

make clear how CmP-4 d i f f e r s from simpler but f a u l t y formulations that also seem 

i n t u i t i v e l y to i d e n t i f y mediated causal r e g u l a r i t i e s . And we also need to show that 

CmP-A covers a l l , cases wherein i d e n t i f y i n g which mediated r e g u l a r i t i e a are cauaal i s 

a problem. 

Consider, therefore, the general case of composable s t r i c t cauaal r e g u l a r i t i e s 

y = /(Z,z^) ( Z Q not i n Z) and Z Q =^{X). Evidently y and Z Q are both i n t e r i o r to 

^ =̂ .x. <y.Z .2 
i n t e r i o r to W, y also has a proximal source i n Vt-not-zo which i s then alao a s t r i c t l y 

A /[ A A 

complete source of y i n W-not-<y,ZQ> = ^Z,X>. Accordingly, CmP-A applies to t h i s 

general case; and indeed, i f <Z,Zrt> and X are the reapective proximal sources of y 
A A A /f 

and ZQ within W, CmP-4 says that Ẑ,X> i s a s t r i c t l y complete source of y under 

(mediated) causal r e g u l a r i t y y = /(Z,/(X)). However, the complexities of multivariate 
A A A 

causal structure allow that <Z,zo> may not be the proximal source of y, nor X of zn, 
A "1 ^ A 4 

i n the combined tuple W = <y,Z,ZQ,X> even when <Z,zo> i s a s t r i c t l y complete source 

of y and X of Z Q . And i f that i s so, while y = ^(Z,)^(X)) i s s t i l l a binding of y 

by ^Z,X>, i t does not q u a l i f y aa a cauaal r e g u l a r i t y under CmP-4—not because CmP-A 

i s indecisive i n t h i s case, but because CmP-A implies either that the s t r i c t causal 

W =def »?»?0»?^» J "̂"̂  ^0 ^^^^ ^^"^^ proximal sources i n W. And since Z Q i s 
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72 
Figure 1. Figure 2. 

regularity mapping <Z,X> into y has a transducer different from the one i n binding 

y = ii{ZfX)f or, possibly, that only a proper subtuple of •<Z,X> i s a s t r i c t l y complete 

source of y. 
A 

CpjP-A i s a carefully restricted special case of a much simpler thesis that 

on f i r s t impression might seem to be a l l that we need, namely, -

Fallacious Thesis 1 [ J T - l j . Let y « /^(Z,Zo) and z-, = }^(X) be s t r i c t causal 
/{ 4 A^ <1*J A 

regularities with Z Q not i n Z. Then *Z,X> i s an inclusively ( i n fact, presumably 

str i c t l y ) ctMiplete sodrce of y under causal regularity y = /i^(Z,/(X)). 

FT-1 i s so i n t u i t i v e l y plausible that I, for one, had long presmed i t without susjaicion 

that i t might be^at a l l problematic. Yet FT-1 i n f u l l generality i a incompatible 

with CmP-1^2.3. as demonstrated by the path structure hypothesized for tuple W = 

^y,z-,z-.,x, ,X5> i n F i g , 1, Suppose that the proximal regularities i n W for the 
A 4^- A ^ Ai-

variables ^y,z,,Zn> comprising W's interior are 

^2-1^ J = M l ' 
(2.2) z j = Wjx^ , 

(2.3) Z Q = S i ^ j + W2X2 , 

with a l l coefficienta nonzero. Then under CaaP-A, the other s t r i c t cauaal regularities 

in W are 

(2.4) y = ^^1 ^ i ^ f i ^ ^ 2 ^ f 2 (proximal i n W-not-Zp) , 

(2.5) y = (v,w )x, + Vn^n (proximal i n W-not-z, ) , 
A X J L A 1 A /|X 

(2.6) Z Q = ^ % - l ^ f l -2^2 (proximal i n W-not-z^) , 

(2.7) y = (Zj " • " 2 2 3 3 1 ) H I ^ 1 "•" (20X2^^2 ^Proxijml i n W-not-<Zj,ZQ>) , 
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Because the effect of x, upon y Is mediated e n t i r e l y by z, i n F i g . 1, <rz, ,x, , X - > i s 
l l A J- ^ i. 

not a s t r i c t l y complete source of y. But <z-,.rj> i s ; so by i n s e r t i n g x, with n u l l 

weight into (2.4), we see that 

(2.8) y = ( v j + VoUi)zj + O - X j + (voW2)x2 

i s the causal r e g u l a r i t y under which <^z,,XT,X5> l a an i n c l u s i v e l y complete source 

of y. On the other hand, i t also follows by composition of (2.6) i n t o (2.1) that 

(2.9) y = VjZj + ( v o % l f i ) j i + (2oW2)x2 • 

Regularities (2,9) and (2,8) are just two of many di f f e r e n t bindings of y by <z,,x, , X o > 

that r e s u l t from the l i n e a r dependency i n <z, , X i , x ~ > , But (2,9) and (2.8) have 
Ai. /I X 4 « 

different tranaducers; and since (2.8) i s i n c l u s i v e l y causal by construction, (2,9) 

cannot be. Yet mder FT"1» (2,9) would q u a l i f y as causal because the r e g u l a r i t i e a 

(2,1) and (2,6) that compose i t are s t r i c t l y causal. This example not merely i l l u s ­

trates the generic untenability of claim about causal transducers, but also 

shows why, when ̂ Z,z^> and X are s t r i c t l y e o i ^ l e t e aources of y and z-,, respectively, 

the entirety of ^Z,X> may not be a s t r i c t l y complete source of y. 
A A yf 

FT-1 f a i l s i n F i g , 1 because <"XT,X5> i s not the proximal source of Zn therein. 
A •*• - f ^ A^ 

That suggests trying to emend FT-1 as 

Fallacious Thesis 2 [FT-23. Let y = ^(Z,Zn) and ẑ , = j^(X) be s t r i c t cauaal 
<f A A^ A'^ A 

r e g u l a r i t i e s with z^. not i n Z, Then i f X i s the proximal aource of z* i n <y,Z,z-,X> 
AO 4 A ^ A '*A \0*A 

<Z,X> i s a a t r i c t l y complete source of y under cauaal r e g u l a r i t y y = /(Z,J^(X)), 
A A A 4 /I A 

But that FT-2, also, i s i n s u f f i c i e n t l y constrained i s shown by the path structure 

posited within W' = ^^S* ^' ^ » ^^i»^o^ ® s t r i c t l y complete 

source of y (albeit not the proximal source of y i n W) and x i s the proximal source 
A A A A 

of z^ i n W; so FT-2 would conclude from composing the determination of z„ by x into 
Ay A 'T^ A 

the determination of y by <Zi,z_> that <^z,,x^ i s a s t r i c t l y complete source of y. 
A A - l - ' l U Ai- A /J 

However, i n t u i t i o n and Cn£-4 agree to the contrary that <̂ Ẑj,x> i s not a a t r i c t l y 
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completo source of y, insomuch as z affects y i n F i g . 2 only through the mediation 

of X . Even i f F i g . 2 were to include a direct-source arrow from z, to z^ ao that 

<'z,,x> i s indeed a s t r i c t l y cwnplete source of y, or i f FT-2 were weakened to claim 

only inclxiaively-complete-causality status for i t s derived r e g u l a r i t y , i t i s easy to 

show for l i n e a r s t r u c t u r a l equations that composing z, = /(z_,x) i n t o y = /(z,,z_) 

assigns the wrong weights ( i . e . not the causal onea) to z, va. x i n t h e i r j o i n t 
A *• A 

determination of y i n t h i s case. 

Together, Figs. 1 and 2 i l l u s t r a t e why the f u l l proximality constraints i n 

CmP-4 are needed i f composition of one causal r e g u l a r i t y into another i s to y i e l d a 

regula r i t y that i s also causal. 

Demarking which causal coi^oaitiona are themselves causal becomes even more 

i n t r i c a t e when, given s t r i c t causal r e g u l a r i t i e a y = ^(Z,Z') and z-' = (X.), ..,, 
-( 4 4 <(X X A X 

z' = / (X ) with Z' d i s j o i n t from Z and Z' = <^z',...,zi>, we wish to f i n d the i n c l u s i v e , 
/ t Q i m A m A A A '/fm 
perhapa s t r i c t , cauaal r e g u l a r i t y under which y i s determined by ̂ Z,X ,...,Xjj>. 
CmP-A does apply to t h i s problem, and what i t says to do l a t h i s : F i r s t , eatabliah 

« 
the direct-source structure i n tuple W = ̂ y,Z,Z',X^,...,Xw> and i d e n t i f y the proximal 

r e g u l a r i t i e a therein. The l a t t e r may or may not Include y = /^(Z,Z') and / z ' = / ; ( X j ) | ; 
/) 4 1 4 X i - f X 

i f not, the i n i t i a l l y given r e g u l a r i t i e a do not auffice to i d e n t i f y the mediated 

causal r e g u l a r i t y we aeek. But however we obtain the needed proximala, we then 

reduce W to W-not-Z' by a aequence V^^j 'dimt ^k'^^^^fk ~ ~ 1»«««»S) i n 
which zl|,...,z'' i s an ar b i t r a r y ordering of mediating variablea Z'. Every causal 
regu l a r i t y that l a proximal i n V^^j i s either also proximal i n Ŵ^ (cf. CmF-2a) or 
i s i d e n t i f i e d by CmP-A from ones that are proximal i n W,,; hence the s o - i d e n t i f i e d 

4 & 

proximal r e g u l a r i t i e s i n Wĵ  = W-not-Z' inclvide one whose output i s y and whose input 

i s W-not-Z' or a proper subtuple thereof. In f a c t , i f the inveraioji of ^zl',...,z''> 
A A /|1 -JTH 

i s causally well-ordered, i . e . i f no z'' i s a source of any z» ( l > l ) l a t e r i n the 
1 1 ^ z 

composition sequence, every proximal r e g u l a r i t y i n each W, (k = l,...,m) i s alae 
4 K — — 

proximal i n W. Even then i t i s complicated to write a formula for the derived 

causal reg u l a r i t y y = e(Z,Xj,.,.,X„,) i f some of mediating variablea Z' are d i r e c t 



-2.25-

sources of others within W so that some Z'-variables are also i n 

i f y = ji{Z,Z^) and z' = 5/. (X^) ( i = l,...,m; Z' = <z,',...,zi>) are a l l proximal i n 

W, and Z' i s d i s j o i n t not only from Z but also from i s easy to see 

from CmP-A by induction on m that y = ^(Z , ) ^ j ( X j ) , . . . jj^j^CXj^j)) i s then a s t r i c t causal 

reg u l a r i t y that i s proximal i n some permutation of W-not-Z'. 

Unhappily, CmJP-A's proximality demands are d i f f i c u l t to cope with micro- : 

s t r u c t u r a l l y . But CmP-4. does assure us that some compositions of causal r e g u l a r i t i e s 

preserve causality, and accordingly urges us seek conditions under which t h i s occurs 

i n well-behaved fashion. In general, that search proves feasible only i n macrostructural 

terms and w i l l be pursued l a t e r . But one strongly special case i s helpful at t h i s 

point for appraising the p r a c t i c a l difference between CmP-4 and FT-1. Suppose that 
(z' not i n 5) 

y = |!^(Z,z'>/and z' = J^(X) are both s t r i c t l y causal. Then the i n t e r i o r of W =, -
-1 1 1 A A ^ u e i 

<y,Z,z',X>includes y and z', so E(W) = E(Z,X). Now, y = jiJ(Z,z') or z' = }^(X) f a i l s 

to be proximal i n W only i f some x i n X-not-<Z,z'> i s i n the W-buffer from <:Z,z'>to 
A A A 4 4 4 / | ^ 

y or some z i n Z-not-X i s i n the W-buffer ftom X to z'. That requires x or z to be 
A / | A A A A 4 A A 

i n I(W) and hence cannot occur i f variables <Z,X> are a l l i n E(W), i , e , i f l(Z,X) 
A 4 4 ~ 4 ~ A A 

i s n u l l . So 

Theorem 6, I f y = )t((Z,z') and z' = J^(X) are s t r i c t causal r e g u l a r i t i e s , 
4 '* 4 A 

their composition y = /((Z,;^(X)) i s also s t r i c t l y causal i f <Z,X> has n u l l 
A A 4 4 A 

i n t e r i o r . 

As compositional p r i n c i p l e s go. Theorem 6 i s pretty slim pickings ( a l b e i t 

i t has a multiple-^nediator generalization—Theorem 22, below—that i s rather more 

impressive). Nevertheless, i t prompts the suggestion that so long as we avoid 

input arrays containing errorless interdependencies, the difference between CmP-A 

and FT-1 has l i t t l e p r a c t i c a l s ignificance. 
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Does FT-l's defect r e a l l y matter? 

It does indeed. Or at least i t should* i f our models of multivariate 

causality have s i g n i f i c a n t application to the r e a l world. Let us accept that we do 

at times either speculate or estimate empirically that a variable y i s determined 

by variables <Z,zl> under some specified causal r e g u l a r i t y y = /(Z,2'), and that 

by separate hypothesis or experiment we also sxirmise that z' =/(X) i s a causal 
A A 

r e g u l a r i t y tinder which input compohent z' i n y = x^(Z,z') i s determined by sources 
A A A A 

of i t s own. I f we have any interest i n how y i s affected by X, say because we 
A A 

wish to control y and can d i r e c t l y manipulate X but not z', we w i l l almost 
A A A 

surely conclude i n practice that the force of X f o r y conjoint with Z i s 
A /\
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given by the transducer of y = /(Z,/(X)). We have seen that t h i s inference i s not 

i n p r i n c i p l e always correct? but how l i k e l y i t i s to err i s another question. 

Suspicion that we have l i t t l e to fear on t h i s score may we l l be evoked by 
that 

Theorem 6's suggestionjf^the problem does not a r i s e so long as we are working 

with inputs among * which there are no errorless dependencies—for prima fac i e 

that seems inevitable i n practice. Indeed, considering how importantly our theorems 

i n t h i s chapter presuppose not just p r o b a b i l i s t i c lawfulness but a structure of 

complete causal determinations, one might well wonder i f the difference between 

CmP-A and FT-1 demarks anything more than the p r e c i o s i t y of an abstirdly nonrobust 

i d e a l i z a t i o n . The present subsection w i l l t r y to make clear through a simple 

example that t h i s suspicion i s unfounded; So long as we can treat causal-dependency 

residuals i n t r a d i t i o n a l fashion as though they are supplementary sources, v i o l a t i o n 

of Th,-6's e x t e r i o r i t y precondition can e a s i l y arise i n ways more subtle than our 

usual thinking about these matters i s apt to discern. 

F i r s t , though, l e t us make the force of what CmP-L adds to F T-1 more i n s i g h t f u l . 

One point about CmP-A. not yet emphasized adequately i s that i n order for the compo­

s i t i o n of s t r i c t causal r e g u l a r i t i e s y = /(Z,z') and z' = /(X) to be causal, not 
4 A A A A 

only does i t s u f f i c e under GmP-A that y = ^(Z,z') and z' = )^(X) be proximal i n W = 
A A A A A 

<iy,Z,z',X>, but t h i s i s also v i r t u a l l y necessary. For given that ^Z,z'> and X are 
A A A A A A /) 

complete sources of y and z', respectively, i t follows from GmP-1.2.3 that there 
A A 

are some subtuples W-, and Vn »̂ and transducers fi* andv^', such that y = /rf'(W, ,z') 
A i- A A A A X / ) 

and z' ='/'(Wp) are proximal i n X; and only for ex t r a o r d i n a r i l y special parameters 
A A * A 

i n these transducers can resultant causal r e g u l a r i t y y = /li'(W, ,s^'(W^)) be consistent 
A A - L A^ 

with y =V(Z,)^()t)) unless W, = Z, W, = X, = ^ and ^' = v^. As for GmP-4's 
/V A A . A i- A A ^ A i i j that 

proximality requirements, observe from Th.-3 Corollary 2 ; <Z,z'> disconnects each 

variable i n X-not-Z from y whenever y = /^(Z,z') i s proximal i n W, while conversely, 
A A /\ A A A 

y = MZ,z') f a i l s to be proximal i n W = <'y,Z,z',X> only i f some variable i n X-not-Z 
A A A A A ' < 1 ' A ^ A 
i s a direct aource of y i n W and i s hence not disconnected from y by <Z,z'> 

A A A A 

(of. D e f i n i j i o n 2>̂ 8̂ ^ ' . - S i m i l a r l y , z' = v^(X) i s proximal i n W just i n case 
A A 
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X diaeonnects each variable i n Z-not-X from a'. So QmP-A can be atated more i n t u i -
A A A A 

t i v e l y , without r e q i i i r i n g e x p l i c i t consideration of proximalities, as 

Theorem 7. I f y = fi{Z,z^) and 2s' = /(X) are s t r i c t 
A A A A A ; _ 

causal r e g u l a r i t i e s , t h e i r composition y = /(Z,5^(X)) i s also a s t r i c t causal 
A A A 

r e g u l a r i t y i f and, v i r t u a l l y , only i f <Z,zV disconnects y from each X-variable 
1 A A < 

not i n Z while X disconnects z' from each Z-variable not i n X, 
A t A y\

This rewording of the causal-composition p r i n c i p l e does not urge the conclusion 

that v i o l a t i o n s of i t s total-mediation precondition are prevalent, but neither does 

i t warrant confidence that v i o l a t i o n s are rare. As i l l u s t r a t e d by Figs. 1 & 2, t h i s 

a l l depends on how I n t r i c a t e l y the variables at issue are causally interwoven. 

Unless, that i s , there i s something a r t i f a c t u a l about these examples due to t h e i r 

suppression of error terms. 

To probe that p o s s i b i l i t y , envision a structure of cauaal connections i s o ­

morphic to F i g . 2 except for being p r o b a b i l i s t i c rather than a t r i c t l y deterministic. 

Common practice i n multivariate causal modeling expressea t h i s by conjecturing the 

existence of l i n e a r s t r u c t u r a l equations 

(2.10) y = ujx + V Q Z O + ey , 

(2.11) Z Q = wjx + eo , 

(2.12) X = w^ Z j + e^ , 

i n which e , e , and e are residuals whose nature we leave unapeclfied except f o r 
Ay Ao 

a t t r i b u t i n g to them whatever orthogonalities or other d i s t r i b u t i o n a l properties we 

need to make the model parameters i d e n t i f i a b l e . And the conventional digraph repre­

sentation of s t r u c t u r a l equations (2.10)-(2,12) i s shown i n F i g , 3. Presuming that 

there i a an interpretation of these error terms under which the F i g . 3 system behaves 

as though e , e , and e are d i r e c t sources respectively of y, z^, and x i n tuple 
Ay A<J ^ A'J A 

W = <'y ,Z5,ZfN,x,e ,e-,e > (the cogency of which prestaiption we s h a l l examine s h o r t l y ) , 
A A A ^ ^ ^ J ^ 
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Figure 3 

F i g . 3 then alao gives the path structure i n W aa understood i n our present sense 
A 

of t h i s ; and by Th.-7 we know that the composition of s t r i c t causal r e g u l a r i t y (2.12) 

into s t r i c t causal r e g u l a r i t y (2.10) i s also a a t r i c t causal r e g u l a r i t y , namely. 

S i m i l a r l y , Th,-7 assures us that 

(uj + VoWj)x + [v^eo + ey] 

+ Vo^l^Mg^i + t(%+2oHl)«x M o 

(from (2.11) into (2.10) and (2.12) i n t o (2 .U) , respectively) are also s t r i c t 

causal r e g u l a r i t i e s . 

I f variables W = <y,z_,Z-,,x> are a l l e m p i r i c a l l y observable and residuals 

<e ,e„,e,> are a l l orthogonal to W*—as we henceforth aasume—all c o e f f i c i e n t s of 
•ly 0̂ A 

a l l data variablea i n st r u c t u r a l equations (2,10)-(2,15) can be i d e n t i f i e d by 

ordinaiy regression analysis (cf. Chapter 3) separately for each equation. Each 

bracketed compound i n equations (2,13)-(2,15) i n i t i a l l y appeara i n the regreasion 

solution as a aingle unanalyzed realdual; however, once we have solved for c o e f f i c i e n t s 

^aj»ZQ»!ij»H2> primary residuals ^ey,eQ,e^> i n l i g h t of the f u l l F i g . 3 structure, 

we can confirm that the bracketed residuals do decompose as indicated. 

On the other hand, the composition of (2,11) i n t o (2.13), namely 

(2,16) y = (ajW2)zj + (vowj)x + [v^eo + u^e, + e^] 

does not q u a l i f y as causal under Th,-7; instead, we have from the proximality of 

(2,U) 

and 

(2.15) 

7 
1 

.7 
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(2.U) i n W-not-z„ that 
A AO 

( 2.17) y = O . Z j + (aj + v ^ i ) x + [voe^ + O.e^ + ey] 

i s the (inclusive) causal r e g u l a r i t y whose transducer maps the input variables i n 

( 2.16) into y. Moreover, the c o e f f i c i e n t s recovered by y's regression upon <'z,,x> 
A /\ 4 

are the causal weights of these inputs i n ( 2.17) rather than t h e i r noncausal ones 

i n ( 2 . 1 6 ) . Yet i f we i d e n t i f y just ( 2 . 1 1 ) and ( 2.13) by regression, without heed 

for the larger system, how do we judge that t h e i r composition f a i l s to y i e l d causal 

weights? In p a r t i c u l a r , why i s n ' t t h i s composition approved \inder the n u l l - i n t e r i o r 

precondition of Theorem 6 ? 

Confusion on t h i s point i s apt to arise i n our treatment of the residuals. 

When the z^-mediated composition ( 2 . 1 6 ) of ( 2 . 1 1 ) into ( 2,13) i s evaluated for causal 

status under T h , - 6 , making clear that ( 2 , 1 6 ) ' s input i s the 5-tuDle ^z,,x,e„,e„,e > 
•1 J- A H 0 A y 

also makes evident, from ( 2 , 1 2 ) , that t h i s input tuple does not have n u l l i n t e r i o r . 

But i f , without regard f o r a l l of F i g , 3 , we were to i d e n t i f y parameters i n ( 2 . 1 1 ) 

and ( 2 , 1 3 ) just by regressing y upon ^ Z J , Z Q > , and z^ upon x, we obtain not the 
A 

entirety of (2,13) but only 

(2.17) y - ^ ^ ^ z ) l i * ^ o \ o ^ % 

whose residual e l a a composite i c 

(2.18) e^ = u,e^ + e, 
AO " " l ^ X A y 

of primary residuals e and e but i s not given to us with that decomposition, 
A X 4 y 

Now, the composition of (2.11) into (2,17) i s 

(2.19) y = (u i H s ^ f l + (20iil)f + 2o?o ^ ^7 * 

the input tuple ^ z , ,x,e-,,e„> of which does indeed have n u l l I n t e r i o r . So (2,19) 
A X A A\j ^ C 

would q u a l i f y as causal under Th , , - 6 i f i t s composing r e g u l a r i t i e s (2,11) and (2,17) 

were both to be causal. But whereas (2.11) i s causal by s t i p u l a t i o n , we have claimed 

no general p r i n c i p l e s under which part of a causal r e g u l a r i t y can be treated as a 
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single variable while preserving causal status for the r e g u l a r i t y i n which i t i s 

embedded. What we aee here i s that (2.13) and (2.17) are indeed not causally 

equivalent. 

The matter cannot be l e f t there, however. For i f we could never successfully 

treat molar abstractions as though they are causal variables i n t h e i r own r i g h t , i t 

i s most un l i k e l y that causal models would ever have useful application to the r e a l 

world. Even i n the present example we began by presuming that y's p a r t i a l determi-

nation by x and Z - could be cogently modeled by a s t r i c t cauaal r e g u l a r i t y (2.10) 
A AV 

i n which y-influencea conjoint with but d i a t i n c t from contributions from x and z^ 
/\ A*J 

are aummarized by a single residual e that behaves for present purposes l i k e a 

single causal factor. More r e a l i s t i c a l l y we should presume only that e i s some 
"y 

l o g i c a l composite, i d e a l l y l i n e a r , of an a r b i t r a r i l y large ensemble f e y j l of y-so\jrces 

supplementary to ̂ x,z >. But i f e i s just shorthand for Za^e j , why i s t h i s 

substitution safe i n (2.10) whereas converting (2,13) i n t o (2.17) by substituting 

for ^-^e^ + e ^ gets us into FT-1 trouble? 

The answer i n b r i e f i s that i f e^ (and s i m i l a r l y for e^ and e„) i s replaced 
A ^ 4 U ^ X 

by an r-tuple of supplementary y-sources having the same linkages i n the expanded 

Fig. 3 structure as O y now has, we can replace ey throughout equations (2.10)-(2.19) 

2 a^ey^ and have everything as before, including i n p a r t i c u l a r which r e g u l a r i t i e a 

count as s t r i c t l y or extendedly causal, except that we have no evident way to uncover 
how many e, - v a r i a b l e a are composited i n e„ or what t h e i r respective c o e f f i c i e n t s Ayi A J 

may be numerically. A l t e r n a t i v e l y , i f we atart with 

(2.20) y = u,x + v_z- + £ a.e . 
A M ^ A O - i / i y i 

as our postulated s t r u c t u r a l equation f o r y's determination, and introduce e as 
A AY 

molar abstraction 

(2.21) e =,^» E a^e^ , 
^y def i s y - i ^ y i » 

the structure of mediated c a u s a l i t y among the r e a l variables i s undisturbed by 
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treating e as though i t i a a separate v a r i a b l e , determined (quasi)-causally by the 
A y 

ey£ under (quaai)-cau8al r e g u l a r i t y (2.20), that t o t a l l y mediates between y and each 

e .-variable. (Precisely why t h i s molar i n s e r t i o n leaves the r e a l s t r u c t u r a l relations 
A y i 
undisturbed i n t h i s instance i s an important matter that we s h a l l not puraue here.) 

So long aa we are not seeking to i d e n t i f y causal effects on y that are mediated by 

e_., we then no more need to include e 's own (quasi)-causal sources i n F i g . 3 than 

we do the sources of z,. 

But why not treat ê , s i m i l a r l y ? There i s no objection to that i n p r i n c i p l e ; 

but the d e t a i l s of t h i s case prevent either of these approachea to the residual i n 

(2.17) from converting (2.17) i n t o a (quasi)-causal r e g u l a r i t y froja which a causal 

regu l a r i t y can be derived by composition with (2,11), I f ê , i s simply replaced by 

an open tuple 1^ = <...,ey^,,,,> of y-sources supplementary to ^Zj,aQ>, we must 

consider whether E„ may not include e„ or whatever r e a l supplementary x-sources are 
composited i n e„. Even without special knowledge of the f u l l F i g , 3 atructure, we 

/)X 

cannot conclude from the lack of l i n e a r dependency within ^ZT,x,e-> that < Z T , X , E „ 

haa n u l l i n t e r i o r . A l t e r n a t i v e l y , i f we treat aa a molar variable additional 

to whatever r e a l variablea are i t a quasi-causal sources, i t remains to be seen 

whether any path model f o r <W,e >or some supertuple of <'W,e«> both embeds F i g , 3 
A 4 C 't Y 

and admits (2,17) as (quasi)-causal within <W,e >. 

And i n fact none does. There are so many ways to add e to Fi g . 3 that to 

inventory them here i a impractical. But what can be aeen i a that any path atructure 
envisioned for <W,e„> either (a) i s incompatible under Th,-2 with the F i g . 3 atructure 

A 1 c 
for W (aa occurs e.g. i f e„ i s put on a path from e„ to y that doea not pasa through 

X before reaching e^), or (b) f a i l s to y i e l d (2.18) even aa a binding of e„ much less 

as a (quasi)-causal r e g u l a r i t y i n <W,e„> (e.g. i f e_ i s put on a path from e„ to y 

that doea pass through x before reaching e ), or i s ) achieves (2,17) and (2,18) only 
as noncausal bindings tinder constrained model parameters (e,g, when e^ = e - jj-e, 

i s taken to be proximal i n *W,e > with e^ i n <W,e->'s ext e r i o r , or when (2,18) i s 

made proximal i n ̂W,ec> without adding a path from to y). In case (c), composing 



-2.34-

(2.11) into (2,17) f a i l s to s a t i s f y the c a u s a l i t y precondition of any variant of our 

causal-composition p r i n c i p l e , 

The import of t h i s example i s threefold. Foremostly, i t i l l u s t r a t e s why 

e x p l i c i t acknowledgement of causal residuals does not undermine the account of causal 

structure here developed i n terms of errorless r e g u l a r i t i e s . In p a r t i c u l a r , i t 

explaina why i n t e r i o r i t y i s more l i k e l y to jeopardize causal interpretation of 

bindings derived by composition from other prima faci e causal r e g u l a r i t i e s than i s 

evident from just the j o i n t d i s t r i b u t i o n of data variables and regression residuals. 

But beyond that, the example urges appreciation of how t r i c k y i t can be to inteiT)ret 

residuals causally, and fiirther demonstrates that we cannot a r b i t r a r i l y t reat molar 

composites as though they are causal factors i n t h e i r own r i g h t without disrupting 

the causal story we are trying to put together. In l a t e r chaptera here we s h a l l 

have more to say about the p r a c t i c a l i t i e s of analyzing residtials. But how best to 

treat molar abstractions as conceptually d i s t i n c t factora interwoven with r e a l 

variables i n a coherent quasi-causal generalization of molecular c a u s a l i t y i a a 

foundational theory whose pervasive neglect we cannot aspire to redress on t h i s 

occasion. 

M I weight? vs. zero weights. 

When introducing the concept of proximality, we distinguished between s t r i c t 

causal r e g u l a r i t i e s and in c l u s i v e ones that are not s t r i c t i n terms of the l a t t e r 

containing input variables that are given " n u l l " weight by the regularity'a trans­

ducer. S p e c i f i c a l l y , y = ;^(X) i s an in c l u s i v e but not s t r i c t causal r e g u l a r i t y 
A A 

just i n case (a) a proper subtuple X* of X i s a s t r i c t l y complete source of y under 
A A ^ 

some causal r e g u l a r i t y y = /J*(X*) and (b) ;̂  = )i*a f o r the aubtuple-aelector function 

a that picka X» out of X. For reasons explained e a r l i e r (p,2JL5), we can then say 

that the variables not i n X's subtuple a(X) have n u l l weight i n y = fi*a{X), I t 
A A / [ A 

would be highly convenient to aasert that conversely, whenever y = f6(X) i s a s t r i c t 
A A 

( i , e , nomically irreducible) causal r e g u l a r i t y , there i s no subtuple-selector o 
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for which a(X) omits part of X while i> = )t{*a for some transducer That would be 

true i f nomically ir r e d u c i b l e cauaal r e g u l a r i t i e a were always f i c t i o n a l l y irreducible 

as well (cf. p. 1.9). But unhappily for s i m p l i c i t y , that i s not the case—at least 

not i n p r i n c i p l e . 

Consider again the path structure i n F i g . 3 for s t r u c t u r a l equations (2.10)-

(2.12) and t h e i r compositional consequences. Since by s t i p u l a t i o n (2.10) and (2.11) 

are causal r e g u l a r i t i e s that are not just s t r i c t but proximal i n F i g . 3, p r i n c i p l e 

CmP-A entails that (2,14) too i s a s t r i c t causal r e g u l a r i t y . Now, there i s nothing 

i n t h i s model's open parameters to preclude the numerical value of path c o e f f i c i e n t 

j l j happening to equal the negated product of path c o e f f i c i e n t s V Q and ŵ . Yet i f 

Jij does equal - V Q W^^^doei^^^ual (2,14) becomea 

(2.22) y = 0.x + v^eo + e^ ( Uj = - Y Q W O ) . 

Thia i s not the same as 

(2.23) . y = Xofo - ^ f y ' 

for not only do (2,22) and (2,23) have d i f f e r e n t transducers—one i s a function on 

the l o g i c a l range of <x,eQ,e >, the other only on that of <eQ,e >—but also (2,22) 

q u a l i f i e s as s t r i c t l y causal under CmP-4 even when x'a c o e f f i c i e n t turns out to be 
1 

ntmerically zero whereas (2,23) i s a happenatance binding of y by <e«,e_> that cannot 
4 AM i j 

be counted as causal without disrupting the s t r i c t - c a u a a l i t y character of (2,22). 

I t follows that we must distinguish i n i n c l u s i v e causal r e g u l a r i t i e s between n u l l 

weights and numerically zero weights that are not n u l l . A variable x. having n u l l 
1 J-

weight i n y = j(i(X) makes no cauaal contribution to y except through the mediation 
A A A 

of variables X-not-x^. But i f x^'s weight i n ̂  = ^(X) i a a non-null zero, x^ doea 

have an independent effect on y conjoint with X-not-x. even i f only one that i s 

negligible to the highest degree. 

In l i g h t of p o s s i b i l i t i e s l i k e (2,22), i t would be preferable to define the 

concept of causal transducer i n a way that distinguishes n u l l weights from zero weights 
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i n causal r e g u l a r i t i e s that are fu n c t i o n a l l y reducible. But that opens the broader 

question whether the modern set-theoretic construal of functions does s u f f i c i e n t 

j u s t i c e to the ontological character of transducers i n natural r e g u l a r i t i e s — a n 

issue that we can best shun on t h i s occasion. Meanwhile, i f the prospect of causal 

weights that are zero but not n u l l occasions d i s t r e s s , i t w i l l surely do l i t t l e harm 

to posit that as a matter of brute f a c t , no extended causal r e g u l a r i t y y = ji{X.) i n 

our r e a l world happens to give exactly zero weight to any variable i n the subtuple 

of X that i s a s t r i c t l y complete source of y. Who can show otherwise? 
A A 

Causal Ma.Ggostructure. 

In molar models of causality, we conceive of molar variables {x^j that are 

l o g i c a l abstractions x ^ "def T^i^Ji^ always recognized as such) from underlying 

ensembles ^X^j of molecular variables, and seek to f i n d r e g u l a r i t i e s governing the 

X . that are isomorphic or at least homomorphic to causal determinations among the 

tuples X. they respectively r e f l e c t , A distinguished special case of molar causality 
A i-

that i s both propaedeutic for the general theory and of valu« to multivariate modeling 

i n i t s own r i g h t arlaes when the molar units are themselves t\;^les of the variables 

whose causal microstructure i s to be abstracted. Somewhat a r b i t r a r i l y , we s h a l l 

adopt the l a b e l "causal macrostructure" for t h i s case and define i t as the theory 

of causal relations among Tuples, where "Tuple" i s henceforth shorthand for "tuples 

of variables"in the special sense stipulated at t h i s Chapter's outset." (Whenever 

B a s i c a l l y , the theory of causal macrostructure seeks to i d e n t i f y p a r t i a l -

order relations among Tuples that u s e f u l l y capture our i n t u i t i v e appraisals of one 

multivariate complex being causally antecedent to another, and which unfold into 

models of multivariate mediation that subsumes- microcausal path structure" 

as a l i m i t i n g case while allowing us to think more generally about causal r e l a t i o n s 

among groups of variables i n the same formal tenns that are e f f e c t i v e fm" simple 

cases of microstructural cauBaJlty, - At the core of any such theory must l i e 

multivariate generalizations of causal-source r e l a t i o n s on single var^iables. This 
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means that i d e a l l y , i . e . perhaps with certain q u a l i f i c a t i o n s that do not s i g n i f i c a n t l y 
degrade the microstructural p a r a l l e l , we want to define binary relations =^ and —^ on 

Ttrolea auch that: (a) Xs^T juat i n case ttrole X causally or quaai-causally determines 

tuple Y i n a conceptually natural extension of s t r i c t l y complete microcausal re g u l a r i t y . 

(b) X ->T just i n case <X,Z> =^Y for some po s s i b l y - n u l l supplementary tuple Z (so 

that X ^ Y implies X-^Y though not conversely) and reduces to the causal-source 
our macrostructural 

r e l a t i o n between single variables when X and Y are singleton tuples. And (c)^—> i a 

to have easentially the same partial-order properties over i t s f u l l domain of Tuples 

as i t does when r e s t r i c t e d just to singletons —which e n t a i l s that =>, too, must 

be a p a r t i a l order on Tuples. We also want our multivariate version of the s t r i c t l y -

complete-source r e l a t i o n to have the q u a l i t a t i v e compositional property (̂ ) that i f 
t h i s i s 

<Z,Z'>=^Y and X =̂  Z' then <Z,X> ̂ Y . (^ughiy^speaklhg, ^ the macrocausal counterpart 

of Th.-la (p. 2.10), which i s the heart of microcatisal path structure. 

Much of the work for any account of causal macrostructtire i s ascertaining 

which relations defined over Tuples i n terms of causal connection among t h e i r c o n s t i t -

uents have the partial-order character of caus a l i t y . So we had best begin by 

formalizing the order properties at issue, e s p e c i a l l y since the essential i d e n t i t y 

(=) of Tuples d i f f e r i n g only by permutation requires us to use a sense of p a r t i a l 

order s l i g h t l y more complicated than the standard d e f i n i t i o n of t h i s . 

Deanitioh 2,3a Let. S tea binary r e l a t i o n on Tuples. Then R i s t r a n s i t i v e i f f XRZ 

whenever and mz, re:flexive i f f always XRX, i r r e f l e x i v e i f f XKC only when 

X i s n u l l , symmetric i f f YRX whenever XRY, anti-symmetric r e l a t i v e to some equi-
/V - A 4 A A 
valence r e l a t i o n = i f f both W and m only when X = Y, and c l a s s i c a l l y a n t i -

A A '\ A A 

symmetric i f f i t i s anti-symmetric r e l a t i v e just to -. Relation R i s a p a r t i a l 

order r e l a t i v e to equivalence r e l a t i o n - i f f i t i s t r a n s i t i v e and anti-symmetric 

r e l a t i v e to -, a classical^ p a r t i a l order i f f i t i s a p a r t i a l order r e l a t i v e just 

to ^, and a s t r i c t p a r t i a l order i f f i t i s both t r a n s i t i v e and i r r e f l e x i v e . 
I f R i s a s t r i c t p a r t i a l order, i . e . i s t r a n s i t i v e and i r r e f l e x i v e , then £ i s 
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anti-symmetric r e l a t i v e to every - and i s hence also a p a r t i a l order r e l a t i v e to 

every -. For i f ever both W and YRX for any such R, i t follows by t r a n s i t i v i t y 

that XRX and YRY, hence X and Y are n u l l by i r r e f l e x i v i t y and so X = Y for any -. 
A — A / ) — 1 I A A A 

(After the model of n u l l sets, we stipu l a t e that there i s only one n u l l tuple; hence 

X = Y whenever X and Y are n u l l from the d e f i n i t i o n a l r e f l e x i v i t y of equivalence 
' ' A A A 

relations.) 

Many partial-order r e l a t i o n s on Tuples can be defined from causal connections 

among their constituents, a l b e i t not a l l are equally useful. A basic pair i s 

tuple 

D e f i n i t i o n 2.11. A X of variables b(roadlv) precedes tuple Y i f f each 

variable i n Y has a source i n X. Tuple X t ( i g h t l y ) precedes tuple Y i f f each 
A A ^ A 

v a r i a b l e i t i |̂  i s a source of some variable i n Y. (Note the du a l i t y of broad 

and t i g h t precedence.) 
For singleton Tuples, broad and t i g h t precedence both reduce to the causal-source 
r e l a t i o n . S p e c i f i c a l l y , x i s a source of y i f f <x> b-precedes <.y> and also i f f 

<x> t-precedes ^y^. Although X can precede Y both broadly and t i g h t l y even when 
4 A ^ ^ 

some variables i n Y are sources of variables i n X, the broad and t i g h t precedence 
A A 

relations are nevertheless both s t r i c t p a r t i a l orders. 

Proof. I f X b-precedes Y and Y b-precedes Z, each z i n Z has as source some y i n 
A A A A A - t ^ 

Y that i n turn has a source i n X; so by the t r a n s i t i v i t y of the causal-source 
A A 

r e l a t i o n , each z i n Z has a source i n X — i . e . , b-precedence i s t r a n s i t i v e . And 
A A A 

i f any tuple X were to b-precede i t s e l f , we could construct an a r b i t r a r i l y long 

sequence of variables i n X, each of which i s a source of a l l variables that 
A 

follow i t i n the sequence. Since X i s f i n i t e , some variable would eventually 

have to recur i n th i s sequence, v i o l a t i n g the causal-source relation's i r r e f l e x ­

i v i t y . So b-precedence must also be i r r e f l e x i v e . The t r a n s i t i v i t y and i r r e f l e x ­

i v i t y of t-precedence follows s i m i l a r l y (by d u a l i t y ) . 

When X broadly precedes Y, each variable i n Y i s causally influenced by 
A A A 
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some part of X . I f those influences are a l l complete determinations, we have the 

paradigm of errorless multiple-output causality. However, to catch the multivariate 

causal ordering that r e s u l t s from replacing just part of a tuple of variables by 

sources of that part, we want a sense of quasi-causal determination vmder which, i f 

X determines Y , then <X,Z> determines <Y,Z> f o r any additional tuple Z regardless of 

how Z may or may not be related to X and Y . Much of our need i n that respect i s 

n i c e l y served by 

tuple 
D e f i n i t i o n 2.12. A / X of variables s ( t r u c t u r a l l y ) determines tuple Y—sym-

A A 4 

bolized X = > Y — i f f , for each variable y. i n Y - n o t - X , some subtuple X . of X i s a 
A A / | l A A A^- A 

s t r i c t l y complete source of y,. (This i s true vacuously i f Y-not - X i s n u l l , i . e . 
/[ J - A A 

i f a l l Y-variables are i n X . ) Tuples X and Y are s ( t r u c t u r a l l y ) interderivable 
A A A A — — — — — — — — — — 

( X ^ > Y ) i f f X s-determines Y and Y s-determines X . 
A A A A A A 

I t W i l l be evident that i f X ^ Y , then (a) ^X,Z> k <Y,Z> for any Z, (b) X = > Y ' f o r 
A A A A A ^ A *• ^ 

any subtuple Y » of Y , and (c) X ^ Y ' i f Y « = Y . For an example of s - i n t e r d e r i v a b i l i t y , 

suppose that x i s a s t r i c t l y complete source of y which i n turn i s a s t r i c t l y complete 
^ A 

source of z. Then x i s also a s t r i c t l y complete source of z, so <x,y><?> <x,z> even 
A \ A ^ A i 

though there i s an i n t u i t i v e causal-order asymmetry between these two 2-tuples. 

I t i s useful to observe that 

Theorem 8, - Tuple X s-determines tuple Y just i n case E ( X ) ^ E ( X , Y ) (equi-
A /) A A A 

valently, just i n case E ( X ) = E ( X , Y ) ) . Corollary. I f E ( X ) = E ( X , Y ) , then (a) 
A A A " " A ~ A / ) 

E ( X,Z) i I ( X , Y,Z) f o r any tuple Z, and (b) E ( X ) = E ( X , Y ^ f o r any subtuple Y ' of Y . 
~ A A A A A A ~ — A A A 

Proof. We are to show that X => Y i f and only i f < X , Y > and X have the same 
A A A ' A A 

exterior. Let Z = . < X , Y > while Zn =•, f> Y - n o t - X . I f X = > Y , each Z-variable has a 
A def A A A ^ dei A A A A a 

s t r i c t l y complete source i n X and hence i n Z, so a l l Z-.-variables are i n t e r i o r to Z. 
A A A O A 

Then by TJi.-la Corollary, E(Z-not-^) = E(Z), or E ( X ) = E ( X , Y ) since Z-not-Zn = X . 
A A"-* " A " A A A A A 

Conversely, i n order to have E ( X , Y ) = E ( X ) , i . e . E(Z) = E(Z-not-Zn), a l l Z„-variables 
" " A A A ^ 

must be i n l ( Z ) (since otherwise some Zn i n E(z) would not be i n Z-not-Z,, and hence 
A A U — d A A U 
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not i n ECZ-not-Zr))), whence by Th>-4. Corollary 1, each variable i n Ẑ ., i . e . Y-not-X, 

has a s t r i c t l y complete source i n Z-not-Zp, i . e . X^ so that X s-determines Y. The 

corollary follows from observations (a,b) immediately following Def, 2.12", : 

Now suppose that X=>Y and Y = > Z . Then E(X) = E ( X , Y ) and E(Y) = E ( Y , Z ) 
A 1 A A A ~ A A " " A ~ A f 

While from the l a t t e r E ( Y , X ) = E ( Y , Z , X ) ; so E (X ) E(X,Y , Z ) or X =><Y,Z> and hence 
A A " A l l * ! ~ A ~ A A A ^ A A 

X %> Z . This proves 
A A 

Theorem 9 , 7 I f X s-determines Y and Y s-determines Z , then X s-determines Z . 
A A O <\ A 

That i s , s-determination i s t r a n s i t i v e . Beyond that, however, i t i a a p a r t i a l order 

only r e l a t i v e to s - i n t e r d e r i v a b i l i t y . Although that i s no problem f o r many purposes, 

causal-order d i s t i n c t i o n s within <^-equivalence classes also need recognition. We 

have already noted one example of s-interderivable Tuples that are causally asym­

metric. Another instance: I f X i s a s t r i c t l y complete source of each variable i n Z 
A 4 

while X and Z together are a s t r i c t l y complete source of y, to acknowledge macro-

st r u c t u r a l l y that <X,Z> mediates between X and y we must i d e n t i f y the sense i n which 
A A A 4 

X i s causally p r i o r to <X,Z> even though X<.=?'<X,Z>, 
A A A A A A ' 

The microstructural nature of s - i n t e r d e r i v a b i l i t y i s p l a i n enough from 

Theorem 8: ^ I f X =>Y and Y ̂ >X, then E(X) = E(X,Y) = E ( Y , X ) = E(Y). That i s , 
A A A A " " A ^ A " " A 4 A 

any <=^-equivalence class consists of Tuples whose exteriors are e s s e n t i a l l y i d e n t i c a l 

to one another. So i f X<=>Y, any finer-grained ordering of'X and Ysmust r e f l e c t 
A A A A 

some causal asymmetry between^I(X) and l ( y ) . One p o s s i b i l i t y might be to say that 
but not Y 4> Xj but not conversely but not 

X i s p r i o r to Y i f X ̂  Y/ or i f I(X) =>l(Y)jwhen X ^ Y , or i f I ( I ( X ) ) => l(l(Y))yconversel; 
A A A ^ ^ A ^ A A A ~ ~ A n 
when X<5»Y and l(X) <.=>I(Y), etc. That handles our f i r s t example of s - i n t e r d e r i v a b i l i t y 

A A A ^ 
( i . e . , between <x,y> and <.x,z> when x i s a s t r i c t l y complete source of y and y one of 

A A ^ A ^ A A 
z). But i t f a i l s to make x pr i o r to "<x,y> i n our second test case where x i ^ a 
A A A <) A ^ 

s t r i c t l y complete source of y. 
A 

The basic reason why s-determination misses the i n t u i t i v e asymmetry between 

(some) <^-equivalent Tuples as i n our two examples i s that i t i s i n effect an 
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expanded version of broad precedence, i . e . i t allows the antecedent of X ̂ Y to 

contain variables that are irrelevant to i t s consequent. But whereas a l l variables 

i n X are l o g i c a l l y or causally relevant to <-X,Y> when X i s a s t r i c t l y complete source 
A A A A 

of ( a l l of) Y, the Y-part of ̂ X,Y> i s not correspondingly relevant to X. More 
A A A 1̂ 

generally, i f X i s a complete source of both Y and Z, so that <K,Y> and <X,Z> are 
A 4 - 1 A A A 4 

both s-interderivable, <X,Y> i s i n t u i t i v e l y p r i o r to <X,Z> i f a l l of X i s relevant 
' A ' A A'-f A 

to Z with a l l of Y mediating between X and Z, but not i f Y and Z are independent 

effects of X. To formalize t h i s i n t u i t i o n , we need a relaxation of the t i g h t -
A 

precedence r e l a t i o n that leaves unconstrained the variables i t s r e l a t a are allowed 

to have i n cranmon. S p e c i f i c a l l y , l e t us say 

D e f i n i t i o n ^ . I J v IA tusle X^ik t d e h t l y ) p r i o r to tuple Y i f f 

there i s a pos s i b l y - n u l l tuple Z containing just variables common to X and Y 
A A ^ 

such that X-not-Z t i g h t l y precedes Y-not-Z. (By d u a l i t y , X i s b(roadly) p r i o r 
A A A A -1 

to Y i f f , for a tuple Z of variables common to X and Y, X-not-Z broadly precedes 
A A A 4 A A Y-not-Z. However, we s h a l l have no int e r e s t i n b - p r i o r i t y , ) ^ 

A A 

This d e f i n i t i o n i s equivalent to what i s prima fac i e a much stronger condition, namely. 

Theorem IG, Tuple X i s t - p r i o r to tuple Y just i n case X-not-Y t-precedes 
A A A 4 

Y-not-X. 
A A 

Proof. That the right-hand side of t h i s b i c o n d i t i o n a l e n t a i l s i t s left-hand 

side i s evident from the d e f i n i t i o n of t - p r i o r i t y . For the converse, l e t Z* consist 
A 

of a l l the variables common to X and Y, and l e t Z be any subtuple of Z* such that 
A A 'A A 

X-not-Z t-precedes Y-not-Z. I f Z* = Z, the converse i s immediate. Otherwise, l e t 

Z' = <z,',,..,z'> (m>l) be Z*-not-Z permuted to be causally well-ordered. Then 

Y-not-Z comprisea just the variables i n Y-not-X together with those i n Z', while 
A A A A /I ' ^ 
X-not-Y i s subtupleJ(X9not-Z)-not-Z'= of X-not-E. By assuaption that X-not-Z t-precedes 
Y-not-Z, we haVe that z' . t-precedes ( i . e . i s a source of some variable in) Y-not-Z 
A A -fm—1 A jf 
- <Y-not-X,Z'> for each i = 0,1,...,m-1. For i = 0, by the causal well-ordering of 

A A A ~ ~ 
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Z', z' i s not a source of any variable i n Z' and so must t-precede Y-not-X. More 
/I ' m̂ 1 ^ A A 

generally by the well-ordering, z^.^ must t-precede • • • »̂ '̂ ni»J"'not-X> and hence 
(by t r a n s i t i v i t y of the causal-source r e l a t i o n ) t-precedes Y-not-X i f each variable 

A /I 

after z' . i n Z' t-precedes Y-not-X. So by induction on i , Z' t-precedes Y-not-X-r-

wjaldh.by the t r ^ a i t i v i t y -of t-prscedence eviSently iipLtails that a ^ Tuple; which 

t-precedes Y-not-Z s>4Y-not-«X,Z'> also t-precedes Y-not-X, So given that X-not-Z 

and hence i t s subtuple X-not-Y t-precedes Y-not-Z, i t follows that X-not-Y t-precedes 
A A A A A i 

Y-not-X, O 

Theorem 11 says that X i s t - p r i o r to Y just i n case each X-variable i s 
A A A 

either also i n Y or i s a causal source of some Y-variable outside of X. For singleton 
i s t - p r l o r to ^ ^ 

tuples, <x> / <y> i f f either x-»-y or x = y, where i s the causal-source r e l a t i o n on 
A f\ A ^ A ^ 

single variables as before. 

Somewhat surprisinglji^—since t h i s i s not at a l l evident i n the d e f i n i t i o n — 

t - p r i o r i t y (and by duality b - p r i o r i t y ) turns out to be t r a n s i t i v e , anti-symmetric 

r e l a t i v e just to. =, and i s hence a c l a s s i c a l p a r t i a l order. 

Proof. For anti-symmetry, observe that i f X i s t - p r i o r to Y and conversely, 
A A 

then X-not-Y t-precedes Y-not-X and conversely—which by the i r r e f l e x i v i t y of 

t-precedence holds only i f X-not-Y and Y-not-X are both n u l l , i . e . , only i f 
A A A A 

X = Y. To show t r a n s i t i v i t y , assume that X i s t - p r i o r to Y, that Y i s t - p r i o r 

to Z, and take X', Y', Z' to be the subtuples respectively of X, Y, Z formed by 
A A /\ A A 4 

deleting just the variables common to a l l three of X.Y.Z. Then X' i s t - p r i o r 
A ' A ' A A ^ 

to Y' and Y' i s t - p r i o r to Z' (since deleting some or a l l of the variables 
A A A 
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coBimon to two tuples does not a l t e r whether one i s t - p r i o r to the other.) We 

next ebaerve that i f aome variable x i n X'-not-Z' were not to be a source of any 

variable i n Z'-not-X', x would s t a r t an a r b i t r a r i l y long aequence x^j-^z = x'-* 

^y«^a» = x"Ay"-^a» = ... of variablea c y c l i c a l l y from X',I«,Z« i n which i a 
A A - ^ / I A A A A 

variously either i d e n t i t y or the causal-source r e l a t i o n and must be the l a t t e r at 

least once i n each cycle, so that the arrows i n the entailed subsequence x-*z-*z**.. 
A A 

are a l l cauaal. (This i s because by d e f i n i t i o n of t - p r i o r i t y , x must either be 
A 

the same as or a source of some y i n T ' which i n turn must be the same as or a 

source of some z i n Z', whence x-*z aince x » y = z i a precluded by construction 
* A A A A A A 

of X',Y*,Z'. And z must be i n X', aince otherwise i t would be i n Z'-not-X' 
A ' A A A A A A 

contrary to hypotheaia. S i i a i l a r l y , z-*a' f o r aome z' i n Z' which must also be 

i n X' i f z« i s not to v i o l a t e the assumption that x i s a aource of no variable 
A A A 

i n Z'-not-X'; and so on.) Since tuple Z' i s f i n i t e , t h i s sequence would eventually 
A I A 

v i o l a t e the causal-aource r e l a t i o n ' s t r a n s i t i v i t y and i r r e f l e x i v i t y . Hence X' 

must be t - p r i o r to Z', and reatoring the deleted variables i n common yi e l d s that 
« A 

X i s t- p r i o r to Z. • 
A A 

Cleansing a-determination of irrelevancies by combining i t with t - p r i o r i t y 

y ields the order properties that we aeek. S p e c i f i c a l l y , 

D e f i n i t i o n 2.14. A tuT)IjLX^ l ( A e h a y ) ' ' l e t^iSi^^ 
X=:>Y — i f f X both s*determlnes Y^nd i s t - p r l o r to Y, ^ -
A A - A - " A A -

I t i s obvious but worth mention that i f X s-determinea Y, then aome subtuple X» of 
A . A A 

X t-detemdnes Y. (Proof: Let X' comprise just the variablea i n X that are either 
Then 

i n Y or are a source of some variable i n X^not-X*/X% too, s-detenaines Y and by 
A A )| A A 

construction i s also t - ^ r i o r to Y,) Note alao that a-determination, t - p r i o r i t y , 

and hence t-determinatlon are a l l vacuously r e f l e x i v e . 

Since s-determination and t - p r i o r i t y are both t r a n a i t i v e , ao i s t-determination 

and the c l a s s i c anti-symmetry of t - p r i o r i t y makes t-determination also c l a s s i c a l l y 

anti-aymmetric. Hence t-determination i a a olaaaloal p a r t i a l order. Thia means that 



i f a t-determination series i a any aequence ... ^ ^ i 4 2 ^ ••• tuplea 

of variables i n which each J-^ t-deteneinea ̂ ^+\d does not contain exactly the 

sane variables aa ^i+i» no t-determination series ever makes a loop. 
As background f o r future maciiostructural studiea, i t may be worthwhile to put 

the main combinatoarial prbperties' of Jbhffe r e i s t i o n s on record: 

Theorem l l r F e a f c ^ n y f t i ^ t-precedes Y i f f X and Y ^^ ;. 

both t-precede T separately. (2) I f b-precedes, or t-precedes, or s-detenaines 

T-^f and X 2 correspondingly b-precedea, or t-precedes, or s-determines Yg, then 

<X-,,X2> respectively b-precedes, t-precedes, or s-determines ^Y,,Y2>. (3) I f 

X t-preoedes Y, or i s t - p r i o r to Y, then each subtuple X-not-Zj of X respectively 

t-preeedes er i s t - p r i o r to every supertuple <Y,Z2> of Y , (4) I f X i s t - p r i o r 
4 ^ ^ A A 

to Y and no variable i n Z i a i n Y unless i t i s also i n X, then <X,Z> i a t - p r i o r 

to <Y,Z>. (Corollary. I f X t-determines Y and no variable i n Z i s i n Y unless 
/) '/) A A A -) 

i t i s also i n X, then <X,Z> t-determines <̂ Y,Z>.) (4') ^X,Z> i s t - p r i o r to <Y,Z> 

i f f X-not-Z i s t - p r i o r to Y-not-Z.) (5) I f X and z both t-precede Y, then X 
A A A A A A A / \ 

t-precedes Yrnot-z. (5') I f <X,Z> t-precedes Y, then X t-precedes Y-not-Z. 
A A A A A A A A 

(6) I f X t-precedea Y, then X i s t - p r i o r to Y. (7) i f HIY f o r any of the 
A A A A ""'I 

relationa R defined here i n terms of b- or t-preoedence and cauaal determination, 

while X» = X and Y' = Y, then also X'RY'. 
A A A A A — A 

Proofa. (1) and (2) are obvious, and (7) even more so. (3) i s immediate : v 

for t-precedeace, and from there for t-^priority by jBoting tiiat (X-not-Z, )-not-<Y,2o> 

i s a subtuple: of X-not-Y while Y-not-X -la a subtuple of 
^ A 4 A . — 

<Y,Z2>-not-(X-not-Zj^)). iU) holds becauae under the atipulated conditiona, <X,Z>-not-

< ; Y , Z >= Y-not-X; the c o r o l l a r y i a obvioua under the d e f i n i t i o n s of t - and a-deter-
A A A A 

mlnation. For (4'), aince <X,Z>-not-fY,Z> = X-not-<Y,Z> = (X-not-Z)-not - ( Y-not-Z), 
A ' A A ' A -A <('4 A A A A 

•<X,Z> i s t - p r l o r to <Y,Z> i f f <X,Z>-not-'iy,Z> t-precedes <Y,Z>-not-<X,Z> i f f 
A A A A A A A A 
(X-not-Z)-not-(Y-not-Z) t-precedes (Y-not-Z)-not-(X-not-Z) i f f X-not-Z i s t - p r i o r 

A /I A A ^ A A A A A 

to Y-not-Z. In (5), i f X and z are aa atipulated, z-*y* for aome y* i n Y and hence 
A A ' A A ^ V / N X A A 

(aince y* ^ z) i n Y-not-z, while for each x i n X, x-*y' for some y' i n Y. Either 
A A A, ,^ A A A / V / \
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this y' i s i n Y-not-z ( i f z 7^ y'), or x->z--»y* ( i f z = y') i n which case x i s a source 

of y* i n Y-not-Z. For (5'), asstane that <'X,Z> t-precedes Y, i . e . , by ( l ) , that X 
Jj A <• ' ' A A T 

and Z = <z,,...,z_> both t-precede Y. Then z„ also t-precedes Y (cf. ( l ) ) , so by 
1 A 1 A™ A Aiii A 

(5) and (3), X and ^ ^ x * * * * % \ - l ^ both t-precede Y-not-Zjj^. Induction on m thus 

concludes that X t-precedes Y-not-Z. For (6), assume that X t-precedes Y and l e t 

Z comprise just the variables common to X and Y, Then <X-not-Z,Z> t-precedes Y 

and, by ( l ) so does Z; hence by (5'), X t-precedes Y-not-Z. But Y-not-Z = Y-not-X 

by d e f i n i t i o n of Z, so X and, by (3), also X-not-Y t-precedes Y-not-X. That i s , 
A A A A A 

X i s t- p r i o r to Y. • 
A A 

The i n t e r p r e t i v e Qhafacter of t-de1;erminatioy. 

Using the p r i n c i p l e s l i s t e d i n Theorem 11, the macrostructural nature of 

t-determination can be explicated as 

Theorem 12. For any tuples X and Y, X t-determines Y just i n case, for some 
A A A A. 

positive integer n+1, there e x i s t tuples X, ,,.. ,X_,X_4.5 , Y T ,... ,Y^,Z (any of which 
can be n u l l ) such that (a) X ^ • • • »Ĵ n»Jn+1'̂ ^ \ ^?1» • • *»Jn»P» 
each i = l , . . . , n , X. i s a s t r i c t l y complete source of each variable i n Y.; 

— A - * - A X 

(c) X̂ +x t-precedes <Yj^,... ,Yjj>; and (d) every variable i n X-not-Z that i s a 

source of some Y-variable i n I(X) also t-precedes <Y-,...,Y_>-not-I(X). (Note: 
A ~ A A J - A " ' " ' ( 

I f X's i n t e r i o r i s n u l l or d i s j o i n t from Y, condition (d) i s vacuous.) 
A A 

We s h a l l not bother to prove Theorem 12 here, f o r the argument i s reasonably routine 

and only b r i e f h e uristic use w i l l be made of t h i s r e s u l t here. But when we have 

envisioned a structure of macrocausal connections among the variables i n tuples X 
A 

and Y, Theorem 12 makes i t easy for us to appraise whether X t-determines Y. 
A A A 

With only marginal exceptions, whenever X not merely s-determines Y but i s 
A A 

i n t u i t i v e l y f u l l y antecedent to i t , X also t-determines Y. The exceptions are certain 
A A 

cases that v i o l a t e condition (c) or (d) i n Theorem 12. The simplest example of 

(d)-failure i s the r e l a t i o n between X = ^x,y> and Y = <y> when x i s a s t r i c t l y 
A A -( 1 1 

cwnplete source of y. Here X s-determines Y but cannot t-determine i t insomuch 
A A A 
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as Y-not-X i s n u l l but X-not - Y i s not. (This example's v i o l a t i o n of (d) i n Theorem 12 

usefully i l l u s t r a t e s the force of that condition.) And cases where X seems f u l l y 

antecedent to Y without s a t i s f y i n g (c) are i l l u s t r a t e d by X = < X T , X _ , Z > , Y = ^y,z>, 
A A f ^ X n < . \ A 4 4 

when X T i s a s t r i c t l y complete sotirce of y, and Xp i s a source of z but not of y. 

Here again X s-determines Y , and moreover every variable i n X i s either i n Y or i s 
A A 1 A 

a source of some variable i n Y ; yet X does not t-determine Y because X-not - Y (= <x, ,Xpi 
A A A /I A A L A'-

does not t-precede Y-not-X (= <y>). 
A A 

Even so, t-detennination generally excels at the f i n e r macrocausal order 

distinctions missed by s-determination. One t e s t , i t w i l l be r e c a l l e d , i s the asym- : 

metry between X and * - J , Y > when X i s a s t r i c t l y complete source of each variable i n Y . 

Application of Theorem 12 shows that X t-determines •<X,Y> i n t h i s case, while by 
A A 4 

t-determination's c l a s s i c a l anti-symmetry and the preclusion of X = ^ X , Y > i n t h i s 
A A A 

case, ^ ^ • Y > does not t-determine X. And i f X i s a s t r i c t l y complete source of both 

Z and Y , while each Z-variable i s also a source of some variable i n Y — o u r other 
A A A A test c a s e — <X,Z> t-determines ''X , Y > but not conversely. 

A ' I A A 
Theorem 12 can e a s i l y generalize upon these spe c i a l cases of t-determination. 

But more fundamental i s that i f Z i s any tuple that interests us, say becauae i t 
A 

t-determines output tuple Y , and some subtuple Z' of Z i s i n turn t-determined by 
A A A 

some tuple X of more remote Y-sources, then ^Z-not-Z',X> t-determines Y . (Proof: 
A A A A A A 

By Theorem 11-4 Corollary, i f X t-determines Z', then <X,Z-not-Z'> t-determines 
A A ' A ' A 1 

<Z',Z-not-Z'> = Z and hence also, by t r a n s i t i v i t y of t-determination, any Y that 
A A A A A 
Z i n turn t-determines.) This means i n p a r t i c u l a r that s t a r t i n g with a given output 
A 

tuple Y , i f ... Zjj_-|^^ fk+1 ^ ^^^^ ® precession of i n c l u s i v e l y complete 

Y-sources i n which each "^-^ i s obtained from by replacing one or more variables 

i n Zj^ by s t r i c t l y complete sotirces thereof, t h i s sequence i s a t-detennination ser i e s , 

leading to Y , i n which each t-determines Z^+i and hence a l l subsequent tuples 
^ ^ ^ l a t e r 

i n the sequence through mediation by Zj^. (We shallexamine causal compositions f o r 
such t-determination sequences i n some d e t a i l . ) Accordingly, i t would appear that 

a l l macrostructural mediation relations of Interest to multivariate analysis are 

contained i n the c l a s s i c a l p a r t i a l order of t-determination. 
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Actually, the causal-determination r e l a t i o n that proves to be most powerful 

for macrocausal analysis i s not bare t-determination i n the absolute sense of Def. 2.14, 

but a r e l a t i v i z i n g of t h i s to the microcausal path structure within a pa r t i c u l a r 

background tuple W that includes a l l the variables whose causal connections are 
A 

e x p l i c i t l y at issue. To define r e l a t i v i z e d t-determination and establish the theorems 

applying thereto, we need merely construe a l l references to causal-source connections 

among single variables i n Def. 2.11 gt sea. *o bear the i m p l i c i t q u a l i f i c a t i o n 

" r e l a t i v e to W" with the understanding that x i s a source of y r e l a t i v e to W i f f 

there i s a path from x to y within W i n the sense of Def. 2.7. With fi x e d W, t h i s 
A A A 4 

r e l a t i v i s i n g to W of source-relation does not a l t e r i t s s t r i c t - p a r t i a l - o r d e r 
A 

character, so a l l d e f i n i t i o n s and theorems previously developed i n terms of —> 

follow exactly as before except that these, too, are now generally r e l a t i v e to W. 

In some cases, there i s no essential difference between a r e l a t i o n or p r i n c i p l e based 

on absolute —^ and i t s r e l a t i v i z e d counterpart. In p a r t i c u l a r , for any subtuples 

X and Y of W, X s-determines Y r e l a t i v e to W just i n case X s-determines Y absolutely. 
• f A A A ^ A A A -i 

So when W contains a l l variables at issue, the only difference between X t-determining 
A A Y absoltjtely and doing so r e l a t i v e to W i s a strengthening of t-precedence requirements 

A A 
(c) and (̂ ) i n Theorem 12 to t-precedence r e l a t i v e to W. 

i 

Macrostructural mediation. 

According to our introduction, the theory of causal macrostructure aspires to 

develop an account of causal connections among groups of variables that p a r a l l e l s the 

logic of microcausal path structure. Before seeking to f u l f i l that promise, however, 

we had best make clear just what information a path digraph does express. 

Were there nothing more to microcausal path structure than a p a r t i a l ordering 

of causation among single variables, any of the partial-order r e l a t i o n s on Tuples 

already i d e n t i f i e d here wotild be a macrocausal p a r a l l e l . But micros true tiu-al path 

digraphs say a great deal more than that—enough, i n f a c t , to warrant a l i s t : 
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What causal-path digraphs represent. 

1. Causal-source connections. 

2. Causal mediation. 

3. Causal disconnection. 

4. Causal determination. 

5. Causal composition. 

1. That the microstructural path digraph for a tuple X — f o r convenient 
A 

reference c a l l t h i s structure —expresses binary causal-source relations within 

X by the directed l i n e s connecting some X-variables to others i s the most conspicuous 

feature of 7)'^. But what the arrows i n 7)^ stand for i s not merely the causal-source 

r e l a t i o n —> but a very special instance of t h i s r e l a t i v e to X. A path from x. to 
A A i 

Xj i n indeed conveys that x^—^x^; but a m u l t i p l i c i t y of TTy-paths from x^ to 

Xj has a str u c t u r a l significance that i t could not have were t h i s just a way to 

express x ^ — ^ X j , nor does lack of path from x^ to Xj i n ft^ imply, conversely, that 

i s not a source of x^. The absence of p a r t i c u l a r path connections i n Tf-yr i s not 

just an arbi t r a r y omission of sotirce r e l a t i o n s that we choose to disregard, but i s 

f u l l y as essential to what 1)^ t e l l s us as are the paths that 7/x <ioes contain. 

2. Similar remarks apply to V-^*a representation of mediation among the 

variables i n tuple X, Ifanifestly, i f a T/V'Path from x. to x. passes through x, , 
4 ^ A I - A J ^k 

then X. influences x. through the mediation of x, . But f a i l u r e of V^Y contain 

a path from x^ to x^ through Xv. does not say, conversely, that x,̂  does not mediate 
/)X ^ J AK. between x. and x , — i t i s e n t i r e l y possible for x, to be a aource of x,,, and Xv. of x., 

AX A I A ± A''^ A'^ L I 

without these connections being featiired i n And a m u l t i p l i c i t y of paths from X. to X J with some but not a l l passing through x, says far more about the causal 
AX A J Ak 
relations among these variables than just x. —^x,—»x.. 

A x A'^ A J 

3. How path digraph also represents disconnection ( t o t a l mediation) i s 

explained i n Theorem 3 (p. 2.14). Mst a l l disconnection p o s s i b i l i t i e s among X-variables 

are ajudicated by Ifj^, But i f x, i s i n I(X) and X^ contains at least one variable on 
1 J A A'^ 
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each t o t a l path to x. i n X, then for any other variable x. i n X, lyL. reveals whether 

otherwise. TTY ' S expression of disconnection depends as importantly on which X-vari-
A A 

ables i t does not l i n k by paths as on those i t does, and i s where the deeper significance 

of path structure begins to emerge. Even so, the abstract d e f i n i t i o n of t o t a l 

mediation i n terms of path connections manifests l i t t l e reason to p r i z e t h i s i n f o r ­

mation for i t s own sake. Rather, disconnection's payoff i s i t s import f o r causal 

composition (cf. Theoran 7, p. 2.29). 

4 & 5. M>st fundamentally, path digraph ff^ i d e n t i f i e s which subtuples of X 

are complete sources of what other X-variables (cf. Theorem 4, p. 2,16), and which of 

the strict/extended causal r e g u l a r i t i e s that govern these determinations derive from 

which others by compositions of transducers and subtuple selectors ( c f . Theorems 5 & 7; 

more comprehensively, see Theorems 15 & 24, below). This i s where l i e s the ultimate 

challenge for causal analysis: to i d e n t i f y the parameters of ( r e l a t i v e l y ) basic causal 

mechanisms from which are compoaed the overarching causal behaviors of more complex 
* 

natural systems. The l o g i c of causal explanation i s multi-leveled: Not merely do 

variables (ir.ore precisely, instantiations of t h e i r values) cause one another according 

to lawful r e g u l a r i t i e s , but these laws themselves are generally the way they are as 

a l o g i c a l consequence of more fundamental laws. That i s what makes p a r t i a l / t o t a l 

mediation so central for c a u s a l i t y , and what i t i s that path digraphs most deeply 

represent. 

It i s evident from t h i s review that no p a r t i a l ordering of Tuples properly 

q u a l i f i e s as a macrocausal counterpart of path structure unless i t carries information 

about disconnection and causal composition as w e l l as causal determination. We have 

looked with some care at the causal-determination ordering of Tuples, but have said 

nothing as yet about macromediation. The central concept needed for this—macro-

disconnection—is just micro-disconnection writ large, namely, 

Defi n i t i o q 2.15. Tuple Z (macrostructurally) disconnects tuple X from tuple 
A A 

y i f f Z microstructurally disconnects each variable i n X-not-Z from every variable 
A A A A. ' 
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i n Y-not-Z. Tuple Z properly disconnects X from Y i f f Z disconnects X from Y 
A A 4 A A A y\

and neither X-not-Z nor Y-not-Z i s n u l l . 
A A A A 

Note that Z cannot disconnect X from Y unless a l l variables common to X and Y are 
A A A A A 

also i n Z, since Z f a i l s to micro-disconnect x. i n X-not-Z from y. i n Y-not-Z i f 
A A A± A A J{2 A A 

x^ ~ ^ j * '^^^ point w i l l prove c r i t i c a l l a t e r . ) Also worth making 

e x p l i c i t i s 

Theorem 13. ( l ) I f X = •'X̂ ,.,.,X„> and Y = <Y.,...,Y„>, Z disconnects X 

from Y just i n case Z disconnects each X ( i = l,...,ml from each Y. (j. = l , . . . , n ) . 
A A >|X A J 

Corollary. Z disconnects X from Y just i n case Z disconnects each subtuple of 
A A A A 

X from each subtuple of Y. (2) Z disconnects X from Y just i n case Z disconnects 
A A A A A A 

X-not-Z from Y-not-Z. Corollary. Z disconnects each subtuple of i t s e l f from 
A A A A \ 

every Y, and every X from each subtuple of i t s e l f , 
A A 

Both parts of Theorem 13 are immediate from Def, 2.15, 

An i n t u i t i v e anomaly luider Def, 2,15 i s that every Tuple disconnects i t s e l f 

from i t s e l f . But i f "Z disconnects X from Y" i s understood as e l l i p t i c for »Z d i s -
A A A ^ A 

connects the noB*Z?part of X from the non-Z part of Y," the discomfort vanishes 
A A A A 

except for the residual awkwardness that any singleton tuple <x> macrostructurally 
A 

disconnects <x> from <x> even though i t does not disconnect x from x microstructurally 
A A A A 

(Def, 2,8), Proper disconnection avoids t h i s p e c u l i a r i t y — i , e , , no Tuple properly 

disconnects any subtuple of i t s e l f from any subtuple of i t s e l f . But for most 

technical purposes, the non-nullity condition i n proper disconnection i s a dis t r a c t i n g 

irrelevancy. 

When coupled with determination, macrostructural disconnection i s f i n i t e l y 

i d e n t i f i a b l e i n terms of microcausal path structure as 

Theorem 14. I f tuple Z s-determlnes tuple Y, then for any tuple X, Z d i s -
A A A 

connects X from Y just i n case (a) X-not-Z and Y-not-Z are d i s j o i n t ( i . e . , every 
A A ~ \ A A J J 

variable common to X and Y i s also i n Z), and (b) every path i n <X,Z,Y> from 
A A A A A A 
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any variable i n X-not-Z to some variable i n Y-not-Z passes through Z. Corol-

lafCf-., The theorem also holds i f Clause^) Is replaced by: (b') every path 

i n <X,Z-Y> from any variable i n X to some variable i n Y passes through Z. 
A A A A 1 4 

Proof. The theorem holds vacuously i f either X-not-Z or Y-not-Z i s n u l l . 
A 4 -I -» 

Otheirwise, l e t be any variable i n X-not-Z and y. any variable i n Y-not-Z. Since 
A^ A /| ^3 4 4 

Z->Y by s t i p u l a t i o n , y. i s i n t e r i o r to <Z,Y> with a l l t o t a l paths to y. therein 

beginning with a variable i n E ( z ) ; hence a l l t o t a l paths to y. i n <X,Z,Y> pass 
1 A J 4 4 4 

through Z. So by Theorem 3, i f x ^ / y ^ with y- i n t e r i o r to <X, Z,Y>'̂ ^̂  paths 

frm-^h to y^ i n <X,Z,Y> pass through Z, then Z disconnects X from Y. Conversely, 
A i ^2 A A A A A A ^ •>* 

i t i s immediate from Def. 2,8 that Z f a i l s to disconnect x. from y. either i f 
A A ^ A I 

X . = y. or i f there i s a path from x. to y i n <X,Z,Y> that does not pass through 
A J - A " A 1 / ) J A A 4 
Z, The cor o l l a r y follows by observation that (b') i s equivalent to (b), insomuch 
A "* ~ 
as a path from X to Y i n <X,Z,Y> that begins with a variable common to X and Z, or 

'A A A A A A A ' 

ends with one common to Z and Y, thereby passes through ( i . e , contains a variable 
A A 

in) Z, O 

WhenX s-^ete:^iies Y, we can .iombine the in c l u s i v e causal r e g u l a r i t i e s 

jy* = I^AW] by which X determines the single variables J y ^ | i n Y-not-X, together 

with noncausal identity-selector functions that pick out of X the Y-variables also 

i n X, into a single macrostructural quasi-causal r e g u l a r i t y Y = ̂ (X) defined as 

follows: 

D e f i n i t i o n 2,16. Tuple X = <x^,,.,,Xjjj> determines tuple Y = <yj^,...,y^>under 

quasi-causal r e g u l a r i t y Y = )i^(X) i f f (a) ji^ i s a function from the l o g i c a l range 
A \ 

of X into the cartesian product of the ranges of the variables i n Y so that 
A ^ 

M^) = <^(X),...,l^„(X)>; (b) for each Y-iyariable,yvCift Y-not-X, y^ = ( X ) i s 
A L A " A A / ^ i A A A 1 ^ A 

an inclusive causal r e g u l a r i t y under which X i s an i n c l u s i v e l y complete source of 

y ; and (s) for any y. common to Y and X, i6. i s the aingleton-aubtupie-selector 
A i A J A J 
function that picks y. out of X, i , e , , i f y. i s the kth variable i n X, ̂  (X) = 

0-x^ + ... + 0-Xĵ _3̂  •*"̂ k °Tk+l ••• °*̂ m- (^ote; I f y^ i s also i n X, 
y = ̂ . (X) i s a noncausal i d e n t i t y - s e l e c t i o n of y. from X even when y. also 
A J J I A J A . /)3 
has a complete causal source i n X.) 
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In proof of the theorem about to follow, we s h a l l need to speak both of quasi-causal 

r e g u l a r i t i e s and of the s t r i c t causal r e g u l a r i t i e s embedded therein. And since a 

generalization of t h i s embedding concept w i l l be needed l a t e r , we declare 

have the form of. 
Definition 2.17. ( l ) I f Y = ^(X) and Y' = ^'(X) ar*. ^ / q u a s i - c a u s a l 

A A A A A 
r e g u l a r i t i e s i n which Y = <y ,... ,y > and Y« = ',... ,y' >, Y«v,s;ĝ >M3}̂ °̂ 9̂ ĝ'A i n 

A /|1 A l 4" , -
Y = £̂ (X) i f f (a) tuples Y and X respectively include Y' and X', and (bT for 
A A '~ A A A A " 

a l l i = l,...,m and j . = l , . . . , n , i f the i t h variable y. i n Y i s i d e n t i c a l with 

the 1th variable y' i n Y', the i t h component function y. = ^.(X) i n Y =i4(X) 
/ i J / V •" / v l i A A - 1 

d i f f e r s from the 1th component function y' = ^\{X*) i n Y« = /'(X«) only i n 
A J J A A A 

containing with n u l l weights the variables i n X-not-X'—i.e., i f a' i s the 
A A 

subtuple-selector function that picks X' out of X, there i s a permutation 
A A 

operator P such that fi^ - (Note that embedding i s t r a n s i t i v e , i . e . , 

i f Y = ^(X) embeds Y' = ^'(X') which i n turn embeds Y" = ;̂ ''(X'«), then Y = /(X) 
A /\l A A A A 

embeds Y" = jei"(X").) (2) A causal r e g u l a r i t y y, = i*{X*) i s the proximal core 
A A A X 1 A X 

of Y = ^(X) f ^ y, i f f (a) Y = ^iX) i s a quasi-causal r e g u l a r i t y , (b) y. i s a 
A A / y l /\ ^ X variable i n Y-not-X whose proximal source i n X i s Xf, and (o) y. = F^f(Xj) i s 

A A 4 A X y y l i A x 
embedded i n Y = /$(X). We also say that y. = i'i^f) i s the proximal core of 

A A /y X 1 A X 

the component y. = 4>. (X) of Y = ^(X) whose output variable i s y^. 

For any quasi-causal r e g u l a r i t y Y = /(X) and any variable y^ i n Y-not-X (but not 
A A ;̂X /) 

for any y. common to Y and X), there i s exactly one r e g u l a r i t y y. = ^f(X*) that i s 
A J A 1 A - " - 3. A l 

the proximal core of Y = ^(X) for y.. Since by s t i p u l a t i o n X* i s the (non-null) 
A A ;j 1 4 1 

proximal source of y. i n X, t h i s y. = ^*(X*) i s a s t r i c t causal r e g u l a r i t y that i s 
AX A A-*- i A l proximal within <X,y.>. Evidently, a quasi-causal r e g u l a r i t y Y' =)^'(X') i s embedded 

A A1 A A 
i n quasi-causal r e g u l a r i t y Y = /(X) just i n case X' i s i n X, Y' Is i n Y, and for . 

A A -A A A A 

each variable y' i n Y'-not-X', y' i s not i n X but has the same proximal source i n 
>vl A A ^ 1 A 

X' as i t has i n the more i n c l u s i v e tuple X. 
A ^ A 

Now consider the s i t u a t i o n wherein X s-determines Z and Z s-determines Y 
A A A A 

under respective quasi-causal r e g u l a r i t i e s Z = v^(X) and Y = |^(Z), i . e . , 
A '^ A A 
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^^'•••'V = 'A^V*-"*^m^V^ ^"^ <IV""^n> = <^i(^)»"'Jn^Z)> where Z = <Zi,..,z^> 

and Y = <yT,...,y_>, These macrocausal r e g u l a r i t i e s have a well-defined composition, 
namely, Y = /Jj^(X) . To appreciate the nature of th i s formalism, observe that the i t h 

A A ~ 

component function i n Y = fi^{X) i s y. = )t^.j^(X), which i n turn can be equivalently 
A A /[ 1 1 A 

written i n expanded notation as y. = ^ . (>̂ T ( X ) , . . . , / L ( X ) ) . I f the i t h variable i n Z 
i ( l l l A ' " A A 

i s also i n X, say 1 = 1 and ẑ ^ = X j ^ , t h i s i s i n turn equivalent both to y, = 

^i^ A l*^2^F*'***^m^?^^ and to y^ = ^{xy.,^^{J),...^Y'^iX)), with s i m i l a r Identity 

replacements holding for any other Z-variables common to X . Thus Y = / j ^ ( X ) e f f i c i e n t l y 
A A A -A 

composes into each y. = f(.{z-.,,..,z„) the in c l u s i v e causal r e g u l a r i t i e s under which 
A ± 1 A i A™ 

the Z-variables not i n X are determined by X. However, we know from discussion of 

FT-1 that the composition of one causal r e g u l a r i t y i n t o another does not always 

preserve causality. So even when Z = </(X) and Y = d{Z) are both quasi-causal, t h e i r 
A A A A 

composition Y = may not be so. Happily, the conditions under which quasi-
A A 

causality status i s preserved under composition of s-determinations proves to be 

remarkably simple: 

* 

Theorem 15. Let tuple X s-determine tuple Z under quasi-causal r e g u l a r i t y 

Z = f^(X) while Z i n turn s-determines tuple Y under quasi-causal r e g u l a r i t y 
A A A A 
Y = /(Z). Then i f Z disconnects X from Y, X s-determines Y under quasi-
A A A A A A A causal r e g u l a r i t y Y = ̂ i X ) , 

/| 4 
Proof. Assume the theorem's preconditions and for each variable y* i n Y, 

A*" 1 
l e t y 3s i ^ . ( X ) be the 1th component regi^idiy I n Y = / J ( X ) . Then we are to show (a) 

A J J A A A that i f y i s i n X , fi,)/ii i s a singleton-subtuple-selector function that picks y, out 
A J A 0 ^2 

of X, whereas (b) i f y. i s i n Y-not - X , y. = / ^ ) ^ ( X ) i s the in c l u s i v e causal r e g u l a r i t y 
A /\ A / \ A J « ' ' I 

by which X i s an in c l u s i v e source of -^y Case (a) i s obvious, since by disconnection 
y. i s then also a variable i n Z, say the kth. So li. i s a subtuple selector that 
A J A J 

picks out the kth component of i t s argument ( i . e . , / j ( Z ) ~ ̂  ~ Y j ) * the kth component 

transducer )4 i n Z = 5^(X) i s the subtuple selector that picks Zv, i . e . y., out of X , 
K A A A " - A J A and fij^i' i s hence the subtuple selector that picks y^ out of X . In our main case (b), 

J A** A 
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either (b,) y. i s also i n Z but not i n X, or (b,) y. i s i n neither Z nor X. In 

case ( b j ) , y^ = ^-j^^J^ i d e n t i c a l with the kth component Zj^ = f^(X) of Z = 5^(X), 

where y< i s the kth variable i n Z. But ẑ . = ;^i,(X) i s the i n c l u s i v e causal r e g u l a r i t y 
A J "• A k /I 

under which X i s an i n c l u s i v e l y complete source of z, and hence by i d e n t i t y so i s 
A A'K-

y^ = l^i^^Cp. F i n a l l y , f o r case (b2), l e t y^ = ^^^jCZ^) be the proximal core of 
I = M T ) for y., and presume without e s s e n t i a l loss of generality that Z has been 
/\ /yj A 
S O permuted that Z = <Z*,Z-not-Z*> and Z* = <Xj,Zl> where X. comprises just the r 

^ A A J * A A J A J A J ' x j A J ^ *• 

variables (r > O) common to Z* and X, and Z' (= Zl-not-X/), i f not n u l l , i s causally 
' ^ J 1 A J A J A " 

well-ordered. (There does not generally e x i s t a permutation of Z that achieves these 
A 

constraints simultaneously for a l l variables y. i n Y-not-Z; but we are dealing with 
A J ^ A 

just one a r b i t r a r i l y selected y. therein and leaving suppressed the permutation that 
A J 

would have to be made e x p l i c i t i f the present proof were to be given i n complete 

detail.) Then y. = /iHT.*) i s i d e n t i c a l with y^ = ^*(X.,Z') where X. comprises the 
A J j l J A J j ^ J l J A j 

f i r s t r variables i n Z and Z! i s either n u l l or consists of Y-variables < y „ , y ^ ^ > 
A A J A Vr-ta 

for some m 2 1. Now, regardless of whether Z' i s n u l l , y. = li^iX.,Z\) i s proximal 
A J A J j A J / f j 

not only i n ^Z,yj> but also, by our disconnection premise, i n Wj ~(jef ̂ ^»^»^j^' 
[Reason: y. has a non-null proximal soiu"ce W* i n W J, while by assianption, subtuple 

A J A J A " ' <X,,Z»> of Z i s the proximal source of y. i n <Z,y.> = W.-not-X^ where X-, =, _ X-not-Z. 
A J A J A \  ^  A J  A 2 A U r t O def ^ ^ 

I f some variable x i n X were to be i n W*, then there would be a path from x,̂  to y. 

i n Wj that does not pass through Z, contrary under Theorem 14 to s t i p u l a t i o n that 

Z disconnects X from Y. Hence y^'s proximal source i n W. must also be i t s proximal 
A A A A J A J 

source i n W.-not-XQ = <Z,y.>.] I f Zl i s n u l l , y. = ^*{X.,Z\) s i m p l i f i e s to y, = ji{*(X,); 
A J A " A /\ A J A J J A J A J /\ J  A J 

and by considering how the relevant subtuple selector picks X^ out of Z i n y4 = fi^iZ) 
A J A A J J A 

and accordingly gives non-null weight i n x̂ V̂̂ (X) just to the components of s^(X) that 
J A <1 

are variables i n X. picked out of X by the noncausal id e n t i t y - s e l e c t o r components 
A J A 

of V ,̂ we can see that y = ^^(X.) i s embedded i n ^ y. = ;̂  J^(X). Hence 
A J J A ' ' ' - A J J A 

y^ = ^i?^(X) i s the inclusive r e g u l a r i t y under which X determines y, i n t h i s n u l l - Z l 
A J J A A ^2 /|j 

subcase, as was to be shown. Al t e r n a t i v e l y , i f Z\n y. = ii*{Z^) - /t(X,,Zl) i s not 
A J A J J A J j A J A J 

n u l l , we have Zj = ^Zj.+i,... ,Zj.4m^ for some m ^1, with the causal well-ordering 
A A 
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stipulated for Zl e n t a i l i n g that there i s no path i n W. = . ̂ X,Z,y.^ from any 
A J A J del f A J A rTL 

i n Zj to any of the variables Zr+i»• • • jZy - n . ! *hat precede z^.^ i n Z j . The proximal 
core y. = tJ*(X.,z^,,,...,z^ . ) of y. = fiAz) i s proximal not only i n <Z,y.> but also 

A J J J ^ ~ •'• A^-m AJ 2 A " A J 

i n (= •^X,Z,yj>) for the reason already given. And i f Zj.+x = i^J+x^JJ+i) the 

proximal core of Z = ^{J) for ^r+1 ~ ^r+l^/[*+l^ proximal not only i n 

but alao i n Wj, insMiuch as none of variables ^^x'+z*"'*^r-^*^j^ a aource 

?r+l' ^° Qs^-Uf y^ = ^J(jj»>^r+l^Jr+l^%^r+2**-''^^-hn^ ^ s t r i c t causal 

reg u l a r i t y that i s paroximal i n W.-not-Zj.+n. Mbr^emseTj, the proximal core ẑ .̂ ^ ~ 

V^*,5{X*; ) of Z = ŷ X̂) for z^.p is-proximal not only i n <'X,z_42^ ^^^^ i " 

Wj-not-Zp^-j^, since none of variables <z^^^,,,.,Zj.^,yj> i s a source of 2̂ 4.2* ^° 

again by C|£-4, y^ = ^J(Jj»J^J+i^JJ+i)»5^r+2^Ar+2^»^+3»• • • %^Hm^ « s t r i c t causal 

reg u l a r i t y that i s proximal i n Wj-not-<Zj.^.j^,Zj.^.2>, Continuing i n t h i s way eventually 

shows (technically, by induction) that y^ = ^J(Xj./J+x(Xj+x),...,i^*^j,(X*^)) i s a 

proximal r e g u l a r i t y i n W^-not-Zl = ^X,y.>. And the l a t t e r r e g u l a r i t y i a embedded 

i n y. = li.^iX). (Recall that by our st i p u l a t e d ordering of Z, /.(Z) = ^*{ZV + 
A J J A > A J A J AJ 

O'Z-not-Z* with Zj = ^Jy^j.+i>"-f^j..tj^>> while the f i r s t £ components of Z = ^(X) 

are identity-selections of the variables X. common to Z* and X.) So y, = fi./{X) 
A J A 2 A A J J 

i s the inclusive caiisal r e g u l a r i t y under which X i s an i n c l u s i v e l y complete source 
Of y.. a 

A J 

J4idh of Theorem 15'a proof consists of struggle with t r i v i a l but obfuscating 

t e c h n i c a l i t i e s concerning n u l l weighta and noncauaal i d e n t i t y selections. But at 

the theorem's heart l i e s an argument that i s neither t r i v i a l nor obvious. To 

appreciate how t h i s r e s u l t i s surprising yet true, a g r a t i f y i n g macrostructural 

tidiness i n what might we l l have turned out to be an intractable snarl of microcausal 

proximalities, i t i s helpful to re-trace the theorem's proof i n i t s special inatanoe 

wherein Y i s a singleton <y>, and X i s a s t r i c t l y cwnplete source of each variable 
A ^ A 

i n Z = <z^,... ,Zjjj> (whence also X and Z are d i s j o i n t ) . In t h i s s i m p l i f i e d caae, 

i f y = ^^^if-*V^ and [z^ =v^^(X)j are a l l s t r i c t l y causal with Z disconnecting 

X from y, i t i s evident from C^-4 that y = /(̂ (ŷ , (X),... ,y5 (X)) would be causal i f we 
A A A J . A lU /\ 
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were also to stipulate that a l l of r e g u l a r i t i e s f z . = (X)J are proximal i n <'y,Z,X>. 

However, we do not make t h i s l a s t assumption. Rather, our disconnection premise 

allows that some variables i n Z may wel l be proximal sources i n <:y,Z,X> of other 

Z-variables, so that X's determination of some z. i n Z i s mediated by Z-not-z.. 
A 4 A1 A A Ai 

Prima f a c i e , t h i s i s the very sort of proximality f a i l u r e that invalidates FT-1 (p. 

2.22). But applied to our s i m p l i f i e d case, the argument for Theorem 15 observes 

that s t a r t i n g with y = /(z,,...,z ) proximal i n W =, - <y,Z,X>, X i s the proximal 
A Ai Am A uei A ^ A 

source i n W of at least one Z-variable, say z^, under r e g u l a r i t y Z- = ( X ) , so that 
A A A l A l 1 A 

y = ̂ (Vc,(X),z_,...,z„) i s proximal i n W-not-z.. And [ r e g u l a r i t i e s z^ =s^-(X),..., 
A X A A ^ m A A - » - A*- 1 

2-, ~ not only i n W but are also i n W-not-z, regardless of whether any are mediated by z^, and at least one, say the f i r s t , must be proximal i n W-not-z,. So 
A X A 4X 

z = ̂ (A(X),>A,(X),Zo,...,z„) i s proximal i n W-not-<ZT ,z„> while z. =V^o(X),..., 
A •'•A *- A - ' A ^ A X Afc A J - ? A 
z„ = )^^(X) are a l l i n W-not-<z,,Z5> with at lea s t one proximal therein. Iteration /yin m̂ A A A 1 A*̂  

of t h i s reduction eventually gives y = ( X ) , . . ( X ) ) as proximal within 
A X A .m A 

W-not-Z = <y,X>. Need for Z to disconnect X from y here i s to y i e l d that i f 
A A A A ^ A A :( 
y = fi{Z) i s s t r i c t l y causal, i t i s also proximal i n ̂ y,Z,X>; after that i n the 
A A A A A 

reduction, the proximalities take care of themselves. As for our simplifjring 

assumption that X i s d i s j o i n t from and a t r i c t l y determines a l l of Z, i t i s not 
A A 

hard to see that t h i s plays no r o l e i n the argument except to suppress irrelevant 

distractions. 

Composable sequences of macrocausal determinatiop. 

Theorem 15 may w e l l be viewed as TJie Fundamental Pr i n c i p l e of Causal Macro-

stru c t u r e — o r indeed, of multivariate causal analysis i n general. Given that causal 

structure i s of dubious significance unless accompanied by causal composability, 

the main task of macrostructural theory i s to work out the conditions under which 

the composability described by Theorem 15 can be ite r a t e d throughout complexes of 

Tuples i n molar counterparts of microcausal paths. 
Consider a sequence ^ ^2 ̂  * * * ̂  Âm ̂  Â m+1 s-determinations. Ifcder 

what circumstances i s the quasi-causal r e g u l a r i t y under which X^ s-determines X̂ ^̂ -̂ĵ  
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simply the s e r i a l composition of the quasi-causal r e g u l a r i t i e s rnider which each X. 

s-determines Xj+i i n t h i s sequence? The esse n t i a l condition f o r t h i s i s given by 

Def i n i t i o n 2.18. A sequence (flot a conjoined Tuple) X, ;Xpj...;X ;Xm4.2̂  of 

Tuples i s a (length-m) composable determination series, or cd-series for short, 

i f f (a) m > 2, (b) for each 1 = l,...,m, X^ s-determines ^±+i> and (c^) Xg d i s ­

connects Xj^ from X^ i f m = 2, or (£2), i f m > 2, there i s some ̂  = 2,...,m such 

that X^ disconnects X^_x ^h+1 ^ ^ i l e ^i* •" *^h-l*^ii+l*"' ^ length-

(m-l) c ^ s e r i e s . (Note that this d e f i n i t i o n i s a recursion on sequence length 

with 1 = 2 as base.) 

We s h a l l also write ^^-^ ...=^ ̂ m+1 sequences of tuples f o r which i t i s given 

that each Xj^ s-determines 

Theorem 16. Let X-, ->X^=> =^\,^fm+l be a sequence of s-determinations 

i n which, for each i = l,...,m, determines î+x under quasi-causal r e g u l a r i t y 

^i+1 ~ ̂ i^^i'^' I f t h i s sequence i s moreover a cd-series, then Xj^ s-deteniiines 

Xgj+2 under the quasi-causal r e g u l a r i t y Xj„+]̂  = ̂ *(X-j^) whose transducer i s 

^* = -'̂ m̂ m-l- • •^2^1' 

Proof, by induction on m. Given that X-j^;... ;Xĵ +2 i s a cd-series, the indue-

tion's base i s immediate from Theorem 15 when a = 2. More generally, for « y2;,' ?• 

l e t X^ bis îB tuple that disconnects X^^^ from ̂ h+1̂ "'̂ -̂'-® Jx?'• • 5^h-l»Jh+i»• • >Jm+l 

i s a length-(a-l-);^cd-series. (Existence of t h i s i s stip u l a t e d by Def. 2.18.) 

Then by the induction hypothesif, the quasi-causal r e g u l a r i t y under which ^-^1 

s-determined by Xi|̂  has transducer fi* = ̂ j^*.•/{j4x^''^h-2**'^1 "here i s the trans­

ducer of the quasi-causal r e g u l a r i t y ^̂ +x ~ ̂ '^^h-1^ under which |̂j_x s-determines 

][h+l* since X^ disconnects Xjj_x from ĵ̂ +x* "® have frran Theorem 15 that 

^' = ^° substitution of f^^^^^_i for ̂ ' i n the induction-hypothesis compo­

s i t i o n of f^* yields ji* = /^.../^m+l^h^h-l'-'^l* ^ 
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For reasons overbriefly sketched e a r l i e r (p. 2.28), the converse of Theorem 16 

i s ^ l s o e s s e n t i a l l y t r u e — i . e . , i f Xj^ => ...=>Xm+]̂ , i n order f o r the quasi-causal 

re g u l a r i t y under which X-ĵ  determines to have as i t s transducer the s e r i a l compo­

s i t i o n of the single-step quasi-causal transducers i n t h i s sequence, i t i s not merely 

s u f f i c i e n t but f o r a l l p r a c t i c a l purposes necessary that t h i s s-determination sequence 

be a cd-series. Whether there are any t h e o r e t i c a l l y s i g n i f i c a n t ways i n which 

violations of t h i s v i r t u a l necessity can a r i s e , I do not know. 

Theorem 16 makes evident that models of macrocausal structure want t h e i r 

distinguished sequences of causal determination to be composable whenever possible. 

Indeed, the most salient task for the theory of causal macrostructure i s to i d e n t i f y 

a n a l y t i c a l l y well-behaved s t r u c t u r a l conditions that s u f f i c e f o r a given s-determination 

sequence to be a cd-series. P a r t i c u l a r l y wanted are p r i n c i p l e s under which the 

sequence's h o l i s t i c (global) status as a cd-series derives from the l o c a l properties 

of i t s proper siibsequences. I n t u i t i v e l y , for example, i t seems as though composability 

should follow i f each mediating stage X̂ ^ i n X̂ ^ -> ... disconnects from 

4 + 1 . Yet that i s not generally so, as i l l u s t r a t e d by W = ^WT,W-,>, X = <x>. Y = <'y>. X 

Z = <z,jZo) when the path digraph for < W,X , Y , Z > i s 
A A A A A A A 

w, — * z , —*x —>y—•w,,—>z„ . 
A J - A-L A A A<- A<-

Here W = » X5:>y => z while X disconnects W from Y and Y disconnects X from Z ; yet 
A A A A A A A A A A 

neither X nor Y disconnects W from Z , so W S X J Y I Z i s not a cd-series, 
A A A /v' A ' A ' A A 

A more successful i n t u i t i o n i s that composable determination i s importantly 

related to the local-disconnection condition described by 

Def i n i t i o n 2.19. A sequence ^iJ.'.J^m+i (ffi i 2) of tuples i s a standard 

cd-series i f f (a) Xj^->Xj^+i f o r a l l i = 1,... ,m, and (b) for a l l X^, t^, and Xĵ . 

i n t h i s sequence with 1^ i <.j,< k^m+l, X^ disconnects Xj^ from Xj^. (Corollary. 

I f ][i;...^m+l i s a standard cd-series, every subsequence thereof formed by 

deleting m-2 or fewer of i t s stages i s also a standard cd-series.) 
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It i s e a s i l y seen by induction on sequence length that a l l standard cd-series are 

also cd-series. Tfchappily for s i m p l i c i t y , however, the converse f a i l s for m ^ 3 , 

as demonstrated by W = <w>, X = < X T , X 5 > , Y = <y>, Z = <z> when the path digraph 

for <W,X,Y,Z> i s 
A A A A 

Clearly W=>X=>Y=^ Z, while W;Y;Z i s a cd-series and X disconnects W from Y . So 

W;X;Y;Z i s a cd-series, and indeed i t s composability can e a s i l y be confirmed; yet 
A A A A 

i t i s not a standard cd-series, for Y does not disconnect X from Z. Even so, standard 

cd-series comprise the broadest category of composable cauaal sequences that i s 

a n a l y t i c a l l y perspicuous, and, as w i l l be seen, include as special cases the 

composabilities that are represented i n path digraphs. 

Standard composability can be characterized i n several ways. One useful 

v a r i a t i o n , an immediate consequence of Def, 2,19 by Theorem 13-1, i s 

Theorem 17. Let X^^-^ •••^^]^m+l ̂ ® ®" s-determination sequence and, for 
t 

each i = l,,..,m+l, sti p u l a t e 

f± ""def ^ f l ' - ' - ' J i - l ^ J i - ^ ' J l =def ^ J i ' J i + 1 ' • • •'Jm+1> • 

(The superscripts i n " X ? " and " X ? " are h e u r i s t i c for "antecedent" and "consequent," 
A J- A 

respectively,) Then »• • • >j[m+l ® standard cd-series just i n case, f o r each 

i = 2,...,m, X i disconnects X f from X f (equivalently, X f-not - X . from X?-not - X . ) , 
A - L A l ^ 1 A l 4 X A l /fX 

Henceforth we s h a l l use " X ^ " and " X ° " s p e c i f i c a l l y as just defined, though concern 

for X f w i l l be f l e e t i n g . Note that f o r considering whether X^ disconnects X f from 
A i A-*- A X 

X ? , the tuple <X®,X^,X?> whose path structure ajudicates t h i s ( c f. Theorem H ) i s 
A - ^ A1 A - ^ A - ^ 

just the sequence's union • " > the same for a l l i . 

Theorem 17 i s a technical convenience, but i t does not much illuminate the 

nature of standard composability. We now observe, more deeply, that t h i s derives 

from the struc t u r a l properties described by 
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De f i n l t l o n 2.20. A sequence of tuples Is (repetitionwise) convex 

i f f , for a l l X i , X j , and Xj^ therein with i •' l - ^ k , every variable common to Xj_ 

and Xj^ i s also i n X j . (Equivalently, Xj^; • • • J^m+i i s convex i f f , for each 1 = 

2,...,m, X|-not-Xi and ̂ i-not-X^ are d i s j o i n t . ) 

D e f i n i t i o n 2.21. A sequence X^;.,. ;Xj„+]̂  of tuples i s compact wit^iin Z 

(equivalently, Z-wise compact) i f f Z i s a tuple that includes a l l variables i n 

<X2̂ ,...,̂ +]̂ > and, f o r a l l i = l,...,m and each variable! x i n X^-not-X^, X° 

includes a l l d i r e c t sources of x within Z. (Note that t h i s d e f i n i t i o n holds 
A A 

for case m = 1 as w e l l as normal case 1 2 2, and that X°-not-X^ = Ji+]^~not-X^,) 

Sequence J^'f'iJjR+l Z-wise strongly compact i f f , for a l l i = 2,...,m, 

^±*^i+l Z-wise compact. Sequence X , . . j X j ^ ^ ^ i s ( i n t r i n s i c a l l y ) compact 
A A A A ^ 

i f f i t i s compact within <X-j^,...,Xjjj^'j^>. 

Any sequence that i s Z-wise strongly compact i s also Z-wise compact; however, what 
A A 

strong compactness adds to compactness s i m p l i c i t e r w i l l not concern us for some time. 

Ifore immediately relevant i s that i f sequence XT ;... ;Xfl,4.-j i s Z-wise compact, and 

Z Q contains only variables i n Z-not-<X2^,... ,XBJ+I>, no di r e c t source within Z of any 
A A A A A 

variable x i n X^-not-X^^ for any i = 2,... ,m i s i n Zg? hence ^ii"->^ia+l ^s also 

compact within Z-not-Zg insomuch as the proximal source within Z of each x i n each 
A A * A 

X°-not-X^ i s then also a s t r i c t l y complete and moreover proximal source of x within 

Z-not-Zn. So eveiy sequence of tuples that i s compact i n some Z i s i n t r i n s i c a l l y 
A A /f 
compact as wel l . (Conversely, however, a sequence that i s Z-wise compact may not 

A 

be compact within a proper supertuple Z' of Z, since Z'-not-Z may contain mediators 
A A -A A 

of the direct-source connections i n Z.) Note also that i f X,;... ;Xjj+i^ i s compact, 
A A J- 4 

each variable i n Xf-not-X, ( i = l,...,m) i s i n t e r i o r to X?, so X. and X? have the 
A i A X /[X yfX 

same exterior and ^±-^J^~^^±+2_' Hence any compact sequence of tuples i s an 

s-determination sequence. 
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Theorem 18. Any sequence X̂ ;̂... ;Xĵ +.i of tuples i s a standard cd-aeries 

just i n case i t i s both repetitionwiae convex and i n t r i n s i c a l l y ccaapact. 

Corollary. I f sequence X,;... ;Xj-+]̂  i s convex and compact within any tuple Z, 

X-j^;... jXjjj^n i s a standard cd-series. 

Proof, F i r s t we show necessity. C l e a r l y the sequence must be convex i f 

i t i s a cd-series; for i f any X. therein lacks some variable common to X J and Xi. 

^L-^l'^K)* would not disconnect X^ frrai Xj^ (cf. Theorem H ) . And i f , i n v i o l a t i o n 

of CMttpactness, some variable x i n X°-not-Xj^ were to have a d i r e c t source x' within 

<X,,...,Xm+i> that i s not i n X^ (which i s possible only i f 2^i * j a ) , x' would be a 
A^ A A l " y\ 

variable i n X?-not-X^ that i s a d i r e c t source within <X?,X. ,X°>(= <X,,,.. ,X_4.i>) of 

a variable i n ^i-not-X^^, namely x, so X^ would not disconnect X| from X^ and > • • • Ĵ m̂ ]̂  

would hence not be a standard cd-series (cf. Theorem 17), Conversely, suppose that 
sequence X-j^;,, ,;Xĵ +-ĵ  i s both convex and compact. We have already observed that 

A A 

compactness makes t h i s an s-determination sequence. So by Theorems 17 & 14, i t 

suffices to show, for a l l i = 2,,,.,m both that each variable cwmnon to X^ and X° i s 
A1 A 1 

also i n X J —which follows immediately from the sequence's stipulated convexity—and 
A 

that each path X^^ within <Xf,X. , X 9 > from a variable x. i n Xf-not-X. to a variable x, /»3̂  A.1 A^ A^ A J A 1 A 1 A ^ 

i n ^^-not-Xj^ passes through X̂ ,̂ Suppose to the contrary, f o r disproof, that some 
such path Xjj^ were not to pass through X̂ .̂ Then X^j^ would have to contain at least 

one variable x' i n X^-not-X. immediately followed by a variable x' i n X?-not-X., 
A J A i A X ' " Ak A 1 ^ X ' 

which i s to say that x j i s a d i r e c t source of x^ within • • • »^+l> • Unless t h i s 

x j were to be i n X^, <xj,x^> would v i o l a t e the s t i p u l a t i o n that X̂ ;̂,.. ;Xjj+2̂  i s 

compact. But since x j i s i n X^-not-X^ i t cannot be i n X| without v i o l a t i n g convexity. 

So convexity and con^jactness together s u f f i c e f o r a tuple sequence to be a atandard 

cd-series. The c o r o l l a r y i s immediate from our previous observation that Z-wise 
A 

compactness for any Z e n t a i l s i n t r i n s i c compactness. O 
A 

Given a background tuple X within which we know (or hypothesize) the micro-
A 

causal path structure. Theorem 18 Corollary t e l l s us how to construct standard -

c*-series of X's subtuples. To make t h i s perspicuous, l e t us s t a r t with a close 
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look at the generic structure of any s-determination sequence ~^^m+l* 

each 1 = l,...,m, write 

H+1 ""def Ji+l-"°*-?i ' =def ? i - " ° * - J i + l • 

Superscripts "o" and here are h e u r i s t i c f o r "omission" and "addition," respect­

i v e l y . Our inter e s t i n xt w i l l soon transfer to another subtuple X' of X. more 

inclusive than X^, but X° w i l l be important for the remainder of t h i s section. 

Moreover, since we s h a l l repeatedly r e f e r to the aggregate of a l l omissions X° 

Q = i+l,...,m+l) from stages of the series following X., i t w i l l also be convenient 
•1-'-

to write 
Y°° s < Y O yo vo . ^i+1 def a+1'71+2' • • • * W l * 

Viewing sequence X̂ ^ ̂  •••"'̂ ^+1 r i g h t to l e f t as a precession of quasi-causes, 

we can think of X^ as comprising whatever variables not already i n Xj^+i are picked 

up by Xj., while X^ comprises the variables i n X^ that are not retained i n ^±Ji' 

{X°° accumulates'all omissions back through stage X̂ .̂) Thus Xj. = ^^±'^i+l^~^^^~^±+i 

- Either or both of X^ and X° can be n t i l l ; hwever, i n the cases 

that interest us, any sequence stage f o r which X j i s n u l l i s a t r i v i a l i t y that 

can be removed by deleting X J from the sequence. Hence for s i m p l i c i t y and without 

essential loss of generality we presume that each X? i s non-null. In contrast, 

assuming X^ to be non-null i s appropriate only i f we impose the additional constraint 

that has n u l l i n t e r i o r . Given that each X̂ ^ s-determines X^+i, the r i g h t - t o - l e f t 

precessional view of t h i s sequence takes each X J to be constructed—conceptually, 

not causally—from '^±+i by replacing Xj^+i's subtuple Xj^-j^ by some i n c l u s i v e l y com­

plete source X^ of X j ^ ^ , i . e . X^i>Xf+^ with X^ d i s j o i n t from Jl^^y while X+ then 

comprises whatever variables i n X' are not already i n X J . Subtuples Xf and X° of 
4 1 4 - ^ l l A i 

X^ may or may not be d i s j o i n t ; i n any case, there i s no conceptual t i e between them. 

That i a , i f sequence ^^-^ •••"'^^m+l constructed by a recursive precession i n 

which, for each i = m+l,m,m-l,...,2, we f i r s t i d e n t i f y X. ;,..;Xn,+T and then choose 

which tuple i s to s-determine X^, we are free i n p r i n c i p l e to put any X^-variables 
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we wish into omission tuple X° so long as they are i n l{X), regardless of whether 

they are new additions i n or carryovers from Xj^+i-not-^i+i^ 

From this precessional perspective on ->...=> XJJ4Q^, i t i s evident that 

each Xj^ comprises, i n addition to x t , a l l variables i n ]̂ °+x ̂ ~ *̂ î4i» * • • »^m+l^ ^ less 

some or a l l of the ones omitted i n X°°^ (= '^J^+x'*' * *?m+l^^ variables 

i n X?-not-X. (= Xf^-not-X.) are i n X°° . A variable i n X? ( k > i ) can s t i l l be i n 

X J i f i t reappears i n X^ for swne i s 1 k-L But i f > • • • »|̂in+i i s repetitionwise 

convex and X. hence d i s j o i n t from X°?-, then X, = X°-not-X?°, and Xf-nfft-X. = X?R,. 
4 I " Ai+1 A ! A 1 / \ 1 + I Ai. / | i 4 I T L 

Suppose, now, that s t a r t i n g with a given subtuple X^+i of X, we wish to 
A A 

specify by recursive precession an s-determination sequence ^-^^+1 *hat i s 

moreover a standard cd-series. In l i g h t of Theorem 18 Corollary t h i s i s s t r a i g h t ­

forward i n p r i n c i p l e : For each i = m,m-l,,.. we select any subtuple X? that we choose 
~ Ai 

to eliminate at t h i s precession stage i n favor of i t s sources i n X, l e t X.' - include: 
A - f l — l 

every variable i f l X-Hot-X? that i s a d i r e c t source within X of some Variable 
- A A1 ^- — A 

i n and also put i n t o V^^X 

any ©ther X- subject to the proviso tliat X^ i a not-:to^ 

inolixie any variable i n X^°, Then taking ^ i - 1 ̂  <X̂ _2.»j[̂ i~not-X̂ >continues the 

s-determination precession i n X , Ijioluding i n each X J T a l l d i r e c t sources of Xj* 
A A-̂  •»• // I 

within X that are not already i n X. makes t h i s sequence compact within X and 
A A1 A 

hence also i n t r i n s i c a l l y compact, while compliance with the proviso insures that 

the sequence i s moreover repetitionwise convex and hence, by Theorem 18 Corollary, 

a cd-series. 

There i s , however, one important l i m i t a t i o n on t h i s construction. At each 

precession stage, given ^i^^ ••• "̂ -̂ +̂1 convex and X-wise compact, and with 

some variable i n X^ s t i l l i n t e r i o r to X, we can always choose X ^ . i n o n t r i v i a l l y ( i , e . 

X J not S u l l ) to keep the extended sequence Xj_-j^ => X^ => ,.. =>Xjjĵ -ĵ  compact within X, 

It i s not, however, always possible f o r choice of X^.j^ to preserve convexity while 

continuing X-wise compactness. For example, suppose that the path digraph for 

X = •<u,v,w,x,y,z> i s 
1 1 A A A A 
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u >- w 

A A 

I f we take Xz = <z>, Xc = <w,x,y>, and X, = <̂ w,v,y> with corresponding omissions 

X^ = <z> and X^ = <x>, sequence X^=>X^=>X^ i s both convex and X-wise compact. I f 

we next choose X° = <y>, continuing the precession by <w,v,x>->X^ would v i o l a t e 

convexity; however, since y's proximal source wltbin X i s already i n we can instead 

take X^ = ^y»y^ and have => X^->X^ ~^J6 s t i l l convex and compact i n X. But the 

only X-wise compact continuation of that, i n turn, i s X? =:<:w> with Xp = <u,x,v>. 

(FrtMn there we f i n i s h with X| = <x> and X-ĵ  = ̂ u»v>, which i s as f a r as the precession 

can be carried i n X.) Sequence J i ~ ^ ^ 2 ~ ^ ^ 3 ̂ ^^/^~^J5 ~^f6 s t i l l X-wise compact, 
but i t i s not convex insomuch as x i s i n both X, and Xc but not i n Xo or X*. And 

neither i s t h i s sequence a cd-series, standard or otherwise, when extended backward 

from Xq. Indeed, t h i s example could e a s i l y be used instead of the ones based on A-* 
Figs. 1 & 2 to i l l u s t r a t e non-composability. 

One way to avoid convexity v i o l a t i o n s when constructing a standard cd-series 

i s to specify a compact s-determination sequence ••• "-^^+1 i " *he fashion just 

described without concern f o r convexity, and afterward, for each Xj^ and Xjj, to add 

each variable cwmnon to and Xj^ to every Xj between Xj and Xj^ that lacks i t . Thus 

in the example just given, i f x i s added to the o r i g i n a l Xo and X, to convert these 
A A A^ 

to Xq = <w,v,x> and X/ = <w,v,y,x>, the modified X-i i > ... =>Xz, i s now a standard 
A A 1 A A ^ A " A A A A " 

cd-series. However, this afterthought-convexification procedure does not identifjr 

standard cd-series by i t e r a t i n g t h e i r precessions. 

Alternatively, i f we want standard cd-series whose precessions can be con­

tinued systematically i n counterpart to the causal composabilities i m p l i c i t i n 

microcausal path digraphs, we need some additional constraints on tuples X? and 
A 1 

H-1 stage of the sequence's precession. These constraints are defined i n 

terms of the path structure within the background tuple X comprising a l l variables 

i n the more l o c a l tuples whose causal connections are at issue, and are based on 
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r e l a t i v a t i o n a to X of cauaal concepts previously defined i n absolute terms (cf, 
A 

previous comments on t h i s , p. 2,47): 

d e f i n i t i o n 2,22. For any background tuple X: (l) Variable y i s an X-wise 

(causaj.) source of variable z i f f there i s a causal path from y to z within X. 
A A A A 

Informallyj we w i l l also say that x i s an X-wise source of tuple Z i f f x i s 
A A A ^ 

an X-wise source of some variable i n Z. (2) Variable y i s an X-wise d i r e c t 
A A ^ /I 

source of variable z i f f y i s a d i r e c t soiirce of z within X, (3) A tuple T i s 
A A A A A 

X-wise o(au3ally) independent of tuple Z i f f no variable i n Y i s either i n Z 
A 4 1 / 
or i s an X-wise source of any variable i n Z. (4) A sequence Y , : , . . ; Y ^ of tuples 

A 4 A X A " 

i s X-wise well-ordered i f f , f o r a l l i , l = l , , . . , n with ±^X, Y J i s X-wise 
A A-*- 4 

c-independent of Y . . (5) Tuple Y ty-precedes tuple Z ( i , e , , Y t-precedes Z 
A J ^ A A 4 

r e l a t i v e to the X-wise causal-source r e l a t i o n ) i f f each variable i n Y i s an 
A A 

X-wise source of some variable i n Z (cf. Def. 2,11). (6) Tuple Y t^-determines 

tuple Z ( i . e . , X t-determines Y r e l a t i v e to the X-wise causal-source relation) 
A - A A A i f f Y s-determines Z and Y-not-Z ty-precedes Z-not-X (cf. Def, 2,14 and Theorem 10), 

A A A A - * - A A 

Evidently, the X-wise source and t*;-precedence r e l a t i o n s have the same partial-order 

character as th e i r absolute counterparts. And Y tj--determines Z only i f Y (absolutely) 

t-determines Z. Moreover, tj^-determinetion i s t r a n s i t i v e and c l a s s i c a l l y anti-sym­

metric by the very same argument that establishes t h i s for t-determination—we 

merely replace the (absolute) causal-source r e l a t i o n i n the o r i g i n a l proof by the 

X-wise source r e l a t i o n . 
A 

To achieve convexity of molar determination sequences systematically, owe 

f i r s t constraint i s that each Xj i n sequence X^^j, . . JXJJ4Q^ of X-subtuples i s not merely 

to s-determine Xj^+i hut to t^-determine i t . This i s equivalent to requiring for each 

i = l,,.,,m that there be a path within X from each variable i n X^ to some variable 
A A l 

i n Xj+j^. And our second coastraint i s that the sequence ^2*"'*Am+l °^ omissions 

from our t^-determination sequence i s to be X-wise well-ordered. This y i e l d s 
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Theorem 19. Let ^j^-^*** ̂ ^ + 1 ̂ ® ^ t^-determination sequence of X-sub­

tuples i n vhioh X2j...jX:£.T i s X-wise well-ordered. That i s , each X. ( i = 1, 

...,m) tx-determines X^+i and each X° ( i = 2,...,m) i s X-wise causally independ­

ent of Xj°^. Then sequence ^if"'>Jja+i repetitionwise convex; so i f i t i s 

also X-wise compact, i t i s a standard cd-series that i s moreover X-wiae strongly 

compact (cf. Def. 2.21). 

Proof. Let ^ ^ ^ J * • • be as stipulated, and conjecture that for some 

i = 2,...,m and l > i , some variable x common to X ^ i and X^ i s not i n X.. Since a l l 

variables i n <Xj^j^,,.. ,Xjjj4.2> but not i n Xj are i n X^^^^, x must be i n the l a t t e r . 

Now by hypothesis x i s i n ][i-,i-not-Xj and so by t^j-determination has to be an X-wise 

source of some variable x' i n X j , But then some variable i n X S l i , namely x, would 

be an X-wise source of some variable i n X^, namely x', contrary to presumption that 
the conjecture I s disproved,showing that X° i s X-wise c-independent of X . So/for a l l 1 •^i, any variable common to X J •, 

A l 4 A X T L n " -1 

and Xj must also be i n X^—which i s to say that sequence • • • ' ^ ^ + 1 

repetitionwise convex. With compactness also stipulated, i t follows from Theorem 18 

that the sequence i s a standard cd-series. Moreover, f o r each 1 = l,...,m, a l l 

X-wise direct sources of each variable x i n X?., must be i n <X.,XJ4.T> (= <X. ,X?.,>), 
A A A J - X L / ^ I ' / t X - r x / ) 1 ' / ^ 1 T X 

for by compactness, every X-wise di r e c t source of x must be i n X? and cannot be i n 
A A A^ 

X°°2 else X^^^ would not be X-wise c-independent of the l a t t e r . O 

The special properties invoked i n Theorem 19—tj^-determination, X-wise w e l l -

ordered omissions, and X-wise strong compactness—are essential for a sequence of 

X-subtuples to have representation i n a macrocausal version of path structure. (For 
A 

the significance of strong compactness, see Theorem 24. below.) But a l i t t l e more i s 

also needed, as re a l i z e d i n two stronger cases that are of special i n t e r e s t . 
D e f i n i t i o n 2.23. A tuple Z i s X-wise s o l i d i f f a l l Z-variables are i n X and 

A A A A 

Z includes a l l variables i n every path within X from one Z-variable to another. 
A A A 

(Equivalently, Z i s X-wise s o l i d i f f X includes Z and, f o r a l l x. , X j , and x^, 
A A A A A-*- A J A * -1 

i f x j i s an X-wise source of X 4 and X i i s an X*wise source of x,, X J i s i n Z 
^ A 1 J A** 1 A ^ A^'' 1 

i f X J and xjj are both i n Z. Also, Z i s X-wise s o l i d i f f every tuple d i s j o i n t 
from Z thai tj^-precedes Z i s X-wise causally independent of Z.) 
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Defl n l t l o n 2.24. ( l ) A tv-determination sequence X, ̂ ...=>Xm+i i s X-wise 

chained (equivalently, i a an X-wise chain) i f f the sequence i s X-wise conqjact 
A A 

and, for each i = 2,...,m, X° t^-precedes X̂ ^̂ ^ with X°̂ ĵ  X-wise s o l i d . (2) A 

tjj-detprmination sequence X^ => ... -^J^j^+i i s X-wise s o l i d l y conservative i f f the 

sequence i s X-wise compact, Xjjj^-j^-not-X^^^ t^-precedes X°^^ (as holds i n par t i c u l a r 

^ - ~ ^»•••»-» ^i+1 ̂® X-wise s o l i d . 

Chained sequences are basic i n causal macrostructure; f o r as w i l l soon be noted, the 

tjf-precedence ordering X° j . . . ;X° ^.-j^ of omissions i n an X-wise chained tj^-determination 

sequence i s the molar counterpart of a microstructural causal path. F i r s t , though, 

we observe 

Theorem 20. Let "-̂  * * * ̂  ^+1 ^® ® t^-determination sequence that i s X-wise 

chained, i . e . , the sequence i s X-wise compact and f o r each i = 2,...,m, X° 

t^-precedes X^^^ with Xj^]^ X-wise s o l i d . Then ^2'" " ]f-wise well-ordered, 

and Ji'f'fjju+i i s a od-series that i s not only standard but X-wise strongly 

compact. 

Proof. Assume the theorem's preconditions and hypothesize for disproof that 

some variable x i n any X?%, i s either i n Xf or i s an X-wise source of some variable 

i n X°. Since t h i s x i n J±+i niust be i n some X° with 1 > i+1, and by t r a n s i t i v i t y of 

t^-precedence X° t^^-precedes X°__ĵ  which i n turn t^-precedes X°, there would then be 

a sequence <x,Xj,x. T , X J > of variables wherein x i s either i d e n t i c a l with or i s an 
4 A l A J - J - <J i s either i d e n t i c a l with x^ ^ ( i f j. = l+l) or ^ 

X-wise source of x. which i s i n X?, x. l i s an X-wise source of x, , which i s i n X i 
and X J _ - I i s an X-wise source of X J which i s i n X^. With x and x^ both i n X?, there 

A J * 1 A J /j J A A J 1J 

would thus be a path from X® to Xj that includes ^yi* whence by s o l i d i t y of X°, 

^j-1 "o^ld be i n xJ—which i s impossible, since Xj_j^ i s i n ̂ ^^1 which i s d i s j o i n t 

from X°. So for a l l jL = 2,... ,m, X? must be X-wise c-independent of which 
A J A 1 4 4 

i s to say that J2*"'*\m+1 ^ - ^ i s e well-ordered. From there and the sequence's 
stipulated X-wise compactness, conclusion that X^;... ;2̂4.-|̂  i s a standard cd-series 

that i s X-wise strongly compact i s immediate from Theorem 19. D A 
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The precession of stages i n an X-wise chained ty-detemdnation sequence can 

be continued Just as long as the precession of omissions ordered by tjj-precedence 

can be continued with i n t e r i o r variables of X. S p e c i f i c a l l y , for any tj^-determination 

sequence ^ ^ i + i • • ̂  ^+1 that i s X-wise chained, l e t compriae the variables 

i n X. that are both i n l(X) and are X-wise sources of X?4 ,. I t may be that X" i s 

n u l l ; for although Xj includes at least some of the X-wise direct sources of X f , 
A A '/l+i 

these may a l l be i n E(X). But i f X" i s not n u l l , i t contains one or more X-wise 
4 l i 1 

s o l i d subtuples (singletons, i f no other), any of which t^-precedes X̂ ^̂ ^ and can be 

taken for X° Then i f X̂  , = <X' .,X.-not-XO> where X' i s any tuple of X-variables 
i /[ L-X A 1-1 /II A l A i -v r ^ 

d i s j o i n t fVom X? that ty-determines X? while including a l l X-wise direct sources of 
41 41 A 

X° not already i n X j , Xj_]^;Xj;,..;Xjjj^^ too i s an X-wise chained tj^-determination 

sequence. (At least one such J i _ i e x i s t s because a l l variables i n X° are i n t e r i o r 

to X.) Note further that whether ^±^1 continues the chain's precession i s judged 

just from the X-wise causal relations among ^±-i> Ji» ̂ ^d X^+i^ without consideration 

of stages after Xj^-j^* Chained tjj-determination sequences are i d e n t i f i e d just by 

l o c a l structure i n the sense that any sequence ^1'''" X-wise chained 

tjf-determination sequence just i n case, for each i = 2,,..,m, Xj__-j^;Xj;Xj_^^ i s an 

X-wise chained t^-determination sequence. 

When the precession of stages i n an X-wise chained t^-determination sequence 

Xj=^Xj4.]^^ •••^^m+1 been continued as f a r as possible, i . e , when Xj contains no X-wise sotirces of X° . that have X-wise sources of t h e i r own, X. w i l l i n general s t i l l A i+1 A ' ̂ 1 "= 
contain variables i n l(X) that can be replaced by some t^-determiner Xj thereof and 
so extend the precession even though the extended sequence i s no longer X-wise chained. 

1 

But even then there may not e x i s t any continuation stage ^ i _ i ^bat preserves the 

sequence's character as a standard cd-series. To continue the precession of a 

standard cd-series' stages u n t i l a l l variables i n t e r i o r to background tuple X have 
A 

been replaced by t h e i r sources i n E(X), we need t^-determination sequences that 

are X-wise s o l i d l y conservative, 
A 
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Theorem 21. Let X̂ =/' ... ̂ ^ + 1 be a t^-determination sequence that i s 

X-wise s o l i d l y conservative (cf, Def, 2,24-2). Then (a) f o r each i = ly,.-.,!.? 

t^-precedes J-^+i X-wise causally independent of Xj°^, (̂ ) X^;... ̂ X̂ 45̂  i s 
and ^ ^ A , A 

X-wise well-ordered,^ (c) ][-i> • • • >]^+l i s a standard and X-wise strongly compact 
cd-spries wherein each X?^, ( i = l,,..,m) i s X-wise s o l i d . 

Proof. Assume the theorem's preconditions. Since each Xj tj^-determines X̂ ^̂ ^ 

( i = 1,...,m), each variable x i n X^ i s either i d e n t i c a l with or i s an X-wise sovirce 

of some variable x' i n X̂ ^ and hence not i n X^4.i. I f x' i a not i n X^+i» x' and hence 

X i s an X-wise source of some variable i n X ° . Whereas i f x' i s i n Xm+i i t i s i n 

Xjjj^lj^-not-X^^j^, whence x' and hence x i s again an X-wise aource of some variable i n 

Jm+l "̂̂  constraint on X^^j i n the d e f i n i t i o n of s o l i d conservatism. So each 
Amn.' ,^ A A 

. the constraint on X. 
A i n ' X A l 

(i-'^S+l) tjj-precedes X^+j^ as claimed f i r s t i n the theorem. Next, we show that 

for each i = l , . . . , a , no variable x i n X^ i s either i n or has an X-wise source i n 
A 4 1 

X°° . I f X did have an X-wise source i n X?°-, since x i s an X-wise source of some /|i+l A A A i+1 A A 

variable i n J^+i i t would follow by s o l i d i t y of X j ^ i that x i s i n the l a t t e r ; hence 

i t only remains to disprove that x i s i n X°^.. Suppose to the contrary that x i s 
A A x-rx /( 

not only i n X^ but also i n X° f o r some j . > l . Then 1 >, i+2 because X^ i s d i s j o i n t 

from X?.,. And x cannot be i n X J (since t h i a i s . d i s j o i n t from X°), so by virtue 
A • ' • ^ i A A J A J 

of being i n X^, which tx-determines "Just be an X-wise source of some variable 

x' i n X._, that i n turn i s an X-wise source of some variable i n X^+i, whence by the 
A A J " - * - A <j J-

s o l i d i t y of X°° t h i s x' i n Xj n i s also i n X^°. But then X. - i s not X-wise c-inde-
A J A AJ A J — J - A 

pendent of X°°—which i s to say that X^ f a i l s to be X-wise c-independent of X°°^ only 

i f , for scmie k > i , Xj^ i s not X-wise c-independent of Xg^i. From there i t i s a simple 
A A ' t A 

conclusion by induction that for each 1 = m,m-l,...,1, X. i s X-wise c-independent of 

And since i s a subtuple of X j , each X° too i s X-wise c-independent of X^^^ 

—which from Theorem 19 and the craapactness included i n the d e f i n i t i o n of s o l i d con­

servatism y i e l d s that X,;,..;Xm+i i s a standard and X-wise strongly compact cd-series, 
A-"- A A 

F i n a l l y , that each XJ ( i = 2,.,.,m+l) i s X-wise s o l i d follows d i r e c t l y from X-wise 
A A A 

s o l i d i t y of X^^ together with the X-wise c-independence of Xf from X9%,. D A A A l A ^ 
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Although Theorem 21 does not have the macrostructural importance of Theorem 20, 

i t i s nevertheless of interest as a molar counterpart of the microstructural point, 

noted previously on p. 2.17 and i n Theorem 5, that when single variables are sequen­

t i a l l y eliminated from a given microcausal path structure i n inverse order of causal 

independence, the variables that remain r e t a i n the same proximal sources before and 

after each reduction step. An X-wise s o l i d l y conservative tj^-determination sequence 

. . . ^ X j ^ •••^^m+1 effect constructed as follows: At each precession stage 

X J , consider the tuple X* comprising a l l variables i n I(X)-not-Xj°]_ that are X-wise 

sources of X°4ĵ . By the s t r i c t - p a r t i a l - o r d e r character of the X-wise source r e l a t i o n , 
i f Xf i s not n'iill i 

1 there i s at least one variable x i n X* that i s not an X-wise source of any other 

variable i n Xf, and i s hence an X-wise d i r e c t source of some variable i n X?° . 
i i A ./i+1 

Moreover, t h i s x must be i n X., since by compactness each X-wise di r e c t sotirce of 

any variable i n ^1%^ i s i n Xj i f i t i s not i n X j % . And <J^f'^l+i> must be X-wise 

s o l i d , since x i s X-id.se c-independent of Xj^.]^ and no path i n X from x to Xj°^ can 
include a variable not i n <x,X??,> without v i o l a t i n g x's status as a variable of 

which every other variable i n Xf i s X-wise c-independent. So i f Xf i s not n u l l , 
n i ' i i i ' 

there i s at least one non-null subtuple X? of X. (possibly but not necessarily a 
A 1 AX 

singleton) that contains just variables i n l(X) and f o r which <X?,X°°-> i s X-wise 

s o l i d . From there, putting Xj_-j^ = '^Ji_i»^j-not-X°> for some X̂ __2 that i s d i s j o i n t 

from but t^j-determines X° while including a l l X-wise direct sources of X° that are 

not already i n X° gives ^ i - i J ^ i ? • • • jX^+j^ to be an extension of the tjj-determination 

precession that preserves i t s X-wise s o l i d conservatism, 
A 

F i n a l l y , to close our present study of composable determination sequences, 

there i s an especially strong v a r i e t y of standard cd-series, foreshadowed i n 

Theorem 6, that also merits e x p l i d i t recognition. For convenience, say 
Defi n i t i o n 2.25. A tuple X i s (causallv) t h i n i f f X has n u l l i n t e r i o r . A 

A A 

sequence of tuples i s e s s e n t i a l l y t h i n i f f each stage Xj p r i o r to 

X_ therein i s t h i n , i . e . , i f f I ( X J ) i s n u l l f o r a l l i = l,...,m-l. 
A A 
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Then, 

Thenrftffi 22. I f X = > Y ^ Z and X i s t h i n , then T disconnects X from Z. Corol-
4 A A A < A 4 

l a r y . Any s-determination sequence that i s e s s e n t i a l l y t h i n i s a standard 

cd-series. 

Proof. Suppose that X, Y, and Z are as stipulated. Then Y disconnects X 
A A /) A •I 

from Z i f conditions (a) and (b) of Theorem H are s a t i s f i e d . Note also that E(X) 
A ~ ^ 

= E(X,Y) = E(X,Y,Z) = E(X,Z) while a l l variables i n Z-not-X are i n l(X,Z) and hence 

in I(X,Y,Z) Any variable z. common to Z and X must also be i n Y; since otherwise, 
- V I A A3 / | A A ' were Zi to be i n Z-not-Y, i t would be i n I(Y,Z) (by premise Y%>Z) and hence i n 
A J A A - A ' A A A 

I(X,Y,Z), whence z, would also be i n I(X) (since z. i s i n X and E(X) = E(X,Y,Z)) 
A A A A" ~ 4 1 J ^ ~ A — A 4 ' 

contrary to s t i p u l a t i o n that l(X) i s n u l l . So condition (a) of Theorem 14, i s s a t i s ­

f i e d . To see that condition (b) also holds, l e t X j and z^ be any variables i n X-not-Y 
A X A J A y 

and Z-not-Y, respectively, and suppose that W^j i s any path i n W ^^^f <X,Y,Z> frran 
Xi to Zl. Since X has n u l l i n t e r i o r , x. i s i n E(X) and hence i n E(W): so W., i s a 
A-"- A J A A i A - ^ A i i j 
t o t a l path to z. i n W s t a r t i n g with X j . Moreover, x. i s the only X-variable i n W^j, 

i j A ^ * A i A i^J 

else some other X-variable would be i n t e r i o r to W and hence to X. So unless Wj < 
A A A 

contains a variable i n Y, either Z j i s not i n t e r i o r to W-not-x. (which occurs i f 
A ' A J A A l -/1 

i s a direct source i n W of a l l other variables i n Ŵ ĵ) or some terminal segment of 

W.J containing only variables i n Z-not-Y i s a t o t a l path to Z j i n W-not-x*. Either 

way, f a i l u r e of W* J to pass through Y e n t a i l s that some variable i n Z-not-Y i s i n 
A-^J A A A 

the exterior of W-not-Xj—which i s impossible, since every variable i n Z-not-Y i s 

i n t e r i o r to <Y,Z> and hence (since X J i s not i n Y or Z) i n t e r i o r to W-not-x. = 
A A A-"- A A A A X 

^X-not-X. ,Y,Z>. So every path from X-not-Y to Z-not-Y must pass through Y. The 
A A - l - A I A A A A A 

corollary i s immediate from Def. 2.19. Q 

In view of Theorem 22, thinness i s an extremely a t t r a c t i v e property for Tuplea 

to have, one under which the causal composability of an s-determination sequence's 

single-step transducers can be diagnosed from just the l o c a l structure of each 

constituent tuple considered apart from a l l the others (together of course with the 

s-determinacy between tuples adjacent i n the sequence). Moreover, any s-determination 
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sequence 'K-j^=> ... =>Jisi-i-l always be reduced to an e s s e n t i a l l y t h i n one with the 

same terminal stage Jja-¥l simply by replacing each Xj p r i o r to Xjn+± therein by E ( X J ) . 

(Replacement of Xj^ by l(Xin) i s optional.) However, i f Xj=>.., -^^+2. ^ cd*series 

that i s n^t e s s e n t i a l l y t h i n , i t s reduction E(X^) => E ( X 2 ) - > E(Xjjj) =>Xj^+j^ to 

essential thinness i s not compositionally equivalent to the o r i g i n a l sequence, 

insomuch as the causal transducers involved are n o n t r i v i a l l y d i f f e r e n t . S p e c i f i c a l l y , 

i f Y - > Z (where we take Y f o r any X., and Z for any l a t e r X* i n the s e r i e s ) , the kth 

component = ^T.(Y) of the quasi-causal r e g u l a r i t y under which Y determines Z 

generally f a i l s to embed the causal r e g u l a r i t y or noncausal i d e n t i t y - s e l e c t i o n 

z, = ^ ' ( E ( Y ) ) under which E ( Y) determines Zv.. 

To be sure, given a cd-series X.ĵ -> ... => m̂+1 e s s e n t i a l l y t h i n , 

i t max he possible to reduce t h i s to one that i s while preserving the essentials of 

the o r i g i n a l series' transducers. The technique for t h i s i s to replace f i r s t X̂^̂  by 

i t s aubtuple X^ that contains only variables that are either i n X̂ .̂̂ ^ or are a dir e c t 

source within <Xjĵ ,Xjj,4.2> of some variable i n Xm+j^-not-X^, then to replace J ^ _ l hy i t s 

subtuple X^_]^ containing only variables that are i n or are a d i r e c t source i n 

<Xjg_-j^,X^> of some variable i n XjJ^-not-Xjj_i, and so on r e c i i r s i v e l y f o r i = 2,m-l, ...,1. 

However, these reduced sequence stages X' are by no means certain to be thin i n 

principle even though that may be a not-unreasonable assumption i n most applied 

contexts. Considerably more remains to be said about t h i s matter. But more i s 

not c a l l e d for on t h i s occasion. 

P a r t i a l compositions. 

Although we have now examined the theory of composable macro-causal regular­

i t i e s i n considerable d e t a i l , the s i t u a t i o n just studied—s-determination sequences 

i n which each stage i s a complete quasi-source of a l l variables i n i t s successor—is 

s t i l l not the most general form of macrocausal composition. >fi.crostructurally, the 

problem of causal composability arises primarily from mediations wherein the output 

variable of one causal r e g u l a r i t y i s just one of the conjoint input variables i n a 
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second. Correspondingly, study of mediation at the molar l e v e l wants also to con­

sider how quasi-causal r e g u l a r i t y Z' = 5^'(X) can be composed into quasi-causal 

regul a r i t y Y = i6{Z) when Z' comprises only some of the variables i n Z, When need 
A A A A 

for the d i s t i n c t i o n a r i s e s , we may c a l l the l a t t e r case " p a r t i a l " composition i n 

contrast to " t o t a l " cranpositions i n which the output tuple of one composing quasi-

causal r e g u l a r i t y i s e s s e n t i a l l y i d e n t i c a l with the t o t a l input to the other. 

Technically, however, i t i s most convenient to understand " p a r t i a l composition" i n 

a generic sense that subsumes t o t a l compositions as the l i m i t i n g case wherein Z' = Z, 
A A 

Using the notation explained on p. 2.l8f., the p a r t i a l composition of 

Z' =v^'(X) into Y = ^{Z) when a l l Z'-variables are i n Z i s Y = «(f(Z-not-Z',s^'(X)), 
A A A A A A A A A 4 

wherein ^"^ i s the permutation operator that rearranges Z as <Z-not-Z',Z'>. To 
A A ^ A 

avoid needless complications, we s h a l l assume that ? i s an Identity permutation, 

i . e . , that Z = <Z-not-Z',Z'> so that the composition at issue i s just Y = /(Z-not-
A A 

Z',^'(X)). Given that these composing regoilarities are quasi-causal, we want to 
A -1 

know the conditions under which t h e i r p a r t i a l composition i s also quasi-causal. The 

answer i s of course already i m p l i c i t i n CmP-4 and Theorem 7. But i t takes consider­

able e f f o r t to translate these microcausal p r i n c i p l e s into perspicuous molar terms. 

Happily, the bulk of that work has already been accomplished i n Theorem 15 for t o t a l 

molar compositions. I t only remains to show how the l a t t e r can be extended to 

cover p a r t i a l compositions as w e l l . 

The extension i s r e a l l y quite simple. When Y = ^(Z) and Z' = ;^'{X) are 
A 1 i g A A 

quasi-causal with a l l Z'-variables i n Z, and for s i m p l i c i t y Zj^ordered as Z = ^Z-not-

Z',Z'>, we have X4> Z', Z=t>Y, and hence <Z-not-Z',X> =><Z-not-Z',Z'> = Z^>J. That 
A ' A ' A A A A A A 'A A A ' A ^ 
i s , <Z-not-Z',X> S-determines Y, through the p a r t i a l mediation of Z', under some qiimsi-

A A ^ A /\ 

causal regularity Y = e(Z-not-Z',X). So the p a r t i a l composition Y = Z-not-Z',/'(X)) 
A A A A A A A A 

of Z' = }^'(X) into Y = ̂ (Z) i s quasi-causal just i n case t h i s composition's transducer 
A A A A 

i s e. Let us assume that Z disconnects X from Y, since by Theorem 7 th i s i s f o r a l l 
A A /J 

p r a c t i c a l purpoaea a necessary condition for the p a r t i a l composition to presei^e 

causality. (Making clear how Theorem 7 has t h i s molar implication i s somewhat 
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tedious, and w i l l not be attempted here.) This i s equivalent to presuming that Z d i s ­

connects <• Z-not-Z',X> fr«a T . Then i f Z = /(Z-not-Z',X) i s the quasi-causal regrilar-

i t y under which <Z-not-Z',X> determines Z, Theorem 15 e n t a i l s that Y = /^)^(Z-not-Z',X) 

i s also quasi-causal, i . e . , that © = , So given t h i s disconnection premise, 

Y = ;ii(Z-not-Z',j^'(X)) i s quasi-causal just i n case i t s transducer i s liji'. F i n a l l y , 
/\ A 

this p a r t i a l composition's transducer i s indeed /J/- i f and, with few i f any s i g n i f i ­

cant exceptions, only i f Z' = ^'(X) i s embedded (cf. Def. 2.17) i n 

Z = \^(Z-not-Z',X). ( l can't find any simple way to verbalize why that i s so. One 
A /[ A 4 

just has to think through the formalisms and see ( i ) that the transducers i n Y = 

;r((Z-not-Z',^'(X)) and Y = 0{2r-not-Z\X) are both functions on the l o g i c a l range of 
A 4 1 A A A A 

<Z-not-Z',X/; ( i i ) that <Z-not-Z',}^'(X)> = 5^(Z-not-Z',X) for a l l arguments of these 

compositions just i n case Z = /(Z-not-Z',X) embeds Z' = j^'(X); and ( i l l ) that for 
A A A A A A ~ — 

any functions and /3 whose values are arguments of - i f and, f o r a l l 

p r a c t i c a l purposes, only i f =/3 . To get cl e a r on (31), i t must be understood 

both that i f the i t h variable Z j i n Z i s i n Z-not-Z' then the i t h component function 
- A J - A A A " • i n Z = ;^(Z-not-Z',X) i s an i d e n t i t y selector that picks z* out of <Z-not-Z',Xx and 

A A A ' A ^ \X A A ' 
that Z' =^'(X) i s embedded i n Z = 5^(Z-not-Z',X) just i n case each component function 

A A A A _ A 1 

i n the l a t t e r for a variable i n Z' d i f f e r s from the function i n the former for that 
A 

same variable only i n including variables i n Z-not-Z' with n u l l weights.) So 
A A 

Theorem 15 also i m p l i c i t l y covers p a r t i a l composition i n the sense that 

Theorem 23. I f Y = ^(Z) and Z' = }^'(X) are quasi-causal r e g u l a r i t i e s 
A A A A 

wherein Z includes a l l variables i n Z', the ( p a r t i a l ) composition of ^' =/'(X) 

into Y = ^{Z) i s also quasi-causal i f and, f o r the most part, only i f Z discon-
A 'I A 

nects X from Y and the quasi-causal r e g u l a r i t y under which <Z-not-Z',X> determines 

Z embeds Z' = {^'(X). (Note that i f Z' = }^'(X) i s embedded i n Y = ii(Z), the 
A A A A A A <J 
embedding i s pre-emptive.) 

The structttral conditions that s a t i s f y Theorem 23's embedding requirement are 

straightforward from the d e f i n i t i o n of embedding: Given that these r e g u l a r i t i e s are 
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both quasi-causal with a l l Z'-variables i n Z, Z' = 5^'(X) i s embedded i n Z = J^(Z-not-

Z'.X) just i n ease, for each variable zl i n Z', either zJ i s i n X ( i n which case both 
A A AX A A J - A 
Z = f^(Z-not-Z',X) and Z' = ^'(X) determine z. by noncausal i d e n t i t y - s e l e c t i o n from 
A A A A A A AX 

t h e i r respective input tuples) or zl has the same proximal source within X as i t 
AX A 

has within <Z-not-Z',X>. This either/or condition f o r the embedding holds f o r a l l 
A A A 

variables i n Z' just i n case a l l paths from Z-not-Z' to Z' within <:Z,X> pass through 
A A A. A A 

J. And since X=> Z' with Z' d i s j o i n t from Z-not-Z', the l a t t e r i s i n turn equivalent 
A - ^ A A A A 

(cf. Theorem 14.) to saying that X disconnects Z-not-Z' from Z'. So Theorem 23 can 
A A A A 

be rewritten as 

Theorem 23a. I f Y = fi{Z) and Z' = )^'(X) are quasi-causal r e g u l a r i t i e s wherein 
A A A A 

Z includes a l l variables i n Z', the ( p a r t i a l ) composition of Z' = ̂ '(X) into 
A A A ^ 

Y - fi{Z) i s also quasi-causal i f and, for the most part, only i f Z disconnects 
A A A 

X from Y and X disconnects Z-not-Z' from Z'. 
A A A A A A 

I t only remains to show how p a r t i a l composition works out i n developanent of 

cd-series. Recall that any s-determination sequence •••"^^^m+l be viewed 

as a precession Xj->Xj..^-[. (4 - n»,m'«.l,... ,1) i n which at each stage a subtuple Xj^-j^ 

of Xj^2 i s replaced by an s-determiner r X^ thereof with X^ and X̂ 4.2̂  d i s j o i n t , i . e . , 

? i + i = ̂ +i-««>tf i ' h = %^i'fi+r"°*-?i+i'- = ^l^JP 
the quasi-causal r e g u l a r i t y by which X' determines X?.,, when does that s u f f i c e to 

A i A 

i d e n t i f y the re g u l a r i t y X̂ ^̂ ^ = j^i(Xj) under which a l l of Xj s-determines a l l of 

^ i + l ' "̂ ^̂ ^ i d e n t i f i c a t i o n obtains just i n case X^^j^ = /rf^(Xj) i s pre-emptively : 

embedded i n Xj+i =V. (X,), i . e . , just i n case-the; latter"can be constructed frcan 

the other just by null-weight insertions of variables X.-not-X' into the determination 

A"1+1 ^1* '̂'̂ "̂''her with i d e n t i t y selectors to pick variables i n ̂ i4.2~"°'''~̂ i+i 
out of X.. We s h a l l now see th%t with only routine care i n se l e c t i n g X' t h i s 

A A X 

desired embedding always holds f o r , i n t e r a l i a , sequences s a t i s f y i n g the preconditions 

of Theorems 20 & 21. 
F i r s t , l e t us c l a r i f y how Theorem 23/23a applies to a standard cd-series 
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X-ĵ => »»»-^Jjn+i of X-subtuples. As before, Ji+ij^ -^^f A^+V^^^"^!* "® 

presume that our interest i n the s-determination of each J^i+J, hy Xj i s focused on a 

distinguished subtuple X^ of Xj that s-determines X^^^ while being d i s j o i n t from the 

l a t t e r . (Before we are done, X.' w i l l receive an additional constraint.) To subsume 
A X 

? i "'̂  ? i + l "'̂  A i+2 Theorem 23/23a, we take X^+2 for Y, Xj^]^ f o r Z, X°^^ for Z', 

and X J for X, whence Z-not-Z* becomes Ji+l'^o^'^i+i some permutation of 

<Z-not-Z*,X> becomes X.. By s t i p u l a t i o n that t h i s cd-series i s standard, XJ+T 
A A A, ^X A 

disconnects X^ from Xj^2' So i f Xj+2 = ̂ ^i+l^Ji+l)* Ji+1 ~ ̂ ±^^±^* and = f^l^^l) 
are the quasi-causal r e g u l a r i t i e s under which X^j.!, X*, and X' respectively deter-

A A J-

mine ^±+2* ^i+l» ^1+1* "theorem 23/23a t e l l s us that the quasi-causal r e g u l a r i t y 

^1+2 ~ ^ i + l ^ i ^ ^ i ^ under which Xj determines Xj+2 through the mediation of ^±+1 

l o g i c a l l y equivalent to the p a r t i a l composition of Xj^-j^ = ̂ j ( X j ) i n t o Xi+2 ~ +1^^1+1^ 

i f and f o r a l l p r a c t i c a l purposes only i f X^+j^ ~ i a (pre-emptively) embedded 

i n ^ i + i - i . e . , i f and e s s e n t i a l l y only i f X j disconnects Xj^-j^-not-Xl^-i^ from 

Xj^^. Aid since (Xi+]^-not-Xj_^j^)-not-X^ ~ 4i~n°*~Ji» ^± disconnects ^^i+i'^o^'Ji+i from 

X j ^ j . j u s t i n case XJ disconnects Xj from Xj_j_^ 

To obtain t h i s disconnection under macrostructurally normal circumstances, 

l e t X-j^;.'• j^m+l he an X-wise compact tj^-determination sequence that achieves standard 

cd-status through X-wise well-ordering of f2»"*Jfm+l theorem 19). Then for 

each i = 1,.,. ,m, a l l X-wise di r e c t sources of X?.-. are i n <XJ,X4 .•!>(= ̂ X. ,X° >) 

by the strong-compactness consequence i n Theorem 19. So without further constraining 

the X J we can presume also that the X^ part of each Xj has been chosen to tjj--determine 

AI+I including a l l X-wise d i r e c t sources of X|^^ that are not i n ^±+i- The l a t t e r 

i s equivalent to making each X';X° - X-wise compactjand indeed, to a t t a i n the 
A i A X T X A 

properties wanted f o r J]^*.. • J^^ni+l* i * s u f f i c e s to s t i p u l a t e that each X^ t^^-precedes 

S+1 A i'?i+1 A ~ " ^ ® ® compact and ^•,...',t^+i X-wise well-ordered. Then ^i','"',Jm-*l 

i n i t s entirety is an X-wise strongly compact tj.-determination sequence that i s more­

over a standard cd-series. F i n a l l y , l e t us also require each Xj^.^^ ( i = 1, ...,m) to 

be X-wise s o l i d , as holds for sequences to which Theorem 20 or Theorem 21 applies. 
A 
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Then s o l i d i t y of X°^^ combined with cwnpactness of X̂ ;X°_̂ ĵ  e n t a i l s that every path 

in X from Xj to X^^^ fe«» « terminal segment consisting of a variable i n X| followed 

by one or more variables i n Xj^-]_; hence from Theorem 14., since X^ and X|+]̂  are 

d i s j o i n t , X^ disconnects X^ from X^+j^- In short. 

Theorem 24.. Let ̂ ^ij^-'J^ju^.-^^ be a sequence of X-subtuples assembled from 

the variables i n quasi-causal r e g u l a r i t i e s fx°^^ = t^^i^^)} ( t = l,...,m) and 

some possibly-null subtuple X^^^ of X i n compliance with the following constraints: 

(a) x£;,.. ;X°4.-i i s X-wise well-ordered with each X° therein X-wise s o l i d , (b) For 

each i = l , . . . , i , X^ t^-determines X j with X^ and X j ^ ^ d i s j o i n t and 

X-wise compact. And (c) X̂ ĵ ^̂ ^ = <|m+l»^m+l^» " h i l e for each i = l,...,m, 

X^ = ̂ Ji>Ji4.]^~not-X°^2*, i . e . , X J cotoprises X^ together with whatever Xj4.-j^-var-

iables are not i n Xj^^^. Then ^i»"*»^in+i a standard cd-series i n which, f o r 

each i = l , . . . , a , Xj^.^ = ^[0^1) is pre-emptively embedded i n the quasi-causal 

re g u l a r i t y Xj^^^ = ;^j(Xj) under which X j determines ^±+2.' That i s , X^^-JL ^"^^^^m^ 

i s pre-emptively embedded i n X^^-j = /̂ m̂̂ ĵâ  ^ ̂ and i s i d e n t i c a l with the l a t t e r i n 

the paradigm case of n u l l X̂ +̂x̂ ' quasi-causal r e g u l a r i t y "^^i = A^m-l^^m-l^ 

imder which ^jo-l determines ^+2, through the p a r t i a l mediation of Xj^ i s the 

p a r t i a l composition of X° = ^^x^j[m-l^ ~ ̂ m̂ A'"̂ ' generally, 

recursively f o r i = ffi,m-l, ...,1, the quasi-causal r e g u l a r i t y X̂ .̂]̂  = l^j(Xj) under 

which X J determines through the p a r t i a l mediation of ̂ -^i+j* • • • »Jn^ is the 

p a r t i a l composition of X j ^ ^ ~ ^ i ^ ^ ^ j . ^ ^"to Xĵ.|.-|_ = ^i+x(^i+l)« 

Conversely, whenever X̂ ^ =̂  ...=>Xm4.x i s an X-wise compact tjj-determlnatlon 

sequence i n which 2̂»'»*»]̂ m+l X-wise well-ordered and each Xj^.j^ ( i = l,.,.,m) i s 

X-wise s o l i d , notably when the preconditions of Theorem 20 or Theorem 21 are s a t i s f i e d , 
A 

the sequence i s also strongly compact (cf. Theorem 19) so that subtuples X' of the X 
A i A 

can be selected for which fji]» /ji?» [Xj^]^ s a t i s f y the preconditions of Theorem 24. 

If we want, the t o t a l compositions for t h i s cd-seriea Theorem 16 

fashion can be reformulated as an i t e r a t i o n of p a r t i a l compositions as described 
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i n Theorem 2 4 , . But it e r a t e d p a r t i a l compositions are d i f f i c u l t to handle conceptually. 

The singular oharm of atandard c d - a e r i e s — a prime reason to think about causal relations 

i n molar rather than microstructural t e r m s — i s that these allow us to formalize 

iterated p a r t i a l compositions by li n e a r strings of t o t a l ccflnpositions whose c o n s t i t ­

uent quasi-causal transducers contain t h e i r s t r i c t l y causal information i n the form 

of embeddings. 

Mpj-ar patti structure. 

Previously (p. 2.4.8) we reviewed the manifold aspects of microcausal atructvire 

represented by path digraphs. We are now i n position to consider what a molar 

counterpart thereof might be. 

Evidently, to be usef u l l y isomorphic to i t s microcausal prototype, a macro­

causal path digraph must comprise on the one hand a f i n i t e set Sj^ = ^X^] of Tuples, 

and on the other hand a partial-order r e l a t i o n -e-» on ^^at d i r e c t l y or i n d i r e c t l y 

represents causal connection/mediation/disconnection/determination/composition 

relations among tuples i n Sjj i n fashions corresponding as clo s e l y as we can manage 

to the microstructural path manifestations of these. To develop such an isomorphism, 

we can best seek f i r s t of a l l a molar counterpart for the microstructural model's 

most essential character, and then consider whether that gives us a l l we want or 

at least a l l that we can have. 

The i n t e r p r e t i v e l y deepest feature of a microcausal path digraph 'iT^, i n which 

are joined a l l f i v e facets of i t s representations, i s that a path therein of length 2 

or greater demarks the microcausal version of a chained cd-series. For, suppose that 

<Xj^,... ,3̂ 4.ĵ > i s a path from to x̂ ^̂ ^̂  within tuple X, Then for each i == l,...,m, 

* i + l ® proximal source X* within X that includes X j . I f we put =jjgf ̂ *m+l^ 

and X^ "def ^Ji'^i+l-n^^-^i+l^ 4 ~ a»£~l»'"»l» each i s fonned by replacing 

? i + l A I + I 5fi together with the other X-wise d i r e c t sources of So 

Jl»*"»^+1 ^ tjj-determination sequence i n which X^ = <-x^ f o r i = 2,...,m+l. 

(Unless <Xj,.., ,Xjjj4.-j> i s a t o t a l path to x^^.^ i n X, putting also X° = <x̂ > selects 

x^ as the omission for continuing the precession.) I t w i l l be evident from Theorems 
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3 & 17 that t h i s Ji'f • •' fJxR+1 ^ standard cd-series. But more than that, since 

the seqvwnce i s Qlearly"X- '%l8e compact while singleton tuples ^^2* * * •' >*^m+l^ 

a l l X-wise s o l i d and each t^-precedes ^±+i ^- ~ ^»**'>S^» Jl'***»^+1 X-wise 

chain of t^j-determinations whose special character has been described previously 

(p. 2.67f.) And the fact that any path to Xjjj+x i n X i s the terminal segment of a 

t o t a l path to f̂ĵ +x i s just a special case of the molar p r i n c i p l e that the precession 

of stages i n an X-wise chain of t^j-determinations can always be continued u n t i l i t s 

i n i t i a l stage X̂  contains no variable i n l(X) that ty-precedes X2. 

Accordingly, we take our guiding d i r e c t i v e f o r molar path theory to be that 

a macrocausal path digraph 71^ i s above a l l to represent sequences of omission tuples 

i n chained cd-series, while reducing to a microcausal path digraph i n the l i m i t i n g 

case wherein a l l i t s nodes are singletons. The t e c h n i c a l i t i e s i n Theorem 20 largely 

dictate what any such TTx must be l i k e . F i r s t of a l l , i t s nodes must be tuples fx^f 

of variables frwn some base (background) tuple X. Secondly, TTj^ must contain a 

partial-order r e l a t i o n -e-> on TT^-nodes s i g n i f y i n g d i r e c t antecedence i n IT^. It 

w i l l be convenient to c a l l —e-* the direct-source r e l a t i o n i n TT̂ * though we must 

take care not to confuse t h i s with microcausal direct-source connection i n X proper. 
•1 

Any node Xj on a -e-» -path to any node X^ i n TT^ must t^-precede and be X-wise causally 

independent of X^; hence i n p a r t i c u l a r X. and X. must be d i s j o i n t . The aggregate X* 

of a l l nodes d i r e c t l y antecedent to node Xj i n T/̂  """^t t^-determine X^ while discon­

necting a l l other V^-mdes from X j . (Here and subsequently, the super-bar i n X* 

denotes a subtuple of X that i s not necessarily i n %.) And l a s t but far from l e a s t , 

i n t e r i o r nodes of ff^ must be X-wise s o l i d . 

Let us say that a set 5]̂  = fx^l of tuples i s a p a r t i t i o n of tuple X just i n 
case (a) each Xj i n 2«- i s a subtuple of X, and (b) each variable i n X i s i n exactly 

A " A 

one tuple i n % . (Condition (b) e n t a i l s that any tuples X^ and Xj i n Zx are d i s j o i n t 

unless X J = X J , whence i n p a r t i c u l a r Xj = Xj only i f Xj = ^ j . And (a)'s requiring 

each X. and X., i n Sx not merely to contain only X-variables but to be subtuples of 
X has the convenient but nonessential consequence that X J contains a l l variables i n A -1J 
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X . only i f i s a subtuple of X . . ) Then the requirements on ITv just noted are 

f u l f i l l e d i f we s t i p u l a t e that an (ideal) molar pat^i structure ( i . e . macrocausal 

path digraoh) en base X i s any 2-tuple "Ifj ~ ^ s a t i s f y i n g the following 

conditions: 

1) Ex i s a p a r t i t i o n = ̂ ^^1 of ̂  i n which every node (tuple) Xj i s 

X-wise s o l i d j and -e-^ i s a binary r e l a t i o n on Sj^. ( I f Xj-e-»Xj, we say that 

X ^ i s a direct source of X ^ i n iTjj and that X ^ i s an i n t e r i o r node of TTx* I f 

X J i s i n but has no direct source i n TTj^, Xj i s an exterior node of TT^.) 

2) For every node Xy of TTy, define the TTy-wise proximal source. X * , of X . 
J ^ A3 AJ 

to be the (possibly n u l l ) subtuple X * of X such that eacfc TTv-node X J i s either d i s -
Aj A 4 •'• 

j p i n t / i f f Xj-e-^Xj. That i s , X * comprises just the variables i n a l l d i r e c t sources 
" AX AJ A J 

of X i i n ITV. Then for each TTy-node X J , i f X * i s non-null, X * tv-determines X . 
* ^ AJ' Ai ' ^ j T C 4 J 

with X ? d i s j o i n t from X . and X*;Xj X-wise compact (cf. Def. 2.2l). 
AJ AJ A J AJ A. 

3) Whenever X^-e-^Xj i n ]7^, X j contains at lea s t one X-wise d i r e c t source 

of some variable i n X . . 
A J 

4) Each exterior node of VZ i s X-wise causally independent of a l l other 

nodes of TTj. 

An immediate consequence of Condition 2 i s that X ^ - e ^ X j only i f X j tx-precedes Xj 

with ^± ̂  hence from the c l a s s i c a l - p a r t i a l - o r d e r status of tj^-precedence and the 

equivalence of = with = on Z^, i s a s t r i c t ( i . e . i r r e f l e x i v e ) p a r t i a l order on % . 

Given any p a r t i t i o n Sx of X whose nodes ar e ' X - w i s e - f p l i d . Conditions'2-4 

provide an e x p l i c i t d e f i n i t i o n f o r -e^ on that may n&t, however, s a t i s f y the entirety 

of Condition 2. S p e c i f i c a l l y , Conditions 2-4 e n t a i l that for any nodes X . and X . 

i n X J -etXj i f and only i f X J ^ X . with X J containing an X-wise d i r e c t source, of 
A 1 J \X \J /^x ' \

some variable In X , . ^(The b n l y - i f part of t h i s i s j u s t Condition 3 with i r r e f l e x i v i t y /^J 
added from Condition 2; i t s i f part holds because i f X. ̂  Xj when Xj contains an 

A X ^ J ^X 

X-wise direct source of some variable i n X . , Condition 4 disallows X ^ to be n u l l , 
A AJ A J 

whence the compactness stipulated i n Condition 2 requires X J to be included i n X*.) 
1-̂  1J 
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Taking t h i s b iconditional to define gives us that whenever Xj i s non-null, 

X* s-determines Xj w i t l l ^ j X j X-wi compact and X| d i s j o i n t from X j . I t does not, 

however, insure that X^ t-jj-precedes X^ whenever Xj-e^ X j , as needed for X*'s s-deter­

mination of Xj to be tjj-determination as Condition 2 also requires. So what Con­

ditions 2-4. r e a l l y s t i p u l a t e , beyond e x p l i c i t d e f i n i t i o n s f o r -e-» and {x*|, i s 

that Zf so p a r t i t i o n s X that whenever X. ̂  X. therein, X. contains an X-wise di r e c t 

source of some variable i n X. only i f each variable i n X. i s an X-wise source (not 
4 J A X A 

necessarily a dire c t one) of some variable i n X j . 
The organization of an i d e a l molar path structure on X i a g r a t i f y i n g l y t i d y . 

4 

F i r s t of a l l , each path X - j ^ ^ 2 ' * ^ " * -^^+1 i d e n t i f i e s an X-wise chained 

tx-determination sequence J ^ " ^ ^2^ '""^fm"^7^+1 "herein ^^+1 = Xĵ .̂̂ ^ and processing 
ftom there, for each i = m,...,2, X° = X and X. T = <X* X.-not-X?> = <X*,Xj-not-X,>. 

- ' ' 4 i 4 i 4 i - l 4 i - t i A± i i A l / f i 
(Proof i s immediate from Def. 2.24.-1, since X-wise compactness of a l l X*;X. enta i l s 

4 ^ 4 1-11 

that ^x»«"5^ni+i i s X-wise compact, X-wise s o l i d i t y of each X j i s a basic s t i p u l a t i o n , 

and each omission tuple X^ t^^-precedes Xj^.^ i n the -path as already noted.) This 

i s exactly l i k e the chained t^-determination sequences demarked by microcausal digraph 

paths except for generalizing single-variable omissions to X-wise s o l i d omission 
4 

tuples. Also as i n the microcausal case, the quasi-causal r e g u l a r i t y under which 

each X* determines X. i s pre-emptively embedded i n the one under which X. , determines 
A1 1 41—1 

J^. (For the significance of that, see Theorem 24.) That t h i s tj^-determination 

sequence ^Jm^ m̂+1 i d e n t i f i e d by molar path J ^ - ^ -**^-*^^m+l 

a cd-series with the pre-emptive embedding just noted i s the molar version of causal 

composition p r i n c i p l e Cmf-4. and for m = 2 reduces to the l a t t e r when the omission 

tuples are singletons. Also worth making e x p l i c i t i s that for each i n t e r i o r node 

Xj of Tfyrt a l l microcausal paths within X from any variable i n X-not-Xj to any 
variable i n X* pasa through X? (since Xl;X-. i s X-wise compact), so that Xf disconnects 

4- . A" 4 J 4 J A A J X-not-X4 from X i . Moreover, from Condition 3, X* i s the smallest (least i n c l u s i v e ) 
4 A J A * " * Aj 

aggregate of T7^-nodes having t h i s disconnection property. That i s , for any X-subtuple 

X J comprising the variables i n some subset of not including X,, i f x t disconnects 
A J ^ A J A J 



-2.82-

X-not-X. from Xj then X* i s a subtuple of x t . In the l i m i t i n g case where Xj =<x.> 
A ^2 A2 y\ A 2 A2 i2 
and aM nodes aggiregalieff Into X * are singletons, X* i s the microcausally proximal 

Aj ^ J 

source of x i n X — j u s t as needed i f molar path structures are to include microcausal 

ones as l i m i t i n g cases. 

Secondly, for any two variables x. and Xj i n d i s t i n c t 77^-nodes X. and X., 
A L i2 A / » ! ^2 

respectively, x. i s an X-wise source of Xj only i f there i s a -e->-path i n ~PZ from 
/I J- /\ A 

X. to X J . (Proof: We have already observed i n slightly^different_terms that whenever 

there i s a length-2 path within X from a variable i n 77̂ -node to a variable i n 

iT^-node Xjj, either X^ = Xj^ or Xj^-e-^Xj^. From there, completion of the argument i s 

obvious.) Consequently, for any two d i s t i n c t TT^-nodes X. and X J , X J i s X-wise 

causally independent of X. just i n case there i s no —e->-path i n T̂ ^ from X. to X.. 
AJ A ^ 1 ^ J 

And from there, under the partial-order character of -©-^, i t follows that every 

sequence of nodes i n ff^ has at lea s t one permutation imder which the sequence i s 

X-wise well-ordered (cf. Def. 2.22-4)—just as holds f o r any sequence of single 
A 

variables i n X. Using t h i s well-ordering p r i n c i p l e , f o r any node X. to which there 

i s a -e-*-path i n ^ of length 2 or greater, we can construct from the nodes i n TTy-

an X-wise s o l i d l y conservative tj^-determination sequence (cf. Def. 2.24-2 and 

Theorem 21) that precesses from X^ to the aggregate of exterior 77^-nodes that 

ty-precede X.. Specifics on t h i s point need not detain us, however, for they are 
A J 

just an instance of the most basic isomorphism between ideal-macrocausal and micro­

causal path digraphs. 

Most fundamentally, i f i s an i d e a l molar path structure, an exact 

counterpart of Theorem 1, and hence of a l l ensuing microcausal theorems, holds for 

"77̂ . Detailing that correspondence would be vinnecessarily tedious here. But the 

point i s simply t h i s : I f 3^ i s any node o f " f ^ , either i n t e r i o r \ o r e x t e r i o r , there 

i s also an id e a l molar path structure 17x_not-X^ whose nodes are just the nodes of 

exclt»3ing X^, and whose direct-soiu*ce connections are derived from those i n 

~J7̂  exactly as described by Theorem 1 f o r microcausal direct-source connections i n 

X vs. X-not-X-. (Proof w i l l be omitted here, but i t follows straightforwardly from 
A A /\\J 
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the r e l a t i o n Just noted between any microcausal path within X and the derivative 

macroi^lMpral path Xj„ i s an i n t e r i o r node of 77̂ , the proximal 

quasi-causal r e g u l a r i t i e s « ^*(X*)^ i n "U-^ generate the proximalities i n 

"]f!o. . i n exact isomorphism to how t h i s occurs microcausally when X i s reduced A—not-Ajjj /t 
to X - n o t - X Q . S p e c i f i c a l l y , each T^-node X^ of which X̂^̂  i s not a di r e c t source i n 

IT^ has the same proximal source X* i n "^.jjot-Xm as i t has i n 7^. But i f 

X T -o^X _e*X-4.T i n TTY, and we write X = X*.-, X •, = <X*,X -not-X i n accord 

with our p r i o r observations (p. 2.81) on the compositional import of -e-:^-paths, 

^ ^ ^ + 1 X-wlse chained tx-determination sequence of length 2 whose 

stage Xju_2 becwnes the proximal source of Xj^+i i n reduced molar digraph "^^-riot-X^ 

under the quasi-causal r e g u l a r i t y derived by composing i n t o X^+i = ̂ m+1^^+1^ *he 

one under which ^jj^Ji determines Xj^ and i n which = i s pre-emptively embedded. 

In such fashion, the quasi-causal r e g u l a r i t y Xj^ = ^jjjjC^jj) under which any given 

i n t e r i o r node Xj^ of 77̂  i s determined by an aggregate X^ of IT^-nodes not a l l proximal 

for Xj^ i n can be derived from 77̂ 's proximal r e g u l a r i t i e s by i t e r a t i v e l y 

eliminating from Ifjr the buffer nodes that are on -e->-paths between X^ and X̂ .̂. 

(Cf, Def. 2.9 and Theorems 4 & 5.) ^ j j tjr-determines Xj^ and the sequence of 

omission nodes (deleted from r i g h t to l e f t ) i s X-wise well-ordered, i t can e a s i l y 

be seen that Xj^ = )!^jjjj(^jj) i s the ccacposition of a cd-series ( i n fact an X-wise 

s o l i d l y conservative one) whose single-step r e g u l a r i t i e s are, or derive by pre-emptive 

embedding from, ones that are proximal i n " T j . 

The goals set for t h i s chapter have now been e s s e n t i a l l y achieved. We have 

studied the l o g i c of causal composability i n some depth, and have seen how the 

complexities of recursive compositions that preserve causality, which are l a r g e l y 

intractable i n microcausal terms, can be e f f e c t i v e l y conceptualized as cd-series 

of quasi-causal molar r e g u l a r i t i e s . And we have observed reasonably general con­

ditions under which, with t-precedence taken as ottr molar counterpart of the causal-

source r e l a t i o n on single variables, the t^-precedence structure of nodes i n a 
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molar p a r t i t i o n of base tuple X i s characterized by p r i n c i p l e s that are v i r t u a l l y 

word -#»fN.ver* til'illffiilfl^Ks^^^W the p r i n c i p l e s that govern microcausal paths i n X. 

That i s quite enough for t h i s occasion. Nevertheless, there i s a great deal more 

to be said about causal macrostructure, and some of what remains for molar digraph 

theory deserves parting acknowledgment. 

F i r s t of a l l , the version of molar path structure defined on p. 2.80 has 

been labeled " i d e a l " to recognize that alternatives to Conditions 1-4 may also 

i d e n t i f y patterns of molar causality that u s e f u l l y resemble microcausal path 

structure. What might such alternatives be? Conditions 3 & 4 contribute l i t t l e 

to the isomorphism, and can be waived with only minor complications f o r TT̂ 's 

representation of disconnection and X-wise causal independence. But Conditions 1 & 2 

do not e a s i l y submit to relaxation. Even so, we do not want disjointness of molar 

path nodes to be obligatory; for molar attributes that we treat as causally d i s t i n c t 

often appear to have overlapping microcausal abstraction bases. There i s no evident 

reason why molar path models cannot admit in t e r l o c k i n g nodes, but i t w i l l take work. 

Then there i s the question of how a molar path digraph VY ^ can best 

be embedded i n ones on supertuples of X, The theory of t h i s should be l a r g e l y 

routine, but i t s t i l l awaits accomplishment. 

Above a l l , given the microcausal path structure within tuple X, i s there 
A ^ 

any i n s i g h t f u l algorithm that can extract from 1)^ the p a r t i t i o n s fSj^^ of X for 

which 7^ = <Sx,-«->•>, with -e-> suitably defined (cf. p, 2,80), s a t i s f i e s i d e a l 

digraph Conditions 1-4? Let us c a l l such an If^ a "molar derivative" of 17'̂ . Any 

TT̂  has two t r i v i a l molar derivatives, the degenerate one having just X i t s e l f f o r 

i t s only node, and the one i n which Sir consists of X's singleton subtuples. (The 
A 

l a t t e r i s not degenerate, but d i f f e r s from Ify merely i n replacing each x i n X by <x>, 
/ [ A ^ 

But also generally has n o n t r i v i a l molar derivatives as w e l l . Can these be found 

by sane technique more e f f i c i e n t than generating every p a r t i t i o n of X for separate 

appraisal? We have already i d e n t i f i e d the essential c r i t e r i o n f o r to comppiae 

the nodes i n a molar derivative of 77x' node Xj i n % must be X-wise s o l i d . 
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and any other node X. (5̂  X.) that contains an X-wise di r e c t source of any variable 

i n XjgWBPfe't^sspitlMW*^.^'^^ with some T x already known to be a molar derivative 

of ITx, i s there some way for us to determine with comparative ease that combining 

certain nodes of Uyr into coarser nodes (or, a l t e r n a t i v e l y , s p l i t t i n g certain nodes 

of "77̂ ) generates another molar derivative 17*̂  of What i s envisioned here i s 

the following: For any two molar derivatives 77*̂ ^ and JT-^ of T/'x* ^^V that 77"̂  i s a 

"coarsening" of "Fx i f f each node of Ifyr i s a subtuple of some node of 77*^. Then 

the coarsening r e l a t i o n i s a c l a s s i c a l p a r t i a l o r d e r — i n f a c t , a l a t t i c e with the 

two t r i v i a l cases already noted as extremes—on the set J©(7^) of Tf-^'s molar 

derivatives. And |©(7l'x) i s f i n i t e , so for each TTjr i n ̂©(''I'x), the subset'of ^^^/j^) 

c ompristngri^t the immediate successors ( a l t e r n a t i v e l y , the immediate predecessors) 

of ITj^ i n the coarsening order i s not only f i n i t e but i n a l l l i k e l i h o o d no more thaa 

a very small f r a c t i o n of W{1fjr). A method for converting any TTx i n WiT-^) into a 

l i s t of i t s immediate successors (or predecessors) then provides orderly i d e n t i f i ­

cation of a l l molar derivatives of tTx- Whether i n s i g h t f u l procedures of t h i s sort 

exist and, i f they do, just what t h e i r value may be for the theory of molar causality, 

i s far from clear. But the abstract question i s i n t r i n s i c a l l y challenging. 


