HAPPFWEE ON*THE WAY TO MODA'S REVISION

Wm, W. Rozeboom

The attached document began life as the second draft of the monograph on
applied data analysis previewed in the first few pages here. But it has evolved
into an in-depth study of certain limited but central aspects of causal structure
as this has traditionally been viewed in the multivariate literature. Because
revision of Chapter 1 was largely completed before Chapter 2 took its present
explosive turn, some practical preliminaries therein are no longer relevant just now. :

The funny thing that happened was my jolting discovery that a fundamental
principle of mediated causality which had long seemed obvious and indisputable to
me is in fact not generally true. (See Fallacious Thesig 1, p. 2.22.) I know of

no published work that explicitly promulgates this fallacy, but that is only because
scarcely any explications of our behavioral-science intuitions about causality have
ever appeared. \yévertheless, I submit that it is implicit throughout modern multi-
variate analysis, especially in recursive causal modelling, which is where questions
of causal composability are most salient. Although the additional model premises
needed to Justify our standard in%tuitions in this ?espeCt usually‘feem plausible
enough in particular applications, the deeper point is that significant additional

premises are in fact needed. Surely it is thus reasonable to contend that the current
burgeoning of causal modelling in applied data analysis--and why else bother te parse
data if not to seek information about causal principles that underlie them?--creates
an increasingly urgent need for a theory of mediation structure that gives us some
notion of what we are talking about when we propose causal models and egtimate para=-
meters in conjectured structural equations. A foundation for that limited theory
(i.e., for just the logic of causal mediation/composition, not for other facets of
causal structure also much in need of exposition) is herewith proposed.

Unhappily, the account that emerges here is densely technical. Qualitativeiy,
1t can be viewed as no more than a rationalized exjension of orthodox causal-path

modelling. But to build that rationalization, and to develop from it an analysis of
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the conditions under which the composition of one causal regularity into another is
itself a’(mediated) causal regularity, has required creation of a new language, or
rather, what is eveﬁ more demanding, a new mathematieal system. Chapter 2 draws out
the exact logical force of certain basic causal-structure postulates that have ample
intuitive justification,\but which encorporate axiomatic concepts that are not usually
understoed in the precisely detailed senses given to them here. And additional terms
are introduced by explicit definitions that make good sense locally but globally
become burdensome to memory. Moreover, apart from the digraph representation of
direct-source relations and some elementary algébraic notions, the reader will not
likely have exverienced mathematical constructions sufficiently similar to the present
ones to effect much positive transfer of comprehension--one has to work up here

pretty much from scratch,

In short, even were this optimally written, the nature of the materisl would
make it tough slogging--not because it is inherently difficult, but because it demands
patient attention to the details of novel concepts. Moreover, an extra barrier to
comprehension of‘this initial draft is just that it is an initial draft. Undoubtedly
there are many needless obscurities in the present exposition (especially in its
proofs, which I have tried to keep short but may well have over-compressed) that with
effort can be cleaned out. Some improvements I caﬁ manage on my own; but to do the
job right I need constructive feedback about what in this is most opaque/confusing/wrong.

On the other hand, regardless of improvements, perhaps the material here is
Just too recondite, given the present state-of-the-art in multivariate thinking, to
be publishable in anything like its present form. Even if you find the details of
this incomprehensible, are you able to acquire from overview skimming some feeling
for the problems it addresses, the general direction of its development, and the
shape of its achievements? If so, have you any advice for me on the feasibility of
seeking to publish fragments of this material? Possibly it is best written off as

honeless.
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' MILTIPLE-OUTPUT DEPENDENCY ANALYSIS: THE STEP BEYOND MANGVA

William W. Rozeboom
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CHAPTER 1. CLASSICAL MODELS OF CAUSALITY.

troduotion.

i S;iéntific éata can arise in many diverse formal patterns, the generic study
of which is a chapter in the logic of data analysis still to be written. Yet one
particular form has so dominated research practice that data structured this way
may be thought of as "classical." Svecifically, let us say that a classical data
array is an nx N numerical score matrix Z whose rows correspond to an p-tuple
? = (?l""’%n) of numerically scaled data variables, whose columns cofrespond to
the N members of a sequentially indexed sample population P of subjects (i.e., P
is an N-tuple of observational/experimental units), and whose ijth element 2 is
the score on vaf&able Z; observed for the Jth subject in P. Insomuch as initial
data records can generally be parsed in more than one way, classical data arrays
result in part from our decision to express our raw observations in this particular
format. Obvicusly there are a number of formally‘different but transformationally
equivalent structures that could replace this definiens (notably, transposing Z's
rows and columns, as preferred by some data analysts), all of which may be viewed

as classical in an abstract sense, But for present purposes, numerical Variables-

by-Subjects score matrices are the most convenient embodiment of the abstract

classical data form.

Since any variable can be scaled numerically, no matter how qualitative the
attributes represented by its alternative scale values, classical data arrays can -
include variables of any substantive character., In particular, these can be metrical

(quantitative), categorical (qualitative), or a mix of both. And incomplete

Variables-by-Subjects data arrays can often be treated as classical by filling the
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empty cells with artificial scores construed as estimates of missing data. (See
Rozeboom, [GLDA], for details on this point.) Even so, not all data structures that
arise in modern research are classical in the sense just defined. Repeated-measurements
data, wherein individuals are observed on the same measures across two or more
occasions, have a structure more complex than the classical form; and so do data on
polyadic variables whose values represent relations among two or more subjects. (In
contrast, classical data typically involve just monadic variables whose values
represent subjects' nonrelational properties.) Although repeated-measurements and
polyadic data can be transformed into classical arrays--quite appropriately so for
some agsvects of their analysis--the theory of their interpretation goes beyond their
reduction to classical form.  (Rozeboom, [GLDA], diséusses multivariate repeated
measurements in operational detailj while the nature of polyadic data analysis is
briefly sketched in Rozeboom, 1966 pp. 198-214, 1972 pp. 111-114.) Even so, not only
do classical data arrays still prevail in the behavioral sciences, the logic of their
analysis generally underlies that of more complex data structures. So while present
concerns explicitiy address only the classical case, that does not strongly limit the
aprlicability of whatever new operational techniques or deepened theoretical insights

may emerge here.

~ What 1o do with classigally sitructured détai

Many algorithms havéAbeen devised to extract information from classical data
arrays, but the ones most deserving of interpretive respect are those that under
favorable circumstances identify parameters of the data's causal production. Extant

varieties of causal analysis divide between two historically disjoint approaches:

ANCOVA) -~ and various regression models, one or more of the study's data variables
are considered to be causally affected by some or all of the others; and under
vresumption that these dependencies are of a generic algebraic form @, the analysis

extracts from the data matrix an estimate of the specific §-form function by which
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each devendent data variable is determined in the sample population by its putative
observed sources. In this tradition's most recent extension, Mhltiyariéte'Analysis

of Variance (MANGVA), a multiplicity of dependent data variables is treated as a

space that the analyst prefers to span by orthogbﬁél’aﬁeg’thereof thatrére successively
most predictaﬁle from the independent dgia variables; but otherwise, MANOVA's aim is

no different from that of ANOVA/ANCOVA. (2) In contrast, the tradition of inter-
dependency analysis (a useful contrastive label even though technically a misnomer)
treats all the data in a classical array as symptoms of shared underlying causes,

and the analysis seeks to learn whatever it can about these unobserved source factors
from the data variables' joint sample distribution. The most broadly powerful

versitn of this approach. is linear inferential factor analysis; but other, more
limited, models for hidden-source recovery have also appeared, notably Latent Structure
Analysis (cf. Lazarsfeld & Henry, 1968) for dealing with multivariate categorical
distributions,

As these two styles of causal analysis have advanced to date, each has
needlessly retai;ed an important early deficiency in what happens to be the other's
special strength. On the side of dependency analysis, which is the core of psychology's
experimental tradition (cf. Cronbach, 1959), it is still uncommon to study more than
one or two dependent variables at a time; yet if Sne's research design does include
a decent multiplicity of dependent variables, it is unconscionably wasteful of the
data's information content to ignore the implications of whatever output covariation
therein is unexplained by the observed independent variables. And across the aisle,
1t is equally parochial for correlational psycholegy (again cf. Cronbach, 1959) not
to explore whether the multidimensional symptom configurations at issue in inter~ -
dependency studies might be due in part to common sources that can be externally‘
manipulated or at least observed directly.

In faet, it turns out that apart from some softening of the statistical
tests that enthrall ANOVA partisans, the standard logic of inferential factor analysis
can be combined almost effortlessly with dependency analysis's generic linear model

for estimating the force of observed causes. Scarcely any new techniques are required;




—dy-

one needs only to perceive how the old methodologies mesh. The theory of this union
is herewith developed under the acronym MODA, for Multiple-Output Dependency Analysis.

MODA operates upon classical data arrays in which the observed variables
are partitioned into three disjoint groups: (1) putput (dependent) variables,
(2) input (independent) variables presumed to be causally antecedent to these

outputs, and (3) indicators ("covariates") thought to be diagnostic of additional

| source factors for which we would like to control when inferring input/output
dependencies governing these data. Any number of output variables greater than
zero is acceptable, the more the better, so long as these are metrical or, with
caution, binaries. (Categorical outputs are generally unsuitable for MODA, but-
binary outputs can be tolerated so long as they are all logically independent of
one another.) In contrast, the input and indicator groups can be empty, and it is
best that neither be overabundant. MODA's only constraints on the character of
inputs and indicators are that (i) any categorical dimensions therein must be recast
as a tuple of binaries such as correspond to "dummy variable" codings of ANOVA
main-effect and Enteraction components, and (ii) the combined input/indicator sample
covariance matrix must not have any near-zero roots. When there is only one output
variable, MODA reduces to orthodox regression analysis or, if the inputs include
binary codings of treatment categories, to ANOVA/ANCOVA. And at the other boundary
of its range, when inputs and indicators are both null, MODA becomes ordinary factor
analysis.

Computationally, MODA proposes little that is at all unfamiliar--which is
why scarcely anything will be said here about computational detail. Rather, concern

is for the rationale of analyzing classical data arrays one way rather than another

when options exist, with special attention to background issues seldom aired in the

multivariate literature. Present treatment of these matters is often brusk, frag-
issues

mentary, and undoubtedly controversial; but at least the fare raised. If you don't

like what I say, or are distressed by omissions, then by all means let's talk further.

Promotion of such discussion is a major objective of this essay.
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-Notation and .special @erﬁiﬁb;ogx.

A numerically scaled scientific variable --henceforth simply "variable"--
over a population P is a function mapping each member of P into a number that
represents some property of that subject. (For details, see Rozeboom, 1966b,
po. 175-181,) Finite ordered sets, i.e. "tuples," of variables over a common
population P are denoted here by capital script letters X, ¥, ?, E, F, G, and ?,
the subscript-indexed lowercase counterparts of which stand for single variables
in those tuples. Thus, } is a tuple of variables (XygeeesXpyys ¥ a tuple <y1,...,yn>,
ete. Defining } (ete.) to be the ordered set of variables <XlseoosXp> leaves open
how that order is to be expressed vectorially when § enters matrix equations.

Here, tuples of variables are always taken algebraically to be column vectors.
Correspondingly, we express scores on variables X (etec.) for members of P by a
Variables-by-Subjects matrix X whose 1jth element is the score of subject j on the
ith variable in tuple %. In all equations below, tuples of variables can be replaced
by the corresponding score matrices in P so long as the replacement is uniform and
additive constants are appropriately expanded into matrices. Whenever possible,

we impose the constraint that any tuple X of variables contains no repeated elements,
iv.e.,_ that X3 # ¥j if 1 # j. Accordingly, when }\( = <3\r1,...,3tm> anqu = ‘2’1""’2’n”
we shall understand <§,¥> to be the subtuple of <§1,...,¥m,?1,...{¥n> comprising

just the distinet variables therein in the order of their first occurrence. Notation"

X = “XpseeesXp> for the variables in tuple. X implies that there are-m distinct variables
in X and hence that for all f,1 =1,...,n, xi # x If 1 # j.Mote fﬁé% "subtuple" is

msre general than "proper subtuple, i.e., one subtuple of X is X itself,

With one exception, matrices of covariances between tuples of variables will
be written as sans serif capital‘g-with a double subscript indicating which variables
correspond to rows and which to columns. Thus, Cyy is the matrix whose ijth element
is the covariance gyixj between the ith variable in Y and the jth variable in X.

For covariance matrices stipulated to be diagonal, Q\will be replaced by D. Sans

gerif capital‘g, subscripted.as appropriate, will always denote a matrix that is
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diagonal, More generally, matrices of real numbers (the only matrices that ocecur
here) will be expressed by sans serif capital letters, real vectors usually by
lowercase sans serif letters, and individual real numbers usually by lowercase |
italic letters. But also, for any matrix é, [ﬁ]ij is the ijth element of 41}‘, while
[ﬂ]i. and [é].j;are respectively the ith row and the jth column of 1{\\ Similarly,
[3]1 is the ith element of vector 8. And we will sometimes write Z (etc.) for an
arbitrary tuple of scores on variables 2. If matrices A and B are respectively mxr

and nx g, [f\n g] is the mx (r+g) partitioned matrix comprising é\ as its first r
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columns and B as its last g columms., Extension of this notation to other matrix
partitionings will be obvious.

mlike prevailing custom in the modern multivariate literature, basic vectors
(f.e., ones not marked transpose) are here allowed to be either row vectors or column
vectors as specified by context, with row vectors the more common. This departure
from notational orthodoxy is dictated by two desiderata: (1) to write matrix
equations in standard algebraic format wherein coefficients premultiply the variables
to which they épply, and (2) not to proliferate transposition operations needlessly
nor to fight against the flow of notation that follows most naturally from satis-
faction of (1). To illustrate, suppose that each variable in tuple } is a linear

function of variables %. To express this relation in compliance with desideratum

(1) we write
T = a+Bpk,

where X and Y are column vectors of variables $XyseeeyXp> and <YpseeesTpds respectively,
a is an order-m ‘column vector of additive constants, and ,.E}YX is an mx p coefficient
matrix to which the double subscript is appended to point out that the rows and
columns of EYX correspond to the variables in X and in }, respectively. It would
be perverse to write this equation as X =a *UEiY§' But it is similarly perverse

!

to write y = a 413Xy§ for its speclal case where X comprises just one variable y.
A 8 1

Instead, natural notation for the latter is

g’zﬁ'*'}\’ X,

yX

even though that requires the basic coefficient vector to be a row. Insistence that
all basic vectors appear in matrix equations as columns incurs sufficient loss of
other algebraic conveniences and familiarities that it seems worthwhile to test |
whether relaxation of local custom in this regard may not improve upon the efficiency
or at least comfort of the currently prevailing format.

This essay presumes that its readers are modestly familiar with covariance,

multiple regression, inferential factor analysis, and, if occasional asides are to
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be understood, ANOVA/ANCOVA. Even so, it - g prudent to review the elementary

properties of covariances that will be repeatedly exploited later. Let :I be defined

N
as the Nx N row-centering matrix

I Taer In- ¥ Lyly

in which ~‘]".N is the order-N Unity row vector, i.e. }‘N =<1,1,...,1,1> ",‘r-yand‘IN‘iﬂs?
the Nx N Identity matrix., Order-subscript N will henceforth be omitted from J;N’ JN’
and «‘IN whenever the particular N involved is either irrelevant or implied by context.

Observe that ,:I is symmetric, idempotent, and annihilates L, i.e.,
ro=w, =3, M=Q,

and that for the N-tuple g\ of-scores in population P on any variable 2y since the

mean of z in P is

= 1
B, Tgef -N_E%' ’

postmultiplying ‘z by J (i,e. 2J =3 - p_l_z}q) deviates each score in z from ?'s mean in
-~ n mn "~ - "

P. Hence the covariance between any variables y and x in P is
A

c

=yx “def E_I(Yg)(fg)' = _I\I'lyJJ'x' = K’lnyv' ,'

MM A m n
while more generally, the matrix of covariances in P between the variables in any

two tuples Y and 2,( is
A

Sy = D@D = plyxe .

It follows immediately that if variables X and }‘( are linear functions in P of factor

tuples /1\7‘ and /(‘;‘1, respectively, i.e., if
Y = ay *Byy, ¥ = 8x tBeG,
then since YJ = (3Y2} + QYFF.);.{ = EYF(E#I) and similarly for X, we have

- 1 — 1 — 1
Svy = ByelreByrs  Ixx = BxalocBrer Svx = ByrlreBio -

And obviously, for any two tuples Y and X, Cyy = Cyy.
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The logle of a8mesgi blect sausality, - =

In classical depenéency analysis, one obéerves for each member of sample
population P a score on some output (causally dependent) variable‘? together with
scores on one or more independent variables § = <§1""’fn> that are thought to be
sources (causal determinants) of Y The data analyst's task is then to diagnose
from this score array (1) the lawful regularity (causal function) by which } con-
tributes to y's determination in the population P* sampled by P; (2) the degree of
predictabllity with which y is determined in P* just by X; and (3) how reliable are
the estimates of (1) and (2) we obtain from these data, There is much to be said
theoretically about each of these; but many aspects of that theory will be slighted
here, (3) in particular. We are concerned mainly with the practicalities of (1),
and for the most part shall not find it useful to distinguish the population P for
which we have real or hypothetical data from some more inclusive population P* of
which P is just a sample. Any method of applied data analysis needs first of all
to think through.what it would do if it had omniscient access to all particular
events from which it aspires to infer governing regularities before it can meaning-
fully worry how best to proceed from just a fragment of such ideally complete data.
Deriving suitable humility about the generalizability of one's results from a
pfoper regard for their sampling uncertainty is indeed an important facet of applied
data analysis, and eventually (p. ff. below) we shall face up to MODA's responsi-
bilities in that regard. But our main statistical tradition of null-hypothesis
testing is outrageously ill-suited for that purpose; and even the most cogent
appraisals based on likelihood functions are distressingly conditional on unargued
presuppositions justified more by mathematical convenience than by real-world
plausibility (see p. , below). As it is, we shall see that parameters reclaimed
by MODA are corrupted by "sampling error" only through within-sample departures
from zero of certain covariances that we have no real assurance would vanish even

were our sample population arbitrarily large.




Causal hypotheses.

When we envision that variable y has causal sources in population P, just
Fal

what are we conjecturing? This is so deeply complex a matter that even to itemize

the more salient issues is impfactical here, much less to discuss them adequately.

On this occasion I shall attempt to work within the idealized framework that is
already familiar in the multivariate literature, with only grudging hints at the
mysteries beyond. See Rozeboom ( [GLDA] ) for a more articulate though still
superficial sketch of causal regularity and Rozeboom (in preparation) for my

best effort to explore this comprehensively.

As an idealized first-approximation, let us say that a variable y is "caused,"

jointly and deterministically, by variables } = <¥1,...,}m> in any real population

P of subjects just in case (1) there is a function g such that y = g(X) in P,
A

l.e., ¥, = {(zs) for the scores y, and X, on y and X, respectively, for each

subject g in P, and (2) there exist principles of natural necessitation (de re

necessity, not de dicto) and an array « of attributes ("boundary conditions")

common to the members of P such that for any subject g, s's having attributes ¢
and values X = <31,...,zm> of variables } jointly necessitate that g have value

g(X) of variable y. We shall call any such generality‘y = ﬁ(}), characterizing
joint A
the‘causal force of variables § for variable y under some boundary conditions o,
A

a "causal regularity" in any population P of subjects satisfying c(]4 Causal
regularity y = ﬁ(f) in P is "nomically irreducible" just in case there is no
B A
funetion ¢'-and proper subtuple X' of X such that y = 5'(%') is also a causal
o - A

regularity in P, and is "functionally irreducible" just in case each variable',)'ti

in § actually matters for ﬁ(%), i.e., just in case for each x in § there exist

i
tuples X and X" of logically possible joint values of } such that X" differs

from X just in the value of X and g(X) # g(X"). Strictly speaking, no regularity
at

counts as joint causality unless it is nomically irreducible, since otherwiseéleast

one of its independent variables does not truly conjoin the others in determining

¥3 so we henceforth presume that no lawlike regularity is striectly causal unless
1

*UCT}0U STY] JO UCTIBOTJFJIBTO T[BUOTITPPB J0J ‘moreq ‘1z °d ea;;f>

(
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it is nomically irreducible. Prima facie the same should be true of functional
irreducibility. However, this appearance peres‘ﬁp'bé decggpgyef(qf:Jp,;2.3§§.:below):
and in any case it is often technically advantageous to relax irreducibility reéﬁi;;-
ments. So we shall later speak of "structural equations™ in a liberal sense under
which a dependency y = ﬂ(%) counts as "structural" even when some variables in P
are irrelevant to the value of %(%), so long as y= ﬁ(%) can be reduced to a causal
regularity by eliminating variables from } that do not work jointly with the rest
of } in bringing about e

Precisely what might be meant by Clause 2 of this definition of "causal
regularity" is an obscurity that centuries of philosophers' efforts ﬁave done little
to clarify. Nevertheless, the notion is indispensable for the conduct of our real-
world affairs: It grounds our practical reasoning of form "Owr bringing it about
that ____ will have consequences ___," and more generally is deeply foundational
for the inductive inferences we find intuitively rational (see Rozeboom, 1971, 1981),
As empirical scientists and engineers, our responsibility for explicating causality
concepts is to make as articulately explicit as we can the force of these notions
in our professional thinking, tightening and correcting our intuitions as overt
awareness of them reveals confusions and infelicities. Given a sufficiently rich
déta base in our praxis of causality, philosophic illumination of its nature will
surely not be far behind.

The simplified model of causality to be exploited here includes certain
assumptions that had best be noted at the outset.

First of all, we treat all causal laws as fully deterministic with a finite
number of independent variables., As elaborated later (p.16f.), this is at worst a
convenient heurism having no discernably harmful side effects, and for all we know
may even be true. But we also recognize that one event, or one tuple of events,
can be a cause of another without being a complete cause of it. So when variables
} are surmised to be joint sources of variable y in population P, our conjecture

is in general only that y is determined in P jointly by § together with some
A
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possibly-null supplementary tuple % of y-sources. To clarify our notions in this
A

regard, let us say

Definitlon 1.1. Variables X = <¢xj,...,x > are a strictly Jjoint (causal)
source of variable y in population P iff y is determined in P under some strict
(i.e. nomically irreducible) causal regularity y= ﬁ(},%) whose input variables
<§,§> include all of §. If moreover supplementary tuple % can be taken null,
i.e., if‘? = ﬁ(%) is a strict causal regularity in P for some g, X is (or
variables X are) a strictly complete (causal) source of y in P. If singleton
tuple ¥ = <¥> is a strictly joint source of X in P, we say simply that x is

a (causal) source of y in P.
A

These varieties of causal-source relations will be expanded in Chapter 2. In par-

ticular, we shall there regard a tuple § of variables as an "inclusively" complete

source of variable y in P iff some subtuple of § is a strictly complete source of
A

y in P. .
A
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Secondly, we shall attend only to causal regularities under which events
counled as cause and effect are formalized as having the same subject. That is,
for any causal regularity : '¥7=,¢(¥)5 : 7 defined as above, the
(compound) event of subject 8 in P having tuple X of values on independent variables
X causes that same s to have value g(X) of dependent variable y- Although technical
data analysis has not yet sought to relax that constraint, it seems absurdly narrow
at first blush, insomuch as the spatio-temporal location of a dependent event
appears almost always to differ somewhat from the locations of its causes. Thus
when John scratches his nose, his iteh is not strictly synchronous with the scratching
it elicits but slightly prior to it; and the itch in turn may well have been caused
in part by properties of objects external to John. Similarly, the state of baby
Jane's chromosomes today has no effect on her height right now, but “will “much -
influence Jane's height 15 years hence through a chain of causal mediations,and is
in turn due largely to the chromatin character of Jane's parents at the time they
produced the gamftes whose fusion was Jane's origin. Just the same, cause/effect
sequences between subjects can generally be subsumed under same-subject laws by‘;r
various tricks of definition. In the important special case of causation across
time differences—-“lags"—-withiﬁ the same temporally extended individual.(e.g. John
throughout his lifetime), for any lag A and variable f whose subjects are time-slices
{;—atftime—ig of enduring individuals {i. we can define %“ to be the variable over
population z;-at-gg whose value for each individual-i-at-time-t is in fact i's value
of X at time - A . Then the causal influence of i's f—input at time t-A upon i's
y—output at time t can be taken to instantiate a same-subject dependency of‘z upon
%5. (See Rozeboom, [GLDA], for expansion of this point.) To a large extent, the

state of i's environment at time t

can similarly be coded as the values of input-
at

variables for i at time t or, if preferred,ztime t+A. In this fashion, most if

not all principles of causal propagation can be captured by same-subject equations,

even if that is not always the most insightful way to express them.
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Thirdly, it is foundational in our causality intuitions that the cause/effect

relation is transitive, irreflexive, and hence anti-gymmetric--in short, a strict

partial order. That is, if (I gj, and g) are events such that g is a cause of gj,
and gj is in turn a cause of 80 then G is thereby also mediately a cause of e
However, if g is a cause of gj, gj is not a cause of g;s nor is any e, a cause of
itself. We shall take transitivity to imply for the idealized extreme of single- -
input causality that if y = d(%) and z = ¢(x) are both strict causal regularities
over population P, then so is their composition'z = ﬁ%(%). Less simplistically,
we presume that whenever y = #(%,a') and z' = ¢(§) are causal regularities, there
is also a causal regularity X = G(Y) in which % is a not-necessarily-proper subtuple
of <%,§), even though the latter is not always simply z = ﬁ(§,¢(¥)). (See p. 2.22ff,
In fact, analysis of how causal-regularities compose is the main concern of Chapter 2.)
And vwe also assume that the strict partial order of causality among events is reflected
by a strict partial order on the totality of variables that participate in same-subject
regularities in any population P. That is, the (same-subject) causal-source relation
in P is presumably transitive, anti-symmetric, and irreflexive.

Fourthly, we posit that when variables 2\( are a strictly complete source of
variable y in population P, the causal regularity y= 5(%) by which X determines y in

4
P is unique even when, due to less-than-full dispersion of } in P, there exists a plur-

ality of functions {£ 3 on X's logical range such that y = Kk(§) in P. (Variables

A
§ = ‘fl""’fm’ are "fully dispersed" in P just in case all logically possible tuples
of values on } occur in P.) The argument for this is straightforward up to a point:

P under which a subject's

If ¢ comprises the genuinely relevant boundary conditions in
value of § necessiﬁétes if; having one value rather than another of z, and P is
contained in some larger population P* of subjects satisfying o within § is fully
dispersed, then y = ﬁk(§) in P* for only one function g} on §'s logical range and
this y = ﬁk(K) is then also the only dependency of‘y upon % in P*'s subpopulation P

that qualifies as causal, TUrhappily, unless each variable in } has only a small

finite number of values, it is rather unlikely that any population of extant




13 even ~if full dispersion of § is'not

precluded bylf's own causal origins:—")
subjects satisfying o 1is large enough to disperse X fully;Z But even then it seems
proper to postulate_that only one of the functions carrying X into Y in P is truly
functionally irreducible

causal. And if this causal equation igfand of a known (or assumed) restricted form
P, it is uniquely identified by z's ® -form regression upon,% in P so iong as
}'s dispersion in P is not strongly constrained in certain ways coordinate with form ®.

Finally, we try to conceive of "causality" in a loose or generic sense that
includes grades of molar determination that may well be just epiphenomenalvabstracé
tions from more genuine causal connections within ensembles of micro-events, yet
which behave (or are rationally thought to behave) so much like basic causality,
especially its partial-ordering of variables and the inference patterns it sustains,
that for all practical purposes the difference is negligible. Just what is at
1ssue here is difficult to make clear in a few words (or even in a great many of
them), insomuch ag the theory of molar causality is still in its prepartum infancy.
But nearly any real-life causal story will serve to illustrate, such as the genetic
example invoked garlier: When Jane's height at time t is attributed to the genetic
constitution of her parents at the time of her conception, these properties of Jane's
father and mother as momentary wholes are composites (not so?) of the chromatin
characters of all their respective cells at that time, whereas roughly speaking it
is only the chromatin in one particular cell from each parent that matters for
Jane's later height. ("Roughly speaking" because Jane's genes may not be the only
causal route by which her height is affected by her parents! biology.) Moreover,
when we express this influence by saying that the height-of-individual-i-at-time-t
vgriable (?? is affected by the variables <§f’§m> whose values for l-at-it respectively
éorrespond to certain genetic features of i's father and mother at i's conception,
the attributes represented most directly by these variables' values are the exist-
entially quantified relational properties here-and-now of having had a father and
a mother of such-and-such genetic kinds, whereas the real causes of a particular
1's height at time t in this fashion are the events consisting of certain specific

individuals other than i being the way they were in the relevant respects at a
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specific time other than t. Still again, if go is a numerically scaled genetic
- A

variable such that i's values of ge and g at t are respectively defined to be the
R A A

values of &g for i's father and mother at i's conception, and & and &n contribute
equally and 1iﬁear1y to 9, we may say simply that the main genetic cause of i's
height at t is i's mean—parentaligo-value (g%?{%ﬁough there is no genuine causal
mediation of <§f,§m?-—9? by variable ﬁ* = of (§f-+§m)/2.

This last example instantiates the only tentative principle of molar causality
that will be suggested here: If the causal regularity by which variables <§,?>
determine variable Z‘(in P) takes form y= ﬁ(%,@l(g)), with tuples X and Z disjoint,
we can abstract molar variable z* as composite z¥* =3 ¢ 91(§) of the variables in
tuple Z and take 7= ﬁ(},g*) to be a molar causal regularity in which Zis a (quasi)-
causal source of g* while ﬁ* in turn mediates (quasi)-causally between ? and ye To
account for g*, we can cite %'s determination of %* by molar/molecular abstraction.
But also, more informatively, there may be molecular/molecular regularities Z = ¢i(§)
in which each vayiable in % is causally determined by variables f. Then f* =
el(¢1(§)) is a (quasi)-causal molar/molecular regularity whose mapping from F to
z* can generally be decomposed in many different ways 81(¢1(__)) = 920¢2(__) wherein
¢é is in general vector-valued. If we stipulate f?'=aef/¢é(§)1for.SDEe;favored
choice of ¢2 (or more realistically, if our burgeoning theory of the phenomenon
at issue gives us a concept of variables f* that we later discover can best be viewed
as analytic abstractions from a more complex array'f of molecular variables), we
can replace z* = el(¢1(§» = ez(yﬁ(g» by the molar/molar (quasi)-structural equation
g* . ez(f*) under which F* (quasi)-causally determines #*. Continuing in this
fashion, felicitous selection of f*’ f*, and other compositing abstractions including
in all likelihood z to start with, may construct a partial order of molar variables
linked by law-like dependencies that are simplified images of genuinely causal but
vastly more complicated molecular regularities whose explicit details generally
exceed our powers to comprehend or even discover. (It is important to appreciate

in this respect that our development of concepts at various levels of the molar/
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molecular hierarchy is generally top-down rather than bottom-up.) How to tell which
systems-of molar variables best summarize reality's hard-core causal structure, and
to what degree the alternatives may be arbitrary, like choices among scaling units,
are matters on which no reasoned theory has yet appeared in the multivariate (or

for that matter philosophical) literature, even though multivariate practice has
already engaged the issue in disputes over optimalities of axis placement in spaces
of variables. Fortunately, MODA is not committed to any specific position on such
matters. But it does openly acknowledge that applied data analysis is, wittingly

or unwittingly, profoundly concerned with them.

Linear causality.

For mathematical convenience--so powerful a convenience that we seldom have
much practical alternative--we largely restrict quantitative models of causality in
applied data analysis to cases in which a variable y is determined in P jointly by

A

variables % = ‘fl”"’fn’ and % = <?1""’?r> in accord with some linear structural

equation
= +3 + = +wX +
(1) y Wy, tZ WX, ; 42y ¥ wX vZ ( assumed ) ,

where W= (!1""’!n> and v = <11,...,zr> are row vectors of conjoint causal weights.
(Later, } will comprise observed variables while variables Z are unobserved; but

for now, the partition between } and ? in (1) is arbitrary.) Whenever X's dependence
on <§,?> in P is characterized by an equation of form (1), we shall say that'y is
IE-determined (i.e., Linearly and Errorlessly) by <§,P> in P.

Though admittedly an idealization, equation (1) is not nearly so unrealistic
as the several ways in which it is prima facie restrictive may make it appear. Since
we shall be making much of IE-determination later, it is thus wise to begin with‘
some clarification of its methodological status, especially its cogency as a model
of real-world causality.

In the first place, without any loss of linearity's formal power, addition

and multiplication in {1) can be interpreted as any mathematical operations having
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the combinatorial properties that constitute an abstract-algebraic ring, so long as
this construal of the operators is fixed through the full array of form-(1) equations
under consideration. This is equivalent to saying that even when plus and times in
(1) are defined by ordinary arithmetic, we are free to choose whatever numeriecal
scales for our variables most closely linearize their structural relations. How
to identify linearity-wise optimal scales for our data variables in practice is a
very nice question indeed (For hidden sources, this scaling problem does not arise.)
But the theory of multivariate relations presupposes the existence of many things
to which we have only imperfect operational access, and ideal scales can just as
well be included among them.

; \ Secondly, if y's causal determination in P is only stochastically‘
lawful; with just the expectation of a conditional vrobability distribu;i;n for Y
strictly determined by antecedent causes, we can formally treat ?'s divergence from
that expectation as an additional "source" of y and thereby regain the mathematics

A

of strict determination. That is, if needed we let one of variables z, in (1) be

J

whatever in y is irreducibly indeterministic. To be sure, even if y's less-than-
A A

perfect determination by the totality § of its real sources can adequately be

exvressed by a function g under which §.causa11y imposes a tendency on g'to take
value 5(?), it is still moot whether y&tendency ﬁ(§) is best construed as Y's
statistical expectation. But it is extraordinarily difficult to conceive how S

might cause ? only semi-deterministically except by envisioning a residual ey such
that y = d*(?,fy) for some function g* that is tantamount to a determinstic causal
function under which residual £y behaves as though it is a source of y that has no
causes of its own. Lacking any other way to conceive of partial determinacy, it

g is not merely appropriate but operationally necessary to treat causality as locally

deterministic: Not all variables need have causes, but those having any at all are

determined completely by their Soutff:}//ﬂﬂ”—wﬁ"
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Thirdly,. if the number of variables ;fk} needed to supplement } into a
strictly complete source of X is infinite--as in fact may well be the case-~we
can reasonably presume that there is a sufficiently large finite tuple % of these
supplementary sources such that the joint determination of y by } and fzk§ can be
expressed by a structural equation y= [(?,?,%*) in which z* is some composite of
the varigbles in {ikl other than in % and which either contributes negligibly to
¢(§’?’f*) or for p;actical purposes behaves like a stochastic residual. This assump-
~$i§§;;ests\upon'qﬁeertain.amognt_af?h;ind faith; . but the mathematics of iaws
containing an infinite number of indeﬁendent variables 1s not only disturbingly
enigmatic but to my knowledge has not been seriously explored apart from my own
tortuous effort in Rozeboom (1978).

Fourth, - since we do not require all of coefficients WyseeosWy in (1) to
be non-zero, we can allow some or all of variables % (and similarly for ?) to be
only putative sources of ;, conjoint with the»bthers, that are not truly so. For
if any of the }i‘do not in fact share jointvrésponsibility for y with % and the
 rest of %, that is expressed by zero values of the correspohd{ng W;. It 1s precisely
to allow zero structural weights that we have provided (p. 105 above) for a sense
of joint causation under which a structural equation's independent variables need
not be strictly joint sources of its dependent variable. We do not want to admit
irrelevant variables as causal antecedents so promiscuously that causal determination
loses its partial-order character. But it is harmlessly convenient to allow that =
if y = K(g) is a structural equation for the complete joint determination of‘? by
variables } in population P, and z is any variable that does not mediate any of

%'s causal influence upon y, then apart from possible exclusions not yet motivated,
3 : . f RA
y = g(X) +0-2
s also a structural equation for joint determination of X by (},?> in P. This
definition is recursive on the base of structural equations that express strict
causal regularities (i.e., that contain no independent variables that do not work

jointly with the rest), and implies that not all independent variables in a
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“.__ structural equation necessarily count as sourcés of its dependent variable. i;—w4:f

?if%h§~ and of great importance, the formal linearity of (1) does not
preclude any Xy in } (or ?j in ?) actually affecting y ?g:gore curvilinear fashion.
For we allow that some of the other variables in X and Z may be fixed nonlinear
functions of X3 and perhaps other variables, or that X5 and certain other variables in
‘%,%}iQay be different nonlinear abstractions from one or more "real" variables not

separately included in <X,Z>, For example, if y is a quadratic function of Just
ATA A

two variables x) and X2» the dependency has form

= + +
F R My Xy tux, 4 Y-lﬁ !2’4‘3 Linx) ,

which can be subsumed under (1) by taking, say, § = <x),%Xpv and Z = {2),25,257 =
<§2,§§,¥1§2>. Again, if X is determined nonlinearly by a categorical variable f*
(or by the cartesian product of a tuple of categorical variables) which has just

8 alternative values ("levels"), we can define a tuple X ='<f;,...,¥;_1> of binary
variables such that }; (k =1,...,8-1) takes value 1 or O according to whether the
subject is or is not at the kth level on f*’ and have that the linear regression of
y upon %* is identiecal with X's unrestricted curvilinear regression on x¥, (This
technique, with a special rotation of %* to align with "main effects" and various
orders of "interaction," is how ANOVA/ANCOVA subsumes X'S dependency on multiple
categorical variables under the general linear model.) So long as we do not require
all variables in <§,g> to be logically independent of one another, the L in IE-deter-
mination is not an essential loss of generality. Nonlinearities do create applied

problems, especially when the data are insufficiently abundant to permit recovery

of a great many varameters; and parameterizing curvilinear functions linearly does

A
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not avoid certain obscurities of interpretation to be reluctantly noted as we proceed.

But that is no objection to the general linear model's cogency for theoretical analysis.
Finally, it is of the utmost importance to be clear that regardless of any

form idealizations imposed on causal regularities, the law of any variable's causal

determination in P is profoundly nonunique. It is flagrantly not the case that

output X has only one complete joint source in P, not even if we exclude jelint -

sources of X that are not strictly so. For if 4},?7 determines ¥s the tuple of

variables derived from <§,g) by replacing any variable therein by a complete joint

source of its own is also a complete joint source of y. For example, if
v A

T mhTRk, A T hRTRNhR, 2T ont L3
are all‘éausal laws in P where 42<hmm not mediate between <xl,x2> and z1 nor z,
< 1
between <x1,x3>and zz, then variables <x1,x2,¥3,zl,;2> are all causal sources of g

in (as are also in- turn all causal sources - of theAxi), and each-of

(28) J 5 M Tzt Oxt Oxpt 0ex
(2p) y'= ¥z + (upvg)xy + 0rXy + (3214)3%
(2¢). - y = w2z2 + (wlvl)xl + (wlvz)x2 0°X3
(2d) y = (w1v1+w2v3)x1 + (wl )%, + (u,x )35

is a form=(1) structural equation for y's production from its sources in P. (For
simplicity, these hypothesized determinations omit residual sources that in practice
we not only expect but, to wafdfoff_;dgmbhé‘ of multicollinearity, actively desire

80 long as they are orthogonal to the sourééé explicitly acknowledged.) It would

be a monumental blunder to think that (%g)f(Zg)  are less genuine, less real, or

less truly causal than (2a) because they d§ not give y's dependence upon its immediate
causes, So far as we have any reason to believe, the effect of any source variable

X; on any output variable y is always mediated by some tuple f of intervening source
variables such that fi's (partial) causation of y is by virtue of x,'s affecting F

and E's affecting X. Consequently, when variables % determine y partially or even

A

completely in P, it is not meaningful to ask what is the law by which } brings about
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y in P. Rather, this question has a unique answer only relative to some choice of
strictly

supplementary variables Z such that X and Z together include a. 4 complete source of y
in P (with any ultimate stochastic uncertainty in y as an additional "source" in ?).
Relative to %, there will be some structural equation y = d(},%) characterizing X'S
dependence on <§,?7 in P; and if this equation is linear,'we can further represent
the ybinfluence of each Xy in %, conjoint with and relative to the remainder of
<},?>, by a single coefficient. (If some variables in l%,?> are nonlinear abstractions
from others, however, we must be careful how we interpret these coefficients. In
particular, the coefficient of X; cannot then be construed to tell how changes in
Xy affect z when the other variables in <X,7> are held constant.) But if <},§1> and
<§,?2> each LE-determine ? in P, the coefficients of X for y are not the same relative
to ?1 as they are relative to ?2 except under special circumstances noted later.

The nature of this relativity is entirely straightforward: Roughly speaking,
‘the coefficients in (1) express what each x5 and z'_j in <X,Z) contributes to y
independently of the other variables in this particular tuple of y-sources. So to
the extent that x- s causal import for Y is mediated by zj, inclusion of 23 in Z
withdraws some of the weight for ?'that Xy would receive if Z were not chosen to
intercept the fi—’z connection, and assigns this inatead to 23 (or perhaps to other
variables in % that in turn mediate between Z and‘?). Thus in example (2),.

variables <Xy,%5,X3> are a complete joint source of y whose structural equation (24)
4

A
for determining y could be identified by computing the regression of‘y upon just

A
<f1’52’¥3>' But if z is regressed on all of <f1’f2’f3’?1’?2> (after adding vanishingly
small residuals to the determinations-éf-z, and 25 by <x sX5,X3> to break the multi-

11l A 4174277

collinearities), we instead obtain equation (2g)”~in which only 2 and 2z, have
nonzero coefficients because the effects of <¥1,§2,{3> on y are wholly mediated by
<fl’?2" And when X is regressed just on <¥1,§2,§3,?1> or just on <¥1’f2’¥3’?2>’
thereby recovering (2b) or (2¢) respectively, X) retains nonzero coefficient

(albeit a different one in the two cases) because X1 affects y through multiple

lines of connection not all of which are intercevted by mediators conjoined with X,
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in the y-sources to which these coefficients are relative.
4
Terminological note: When 4X and ? are jointly a complete source of y, we
- 7
shall speak of 2('3 coefficients in structural equation (1) as relative either to

Z or to «X,Z>, whichever seems more natural in context.
4 a4

"Regularities" and their transducers.

Present usage of schema "}r = ﬁ(%()" or more explicitly “4y = ;!(2,() in P" to
denote regularities, causai or otherwise, in population P requires a special under-
standing if it is to do its job properly. When g and ¥ are both functions from
thé apace of all logically possible values on variables 3( into values of variable 4y,-
but are not set-theoretically the same function from this domain into this range--
i.e. when g(X) 7‘%(&) for at least one %—value X--ve want to be able to say that
hypothesized regularities y = g(X) and y = ¥(X) in P are different regularities
-even when g(X) = ¢¥(X) for every value X of X that actually occurs in P. (Need for
this distinction arises when X is not fully dispersed in P.) However, what ")‘(4)()
(in P)" 1literally refers to is the composition into g of the restriection Xp of
variables 3\{ to population P, i.e. %{P is the function mapping members of P into their
)A(-values. So if "regularity y= ﬁ()}) (in P)" were understood to designate merely
the hypothesized fact that the restriction Ip of y to P is identical with the
composition of %P into ¢, i.e. that ?P = "%{P’ it would have the same refgrent as
"regularity y= s/(%() (in B)" whenever g and ¢ are identical just over the values
of 2\( that actually occur in P.

Accordingly, when we write “5? = g!(}A()" to refer to a hypothesized regularity
in an implicitly specified population P, we shall understand this to refer to a
2-tuple whose first component is the (hypothesized) extensional generality that
function #(X) is identical with function y over P, i.e. the fact that X, = g(X,) |
for all subjects s in P, and whose second component is what we will call the regu~ .

larity's transducer, namely, the full function g named in "34{ = ﬁ(%()". Then if g # ¢,

‘terms My = ;!(z()" and "y = ¢(2‘()“ designate different regularities in P even when
: | A A ’
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‘}P,?‘?P = ¢¥P because their transducers are different; and we can hence claim of
one that it is causal without entailing that the other is causal as well. Specifi-
cally, when we conjecture that y= 5(}) is a causal regularity in P, we envision
that there is some attribute (or ensemble of attributes) o< common to members of P,
and a principle of natural necessitation, such that for every possible value X of },
Joint possession of properties o and X necessitates an accompanying value (X) of

X as well, regardless of whether X is actually instantiated in P or elsewhere. In
this way, attributing causality to a regularity makes essential reference to the
regularity's complete transducer, and explains the force of counterfactual statements
such as "Although no member of P in fact has value X* of }, if any subject g in P

were to have X-value X¥, g's value of y would be g(X*)."
A




