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COMPLEXITIES OF MEDIATION STRDCTDREj or, A mm THING 

ifAPPRIIED ON-THE WAY TO MODA'S REVISION 

W M , W. Rozeboom 

The attached document began l i f e as the second draft of the monograph on 
applied data analysis previewed i n the f i r s t few pages here. But i t has evolved 
into an in-depth study of certain l i m i t e d but central aspects of causal structure 
as t h i s has t r a d i t i o n a l l y bren viewed i n the multivariate l i t e r a t u r e . Because 
revision of Chapter 1 was largely completed before Chapter 2 took i t s present 
explosive turn, some p r a c t i c a l preliminaries therein are no longer relevant just now. 

The funny thing that happened was ray j o l t i n g discoveiy that a fundamental 
p r i n c i p l e of mediated causality which had long seemed obvious and Indisputable to 
me i s i n fact not generally true. (See Fallacious Thesis 1, p. 2.22.) I know of 
no published work that e x p l i c i t l y prMiulgates t h i s f a l l a c y , but that i s only because 

scarcely any explications of our behavioral-science i n t u i t i o n s about cau s a l i t y have 

ever appeared. Nevertheless, I submit that i t i s i m p l i c i t throughout modem mul t i -

varlate analysis, especially i n recursive causal modelling, which i s where questions 

of causal composability are most s a l i e n t . Although the additional m o ^ l premises 

needed to j u s t i f y our standard in'buitions i n t h i s respect usually seem plausible 

enough i n p a r t i c u l a r applications, the deeper point i s that s i g n i f i c a n t additional 

premises are i n fact needed. Surely i t i s thus reasonable to contend that the ciirrent 
burgeoning of causal modelling i n applied data a n a l y s i s — a n d why else bother to parse 

data i f not to seek information about causal p r i n c i p l e s that underlie them?—creates 
an Increasingly urgent need for a theory of mediation structure that gives us some 
notion of what we are t a l k i n g about when we propose causal models and e«timate para­
meters i n conjectured s t r u c t u r a l equations. A foundation for that l i m i t e d theory 
( i . e . , for just the logic of causal mediation/composition, not f o r other facets of 
causal structure also much i n need of exposition) i s herewith proposed, 

Ohhappily, the account that emerges here i s densely technical. Q u a l i t a t i v e l y , 
i t can be viewed as no more than a r a t i o n a l i z e d ex;|»enslon of orthodox causal-path 
modelling. But to b u i l d that r a t i o n a l i z a t i o n , and to develop from i t an analysis of 
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the conditions under which the composition of one causal r e g u l a r i t y i n t o another i s 

i t s e l f a (mediated) causal r e g u l a r i t y , has required creation of a new language, or 

rather, what i s even more demanding, a new mathematleal system. Chapter 2 draws out 

the exact l o g i c a l force of certain basic causal-structure postulates that have ample 

i n t u i t i v e j u s t i f i c a t i o n , but which encorporate axiomatic concepts that are not usually 

understood i n the precisely detailed senses given to them here. And additional terms 

are introduced by e x p l i c i t d e f i n i t i o n s that make good sense l o c a l l y but globally 

become burdensome to memory. Jforeover, apart from the digraph representation of 

direct-source relations and some elementary algebraic notions, the reader w i l l not 

l i k e l y have experienced mathematical constructions s u f f i c i e n t l y s i m i l a r to the present 

ones to effect much positive transfer of comprehension—one has to work up here 

pretty much from scratch. 

In short, even were t h i s optimally written, the nature of the material would 

make i t tough slogging—not because i t i s inherently d i f f i c u l t , but because i t demands 

patient attention to the d e t a i l s of novel concepts. Moreover, an extra b a r r i e r to 

comprehension of t h i s i n i t i a l draft i s just that i t i s an i n i t i a l d r a ft. IMdoubtedly 

there are many needless obscurities i n the present exposition (especially i n i t s 

proofs, which I have t r i e d to keep short but may well have over-compressed) that with 

e f f o r t can be cleaned out. Some improvements I can manage on my own; but to do the 

job r i g h t I need constructive feedback about what i n t h i s i s most opaque/eonfusing/wrong. 

On the other hand, regardless of improvements, perhaps the material here i s 

just too recondite, given the present state-of-the-art i n multivariate thinking, to 

be publishable i n anything l i k e i t s present form. Even i f you f i n d the d e t a i l s of 

this incomprehensible, are you able to acquire from overview skimming some feel i n g 

for the problems i t addresses, the general d i r e c t i o n of i t s develojanent, and the 

shape of i t s achievements? I f so, have you any advice for me on the f e a s i b i l i t y of 

seeking to publish fragments of t h i s material? Possibly i t i s best written off as 

hopeless. 
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CHAPTER 1. CLASSICAL MODELS OF CAUSALITY. 

Jjiitrbduotion. ^ ' 

S c i e n t i f i c data can arise i n many diverse formal patterns, the generic study 

of which i s a chapter i n the l o g i c of data analysis s t i l l to be written. Yet one 

pa r t i c u l a r form has so dominated research practice that data structured t h i s way 

may be thought of as " c l a s s i c a l . " S n e c i f i c a l l y , l e t us say that a c l a s s i c a l data 

array i s an n x N ntmierical score matrix whose rows correspond to an n-tuple 

Z = <z ,...,z > of numerically scaled data variables, whose columns correspond to 

the N members of a sequentially indexed sample population P of subjects ( i . e . , P 

i s an N-tuple of observational/experimental u n i t s ) , and whose i.ith element i s 

the score on variable z observed for the 1th subject i n P. Insomuch as i n i t i a l 

data records can generally be parsed i n more than one way, c l a s s i c a l data arrays 

r e s u l t in part from our decision to express our raw observations i n t h i s p a r t i c u l a r 

format. Obviously ther*^ are a number of formally d i f f e r e n t but transformationally 

equivalent structures that could replace t h i s definiens (notably, transposing Z's 

rows and columns, as preferred by some data analysts), a l l of which may be viewed 

as c l a s s i c a l i n an abstract sense. But for present purposes, numerical Variables-

by-Subjects score matrices are the most convenient embodiment of the abstract 

c l a s s i c a l data form. 

Since any variable can be scaled numerically, no matter how q u a l i t a t i v e the 

attributes represented by i t s alternative scale values, c l a s s i c a l data arrays can -

include variables of any substantive character. In p a r t i c u l a r , these can be metrical 

(quantitative), categorical ( q u a l i t a t i v e ) , or a mix of both. And incomplete 

Variables-by-Subjects data arrays can often be treated as c l a s s i c a l by f i l l i n g the 
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empty c e l l s with a r t i f i c i a l scores construed as estimates of missing data. (See 

Rozeboom, [ G L D A ] , for d e t a i l s on t h i s point.) Even so, not a l l data structures that 

arise i n modern research are c l a s s i c a l i n the sense just defined. Repeated-measurements 

data, wherein individuals are observed on the same measures across two or more 

occasions, have a structure more complex than the c l a s s i c a l form; and so do data on 

polyadic variables whose values represent relations among two or more subjects. (In 

contrast, c l a s s i c a l data t y p i c a l l y involve just monadic variables whose values 

represent subjects' nonrelational properties.) Although repeated-measurements and 

polyadic data can be transformed i n t o c l a s s i c a l a r r a y s — q u i t e appropriately so for 

some aspects of t h e i r a n a l y s i s — t h e theory of t h e i r interpretation goes beyond t h e i r 

reduction to c l a s s i c a l form. (Rozeboom, [GLDA], discusses multivariate repeated 

measurements i n operational d e t a i l j while the nature of polyadic data analysis i s 

b r i e f l y sketched i n Rozeboom, 1966 pp. 198-214., 1972 pp. 111-114.) Even so, not only 

do c l a s s i c a l data arrays s t i l l p r e v a i l i n the behavioral sciences, the log i c of t h e i r 

analysis generally underlies that of more complex data structures. So while present 

concerns e x p l i c i t l y address only the c l a s s i c a l case, that does not strongly l i m i t the 

a p p l i c a b i l i t y of whatever new operational techniques or deepened t h e o r e t i c a l insights 

may emerge here. 

What to' do; with classifefllly structiged data. 

Many algorithms have been devised to extract information from c l a s s i c a l data 

arrays, but the ones most deserving of int e r p r e t i v e respect are those that under 

favorable circumstances i d e n t i f y parameters of the data's causal production. Extant 

varieties of causal analysis divide between two h i s t o r i c a l l y d i s j o i n t approaches: 

(l) In t r a d i t i o n a l dependency analysis, notably Analysis of Variance/CovariariCe (A K O V A / 

ANCOVA) and various regression models, one or more of the study's data variables 

are considered to be causally affected by some or a l l of the others; and under 

presumption that these dependencies are of a generic algebraic form $, the analysis 

extracts from the data matrix an estimate of the s p e c i f i c J-form function by which 
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each dependent data variable i s determined i n the sample population by i t s putative 

observed sources. In t h i s t r a d i t i o n ' s most recent extension, M i l t l v a r i a t e Analysis 

of Variance (MANOVA), a m u l t i p l i c i t y of dependent data variables i s treated as a 

space that the analyst prefers to span by orthogonal axes thereof that are successively, 

most predictable from the independent data variables; but otherwise, MANOVA's aim i s 

no different from that of ANOVA/ANCOVA. (2) In contrast, the t r a d i t i o n of i n t e r -

dependenov analysis (a useful contrastive l a b e l even though tec h n i c a l l y a misnomer) 

treats a l l the data i n a c l a s s i c a l array as symptoms of shared underlying causes, 

and the analysis seeks to learn whatever i t can about these unobserved source factors 

from the data variables' j o i n t sample d i s t r i b u t i o n . The most broadly powerful 

version of t h i s approach- i s l i n e a r i n f e r e n t i a l factor analysis; but other, more 

li m i t e d , models for hidden-source recovery have also appeared, notably Latent Structure 

Analysis (cf. Lazarsfeld & Henry, 1968) for dealing with multivariate categorical 

d i s t r i b u t i o n s . 

As these two styles of causal analysis have advanced to date, each has 

needlessly retained an important early deficiency i n what happens to be the other's 

special strength. On the side of dependency analysis, which i s the core of psychology's 

experimental t r a d i t i o n ( cf. Cronbach, 1959), i t i s s t i l l uncomiron to study more than 

one or two dependent variables at a time; yet i f one's research design does include 

a decent m u l t i p l i c i t y of dependent variables, i t i s xmconscionably wasteful of the 

data's information content to ignore the implications of whatever output covariation 

therein i s unexplained by the observed independent variables. And across the a i s l e , 

i t i s equally parochial for c o r r e l a t i o n a l psychology (again c f . Cronbach, 1959) not 

to explore whether the multidimensional symptom configurations at issue i n inter™ 

dependency studies might be due i n part to common sources that can be externally 

manipulated or at least observed d i r e c t l y . 

In f a c t , i t turns out that apart from some softening of the s t a t i s t i c a l 

tests that e n t h r a l l ANOVA partisans, the standard l o g i c of i n f e r e n t i a l factor analysis 

can be combined almost e f f o r t l e s s l y with dependency analysis's generic l i n e a r model 

for estimating the force of observed causes. Scarcely any new techniques are required; 
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one needs only to perceive how the old methodologies mesh. The theory of t h i s union 
i s herewith developed under the acronym MODA, for Multiple-Output Dependency Analysis. 

MODA operates upon c l a s s i c a l data arrays i n which the observed variables 

are partitioned into three d i s j o i n t groups: ( l ) output (dependent) variables, 

(2) input (independent) variables presumed to be causally antecedent to these 

outputs, and (3) indicators ("covariates") thought to be diagnostic of additional 

source factors for which we would l i k e to control when i n f e r r i n g input/output 

dependencies governing these data. Any number of output variables greater than 

zero i s acceptable, the more the better, so long as these are metrical or, with 

caution, binaries. (Categorical outputs are generally unsuitable for MODA, but 

binary outputs can be tolerated so long as they are a l l l o g i c a l l y independent of 

one another.) In contrast, the input and indicator groups can be empty, and i t i s 

best that neither be overabundant. MODA's only constraints on the character of 

inputs and indicators are that ( i ) any categorical dimensions therein must be recast 

as a tuple of binaries such as correspond to "dummy variable" codings of ANOVA 

main-effect and interaction components, and ( i i ) the combined input/indicator sample 

covariance matrix must not have any near-zero roots. When there i s only one output 

variable, MODA reduces to orthodox regression analysis or, i f the inputs include 

binary codings of treatment categories, to AN0VA/AN30VA. And at the other boundary 

of i t s range, when inputs and indicators are both n u l l , MODA becomes ordinary factor 

analysis. 

Computationally, MODA proposes l i t t l e that i s at a l l unfamiliar—which i s 

why scarcely anything w i l l be said here about computational d e t a i l . Rather, concern 

i s for the rationale of analyzing c l a s s i c a l data arrays one way rather than another 

when options e x i s t , with special attention to background issues seldom a i r e d i n the 

multivariate l i t e r a t u r e . Present treatment of these matters i s often brusk, frag-
issues 

mentary, and undoubtedly controversial; but at least the y(are raised. I f you don't 

l i k e what I say, or are distressed by omissions, then by a l l means l e t ' s t a l k further. 

Promotion of such discussion i s a major objective of t h i s essay. 
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Netation and .s-peglal terfBineloey. 

A nvmierically scaled s c i e n t i f i c variable — henceforth simply "variable" — 

over a population P i s a function mapping each member of P i n t o a number that 

represents some property of that subject. (For d e t a i l s , see Rozeboom, 1966b, 

pp. 175-181.) F i n i t e ordered sets, i . e . "tuples," of variables over a common 

population P are denoted here by c a p i t a l s c r i p t l e t t e r s X, Y, Z, E, F, G, and H, 

the subscript-indexed lowercase counterparts of which stand for single variables 

i n those tuples. Thus, X i s a tuple of variables <x-,,... ,x >, Y a tuple <yT,...,y >, 

etc. Defining X (etc.) to be the ordered set of variables <x-i,...,x_> leaves open 

how that order i s to be expressed v e c t o r i a l l y when X enters matrix equations. 

Here, tuples of variables are always taken a l g e b r a i c a l l y to be column vectors. 

Correspondingly, we express scores on variables X (etc.) for members of P by a 

Variables-by-Subjects matrix X whose i j t h element i s the score of subject j_ on the 

i t h variable i n tuple X, In a l l equations below, tuples of variables can be replaced 

by the corresponding score matrices i n P so long as the replacement i s uniform and 

additive constants are appropriately expanded into matrices. Whenever possible, 

we impose the constraint that any tuple X of variables contains no repeated elements, 

i. e . , that x^ x^ i f i 7̂  2« Accordingly, when X = <XT,...,X_> and Y = ^y, ,...,y„>, 

we s h a l l understand <X,Y> to be the subtuple of <Xi,... ,Xjn,y,,... ,y_> comprising 

just the d i s t i n c t variables therein i n the order of t h e i r f i r s t occurrence. Notation 
X - <x^,...,x^> for the variables i n tuple X implies that there, are_-m d i s t i n c t variables 
i l l X and hence that HOT a l l £,,1 = l,...,m, ^ I f 1, ^ X^^mte "subtuple" i s 
more general than "proper subtuple, i . e . , one subtuple of X i s X i t s e l f . 

With one exception, matrices of covariances between tuples of variables w i l l 

be written as sans s e r i f capital_C with a double subscript i n d i c a t i n g which variables 

correspond to rows and which to columns. Thus, Cyx i s the matrix whose i j t h element 

i s the covariance % ^ x ^ between the i t h variable i n Y and the j,th variable i n X, 

For covariance matrices stipulated to be diagonal, £ w i l l be replaced by D. Sans 

s e r i f c a p i t a l D, subscripted as appropriate, w i l l always denote a matrix that i s 
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dlagonal. More generally, matrtces of r e a l numbers (the only matrices that occur 

here) w i l l be expressed by sans s e r i f c a p i t a l l e t t e r s , r e a l vectors usually by 

lowercase sans s e r i f l e t t e r s , and i n d i v i d u a l r e a l numbers usually by lowercase 

i t a l i c l e t t e r s . But also, for any matrix A, [A]^s i s the i i t h element of A, while 

[A.]^^ and [A]^j are respectively the i t h row and the 1th column of A. S i m i l a r l y , 

[a], i s the i t h element of vector a. And we w i l l sometimes write Z (etc.) for an 

arbitrary tuple of scores on variables Z. I f matrices Â  ^iid JB are respectively i x r 

and rnxg, [A B] i s the mx (r +s) partitioned matrix comprising A as i t s f i r s t r 
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columns and B as i t s l a s t £ columns. Extension of t h i s notation to other matrix 

partitionings w i l l bp obvious. 

Unlike prevailing custom i n the modern multivariate l i t e r a t u r e , basic vectors 

( i . e . , ones not marked transpose) are here allowed to be either row vectors or column 

vectors as specified by context, with row vectors the more common. This departure 

from notational orthodoxy i s dictated by two desiderata: ( l ) to write matrix 

equations i n standard algebraic format wherein c o e f f i c i e n t s premultiply the variables 

to which they apply, and (2) not to p r o l i f e r a t e transposition operations needlessly 

nor to f i g h t against the flow of notation that follows most naturally from s a t i s ­

faction of ( l ) . To i l l u s t r a t e , suppose that each variable i n tuple Y i s a l i n e a r 
A 

function of variables X. To express t h i s r e l a t i o n i n compliance with desiderattim 

( l ) we write 

where X and Y are column vectors of variables <x-j^,... ,Xjjj> and ^y-j^,... ,yj,>, respectively, 

â  i s an order-m 'column vector of additive constants, and By^ i s an mx a c o e f f i c i e n t 

matrix to which the double subscript i s appended to point out that the rows and 

columns of Bw correspond to the variables i n Y and i n X, respectively. I t would 

be perverse to write t h i s equation as Y = a + ̂ YA' s i m i l a r l y perverse 

to write y = a + b' X for i t s special case where Y comprises just one variable y. 

Instead, natviral notation for the l a t t e r i s 

y = a +byx? » 

even though that requires the basic c o e f f i c i e n t vector to be a row. Insistence that 

a l l basic vectors appear i n matrix equations as columns inctxrs s u f f i c i e n t loss of 

other algebraic conveniences and f a m i l i a r i t i e s that i t seems worthwhile to test 

whether relaxation of l o c a l custom i n t h i s regard may not improve upon the e f f i c i e n c y 

or at least comfort of the currently p r e v a i l i n g format. 

This essay presumes that i t s readers are modestly f a m i l i a r with covariance, 

multiple regression, i n f e r e n t i a l factor analysis, and, i f occasional asides are to 
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be understood, ANOVA/AM)OVA. Even so, i t i s prudent to review the elementary-

properties of covariances that w i l l be repeatedly exploited l a t e r . Let J^j be defined 

as the Nx N row-centering matrix 

•NN del -̂ N «>NiN 

i n which Ijj i s the order-N Ifeity row vector, i . e . 1^ - <1,1,... ,1,1>,-and Ijj~i« 

the Nx N Identity matrix. Order-subscript N w i l l henceforth be omitted from I j j , l.-^, 

and Jjj whenever the p a r t i c u l a r N involved i s either i r r e l e v a n t or implied by context. 

Observe that J i s symmetric, idempotent, and annihilates 1, i . e . , 

J ' =' J , = J , I J = 0 , 

and that for the N-tuple of scores i n population P on any variable z, since the 

mean of z i n P i s 

ffiz =def i T ^ z l ' , 

postmultiplying z by J ( i , e . z J = z - m_l) deviates each score i n z from z's mean i n 

P. Hence the covariance between any variables y and x i n P i s 

Svx =def F^(yJ)(3cJ)' = r ^ y J J ' x ' = r^yJx:' , 

while more generally, the matrix of covariances i n P between the variables i n any 

two tuples Y and X i s 
A -1 

Gyv- = N-1(YJ)(XJ)' = N-^YJX' . 

I t follows immediately that i f variables Y and X are l i n e a r functions i n P of factor 

tuples F and G, respectively, i . e . , i f 

} = « Y + | Y F ? » ? = «X +BxG?» 

then since Y J = (ayl + B Y F F ) J = B Y F ( F J ) and s i m i l a r l y for X, we have 

^'YY = ^YF?FF5YF» ^XX = .^XGCGGJXG* ^YX = ^YP^^FGBXG • 

And obviously, for any two tuples Y and X, = C^y. 



The lofelfe\of ,aaffie?sabjlect Causality, 'l-'y''''^^-^ —^r 

In c l a s s i c a l dependency analysis, one observes for each member of sample 

population P a score on some output (causally dependent) variable y together with 

scores on one or more independent variables X = <X2^,... ,Xĵ > that are thought to be 

sources (causal determinants) of y. The data analyst's task i s then to diagnose 

from t h i s score array ( l ) the lawful r e g u l a r i t y (causal function) by which X con-

tributes to y's determination i n the population P* sampled by P; (2) the degree of 

p r e d i c t a b i l i t y with which y i s determined i n P* just by X; and (3) how r e l i a b l e are 
A " A 

the estimates of ( l ) and (2) we obtain from these data. There i s much to be said 

t h e o r e t i c a l l y about each of these; but many aspects of that theory w i l l be slighted 

here, (3) i n p a r t i c u l a r . We are concerned mainly with the p r a c t i c a l i t i e s of ( l ) , 

and for the most part s h a l l not f i n d i t useful to distinguish the population P for 

which we have r e a l or hypothetical data from some more in c l u s i v e population P* of 

which P i s just a sample. Any method of applied data analysis needs f i r s t of a l l 

to think through^what i t would do i f i t had omniscient access to a l l p a r t i c u l a r 

events from which i t aspires to i n f e r governing r e g u l a r i t i e s before i t can meaning­

f u l l y worry how best to proceed from just a fragment of such i d e a l l y complete data. 

Deriving suitable humility about the g e n e r a l i z a b i l i t y of one's r e s u l t s from a 

proper regard for t h e i r sampling uncertainty i s indeed an important facet of applied 

data analysis, and eventually (p. f f . below) we s h a l l face up to MODA's responsi­

b i l i t i e s i n that regard. But our main s t a t i s t i c a l t r a d i t i o n of null-hypothesis 

testing i s outrageously i l l - s u i ' t e d for that purpose; and even the most cogent 

appraisals based on l i k e l i h o o d functions are d i s t r e s s i n g l y conditional on unargued 

presuppositions j u s t i f i e d more by mathematical convenience than by real-world 

p l a u s i b i l i t y (see p. , below). As i t i s , we s h a l l see that parameters reclaimed 

by MODA are corrupted by "sampling error" only through within-sample departures 

from zero of certain covariances that we have no r e a l assurance would vanish even 

were our samnle population a r b i t r a r i l y large. 
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Causal hypotheses. 

When we envision that variable y has causal sovirces i n population P, just 
A 

what are we conjecturing? This i s so deeply complex a matter that even to itemize 

the more s a l i e n t issues i s impractical here, much less to discuss them adequately. 

On t h i s occasion I s t i a l l attempt to work within the i d e a l i z e d framework that i s 

already f a m i l i a r i n the multivariate l i t e r a t u r e , with only grudging hints at the 

mysteries beyond. See Rozeboom ( [GLDA] ) for a more a r t i c u l a t e though s t i l l 

s u p e r f i c i a l sketch of causal r e g u l a r i t y and Rozeboom ( i n preparation) for my 

best e f f o r t to explore t h i s comprehensively. 

As an i d e a l i z e d first-approximation, l e t us say that a variable y i s "caused, 

j o i n t l y and d e t e r m i n i s t i c a l l y , by variables X = <x^,...,Xju> i n any r e a l population 

P of subjects just i n case ( l ) there i s a function ^ such that y = /^(X) i n P, 

i»e., = /(Xg) for the scores 2^ and X^ on y and X, respectively, for each 

subject s i n P, and (2) there e x i s t p r i n c i p l e s of natural necessitation (de re 

necessity, not ^ dicto) and an array o< of attributes ("boundary conditions") 

common to the members of P such that for any subject s, s's having attributes oC 

and values X = ^x-j^,... ,3̂ > of variables X j o i n t l y necessitate that s have value 

/(X) of variable y. We s h a l l c a l l any such generality y = j^(X), characterizing 
j o i n t ^ ^ 

the^causal force of variables X for variable y under some boundary conditions o<. 
a "causal r e g u l a r i t y " i n any population P of subjects s a t i s f y i n g o(,^ Causal 

regularity y = /{(X) i n P i s "nomically i r r e d u c i b l e " just i n case there i s no 

function ji/' and proper subtuple X' of X such that y = j^'(X') i s also a causal 
A A A i\ 

regularity i n P, and i s "functionally i r r e d u c i b l e " just i n case each variable x. 

i n X actually matters for ^(X), i . e . , just i n case for each x. i n X there e x i s t 
A A A 1 A 

tuples X and X" of l o g i c a l l y possible j o i n t values of X such that X" d i f f e r s 
A , 

from X just i n the value of x. and ;^(X) ^ ^(X"). S t r i c t l y speaking, no r e g u l a r i t y 
^ at 

counts as jo i n t causality ijmless i t i s nomically i r r e d u c i b l e , since otherwise^least 
one of i t s independent variables does not t r u l y conjoin the others i n determining 

yj so we henceforth presume that no lawlike r e g u l a r i t y i s s t r i c t l y causal unless 
1 
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I t i s nanically i r r e d u c i b l e . Prima f a c i e the same should be true of functional 

i r r e d u c i b i l i t y . However, t h i s appearance proves to be deceptive (cf. p. 2 . 3 ^ . below): 

and i n any case i t i s often technically advantageous to relax i r r e d u c i b i l i t y reqtiire-

ments. So we s h a l l l a t e r speak of " s t r u c t u r a l equations" i n a l i b e r a l sense under 

which a dependency y = /^(X) counts as " s t r u c t u r a l " even when some variables i n X 

are irrelevant to the value of ^(X), so long as y = jii(X) can be reduced to a causal 

reg u l a r i t y by eliminating variables from X that do not work j o i n t l y with the rest 

of X i n bringing about y. 

Precisely what might be meant by Clause 2 of t h i s d e f i n i t i o n of "causal 

regularity" i s an obsciirlty that centuries of philosophers' e f f o r t s have done l i t t l e 

to c l a r i f y . Nevertheless, the notion i s indispensable for the conduct of our r e a l -

world a f f a i r s : I t grounds our p r a c t i c a l reasoning of form "Our bringing i t about 

that w i l l have consequences ," and more generally i s deeply foundational 

for the inductive inferences we f i n d i n t u i t i v e l y r a t i o n a l (see Rozeboom, 1971, 1981), 

As empirical scijentists and engineers, our r e s p o n s i b i l i t y f o r explicating causality 

concepts i s to make as a r t i c u l a t e l y e x p l i c i t as we can the force of these notions 

i n our professional thinking, tightening and correcting our i n t u i t i o n s as overt 

awareness of them reveals confusions and i n f e l i c i t i e s . Given a s u f f i c i e n t l y r i c h 

data base i n our praxis of causality, philosophic i l l u m i n a t i o n of i t s nature w i l l 

surely not be f a r behind. 

The s i m p l i f i e d model of c a u s a l i t y to be exploited here includes certain 

assumptions that had best be noted at the outset. 

F i r s t of a l l , we treat a l l causal laws as f u l l y detenninistic with a f i n i t e 

number of independent variables. As elaborated l a t e r (p,l6f.), t h i s i s at worst a 

convenient heurism having no discernably harmful side e f f e c t s , and for a l l we know 

may even be true. But we also recognize that one event, or one tuple of events, 

can be a cause of another without being a complete cause of i t . So when variables 

X are surmised to be j o i n t sources of variable y i n population P, our conjectiu^e 

i s i n general only that y i s determined i n P j o i n t l y by X together with some 
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possibly-null supplementary tuple Z of y-sources. To c l a r i f y our notions i n th i s 
^ A 

regard, l e t us say 

Def i n i t i o n 1 .1 . Variables X = <x^,... ,Xjjj> are a s t r i c t l y .joint (causal) 

source of variable y i n population P i f f y i s determined i n P under some s t r i c t 

( i . e . nomically irreducible) causal r e g u l a r i t y y = /^(X,Z) whose input variables 

<X,Z> include a l l of X. I f moreover supplementary tuple Z can be taken n u l l , 

i . e . , i f y = fii'X) i s a s t r i c t causal r e g u l a r i t y i n P for some ̂ , X i s (or /I " ^ 
variables X are) a s t r i c t l y complete (causal) source of y i n P. I f singleton 

'I A " 

tuple X = <x> i s a s t r i c t l y j o i n t source of y i n P, we say simply that x i s 

a (causal) source of y i n P. 

These v a r i e t i e s of causal-source r e l a t i o n s w i l l be expanded i n Chapter 2. In par­

t i c u l a r , we s h a l l there regard a tuple X of variables as an " i n c l u s i v e l y " complete 

source of variable y i n P i f f some subtuple of X i s a s t r i c t l y complete source of 
A ^ ^ 

y i n P. 
A ~ 
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Secondly, we s h a l l attend only to causal r e g u l a r i t i e s under which events 

coupled as cause and effect are formalized as having the same subject. That i s , 

for any causal r e g u l a r i t y y - fiW defined as above, the 

(compound) event of subject s i n P having tuple X of values on independent variables 

X causes that same s to have value i^ix) of dependent variable y. Although technical 

data analysis has not yet sought to relax that constraint, i t seems absurdly narrow 

at f i r s t blush, insomuch as the spatio-temporal location of a dependent event 

appears almost always to d i f f e r somewhat from the locations of i t s causes. Thus 

when John scratches his nose, his i t c h i s not s t r i c t l y synchronous with the scratching 

i t e l i c i t s but s l i g h t l y p r i o r to i t ; and the i t c h i n turn may well have been caused 

i n part by properties of objects external to John. S i m i l a r l y , the state of baby 

Jane's chromosomes today has no effect on her height r i g h t now, but ^ w i l l much 

influence Jane's height 15 years hence through a chain of causal mediations,and i s 

i n turn due largely to the chromatin character of Jane's parents at the time they 

produced the gametes whose fusion was Jane's o r i g i n . Just the same, cause/effect 

sequences between subjects can generally be subsumed under same-subject laws by 

various t r i c k s of d e f i n i t i o n . In the important s p e c i a l case of causation across 

time d i f f e r e n c e s — " l a g s " — w i t h i n the same temporally extended i n d i v i d u a l (e.g. John 

throughout his l i f e t i m e ) , for any lag A and variable x whose subjects are time-slices 
A 

f l - a t - t l m e - t l of endtiring individuals {l? we can define x*- to be the variable over 

population [ i - a t - t ] whose value for each in d i v i d u a l - i - a t - t i m e - t i s i n fact i ' s value 

of X at time t - A . Then the causal influence of i ' s x-input at time t - A upon i ' s 

y-output at time t can be taken to i n s t a n t i a t e a same-subject dependency of y upon 
A A 
x^. (See Rozeboom, [GLDA], for expansion of t h i s point.) To a large extent, the 
A 

state of i ' s environment at time t can s i m i l a r l y be coded as the values of input 
at 

variables for i at time t or, i f preferred,^ time t + A. In t h i s fashion, most i f 

not a l l p r i n c i p l e s of causal propagation can be captured by same-subject equations, 

even i f that i s not always the most i n s i g h t f u l way to express them. 
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Thirdly, i t i s foundational i n our c a u s a l i t y i n t u i t i o n s that the cause/effect 

r e l a t i o n i s t r a n s i t i v e , i r r e f l e x i v e . and hence anti-syminetric—in short, a s t r i c t 

p a r t i a l order. That i s , i f g^, g,̂ , and are events such that i s a cause of g.̂ , 

and g,j i s i n turn a cause of ê ,̂ then §^ i s thereby also mediately a cause of gĵ .. 

However, i f g^ i s a cause of e^, e^ i s not a cause of ê ,, nor i s any e^ a cause of 

i t s e l f . We s h a l l take t r a n s i t i v i t y to imply f o r the idealissed extreme of single-

input causality that i f y = ^(z) and z = ^^(x) are both s t r i c t causal r e g u l a r i t i e s 
A A A 

over population P, then so i s t h e i r composition y = 0{x), Less a i m p l i s t i c a l l y , 
A 

we presume that whenever y = )^(Z,z') and z' = )^(X) are causal r e g u l a r i t i e s , there 
A A A A 

i s also a causal r e g u l a r i t y y = e(W) i n which W i s a not-necessarily-proper subtuple 
A ^ A 

of <Z,X;, even though the l a t t e r i s not always simply y = /^(Z,>^(X)). (See p. 2.22ff. 
A A 4 A -t 

In f a c t , analysis of how causal^-regularities compose i s the main concern of Chapter 2.) 

And we also assume that the s t r i c t p a r t i a l order of c a u s a l i t y among events i s reflected 

by a s t r i c t p a r t i a l order on the t o t a l i t y of variables that participate i n same-subject 

r e g u l a r i t i e s i n any population P. That i s , the (same-subject) causal-source r e l a t i o n 

i n P i s presumably t r a n s i t i v e , anti-symmetric, and i r r e f l e x i v e . 

Fourthly, we posit that when variables X are a s t r i c t l y complete source of 

variable y i n population P, the causal r e g u l a r i t y y = /(X) by which X determines y i n 
A A A A 

P i s tinique even when, due to l e s s - t h a n - f u l l dispersion of X i n P, there exists a plur-
A ~ 

a l i t y of functions /je^j^] on X's l o g i c a l range such that y = /jj(X) i n P. (Variables 
X =<x-i,...,x > are " f u l l y dispersed" i n P just i n case a l l l o g i c a l l y possible tuples 
of values on X occtar i n P.) The argument for t h i s i s straightforward up to a point; 
If Pi comprises the genuinely relevant boundary conditions i n P under which a subject's 
value of X necessitates i t s having one value rather than another of y, and P i s 

-1 A 

contained i n some larger population P* of subjects s a t i s f y i n g o< within X i s f u l l y 
~ A 

dispersed, then y = A,(X) i n P* for only one function ^r. on X's l o g i c a l range and 

t h i s y = X T̂,(X) i s then also the only dependency of y upon X i n P*'s subpopulatidn P 
A K A /t A — ~ ~ 

that q u a l i f i e s as causal, I&happily, unless each variable i n X has only a small 
A 

f i n i t e number of values, i t i s rather u n l i k e l y that any population of extant 



even i f f u l l dispersion of X i s not 
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precluded by X's own causal or i g i n s , } 
— — ^ — : : : : : 

subjects s a t i s f y i n g oi i s large enough to disperse X f u l l y , / But even then i t seems 
proper to postulate that only one of the fimctions carrying X i n t o ^ i n P i s t r u l y 

f u n c t i o n a l l y i r r e d u c i b l e 
causal. And i f t h i s causal equation4t:/and of a known (or assumed) r e s t r i c t e d form 

i t i s uniquely i d e n t i f i e d by y's $-form regression upon X i n P so long as 

X's dispersion i n P i s not strongly constrained i n certain ways coordinate with form 

F i n a l l y , we t r y to conceive of "causality" i n a loose or generic sense that 

includes grades of molar determination that may well be just epiphenomenal abstrac­

tions from more genuine causal connections within ensembles of micro-events, yet 

which behave (or are r a t i o n a l l y thought to behave) so much l i k e basic causality, 

especially i t s partial-ordering of variables and the inference patterns i t sustains, 

that for a l l p r a c t i c a l purposes the difference i s n e g l i g i b l e . Just what i s at 

issue here i s d i f f i c u l t to make clear i n a few words (or even i n a great many of 

them), insomuch as the theory of molar causality i s s t i l l i n i t s prepartum infancy. 

But nearly any r e a l - l i f e causal story w i l l serve to i l l u s t r a t e , such as the genetic 

example invoked e a r l i e r : When Jane's height at time t i s attributed to the genetic 

constitution of her parents at the time of her conception, these properties of Jane's 

father and mother as momentary wholes are composites (not so?) of the chromatin 

characters of a l l t h e i r respective c e l l s at that time, whereas roughly speaking i t 

i s only the chromatin i n one p a r t i c u l a r c e l l from each parent that matters for 

Jane's l a t e r height. ("Roughly speaking" because Jane's genes may not be the only 

causal route by which her height i s affected by her parents' biology.) Moreover, 

when we express t h i s influence by saying that the height-of-individual-i-at-time-t 

variable (h) i s affected by the variables <g^,^> whose values for i - a t - t respectively 

correspond to certain genetic features of i ' s father and mother at i ' s conception, 

the attributes represented most d i r e c t l y by these variables' values are the e x i s t -

e n t i a l l y quantified r e l a t i o n a l properties here-and-now of having had a father and 

a mother of such-and-such genetic kinds, whereas the r e a l causes of a p a r t i c u l a r 

i ' s height at time t i n t h i s fashion are the events consisting of certain s p e c i f i c 

Individuals other than i being the way they were i n the relevant respects at a 



s p e c i f i c time other than t . S t i l l again, i f g. i s a numerically scaled genetic 
AO 

variable such that i ' s values of g^ and ĝ ^ at t are respectively defined to be the 

values of g^ for i ' s father and mother at i ' s conception, and g^ and %^ contribute 

equally and l i n e a r l y to h, we may say simply that the main genetic cause of i ' s 
even 

height at t i s i ' s mean-parental-g -value (g*);though there i s no genuine causal 

mediation of <E^*f^ ^ variable g» =̂ ^̂  ^ f f """fm̂ /̂ * 

This l a s t example instantiates the only tentative p r i n c i p l e of molar causality 

that w i l l be suggested here: I f the causal r e g u l a r i t y by which variables < X , Z > 

determine variable y (in P ) takes form y = ; ^ ( X,ey ( Z ) ) , with tuples X and Z d i s j o i n t , 
A A A A A A 

we can abstract molar variable z* as composite z* =J-^ 6,(Z) of the variables i n 
A ^ A Qex J_ A 

tuple Z and take y = j ! ^ ( X ,z*) to be a molar causal r e g u l a r i t y i n which Z i s a (quasi)-
A - A A 

causal source of z* while z* i n turn mediates (quasi)-causally between Z and y. To 
A A '* A 

accotint for z*, we can c i t e Z's determination of z* by molar/molecular abstraction. 
A A A 

But also, more informatively, there may be molecular/molecular r e g u l a r i t i e s Z = ( F ) 

i n which each variable i n Z i s causally determined by variables F , Then z* = " 

9 ( ^ ^ ( F)) i s a (quasi)-causal molar/molecular r e g u l a r i t y whose mapping from F to 

z* can generally be decomposed i n many d i f f e r e n t ways 9]^(0j( )) = ^2^'^2^ ^ wherein 

^2 i s i n general vector-valued. I f we st i p u l a t e F * =jjgf.V2(^)—^or some favored 

choice of ^2 ^^""^ more r e a l i s t i c a l l y , i f our burgeoning theory of the phenomenon 

at issue gives us a concept of variables F * that we l a t e r discover can best be viewed 

as analytic abstractions from a more complex array F of molecular v a r i a b l e s ) , we 
A 

can replace z* = 8, (/T (F)) = 9^(^„(F)) by the molar/molar (quasi)-structural equation 

z* = e^ ( F * ) under which F * (quasi)-causally determines z*. Continuing i n t h i s 
A 2 A A " 

fashion, f e l i c i t o u s selection of z*, F * , and other compositing abstractions including 
A A 

i n a l l l i k e l i h o o d y to star t with, may construct a p a r t i a l order of molar variables 

linked by law-like dependencies that are s i m p l i f i e d images of genuinely causal but 

vastly more complicated molecular r e g u l a r i t i e s whose e x p l i c i t d e t a i l s generally 

exceed our powers to comprehend or even discover, ( i t i s important to appreciate 

i n t h i s respect that our development of concepts at various levels of the molar/ 
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molecular hierarchy i s generally top-down rather than bottom-up.) How to t e l l which 

systems of molar variables best summarize r e a l i t y ' s hard-core causal structure, and 

to what degree the alternatives may be a r b i t r a r y , l i k e choices among scaling units, 

are matters on which no reasoned theory has yet appeared i n the multivariate (or 

for that matter philosophical) l i t e r a t u r e , even though multivariate practice has 

already engaged the issue i n disputes over optimalities of axis placement i n spaces 

of variables. Fortunately, MODA i s not committed to any s p e c i f i c position on such 

matters. But i t does openly acknowledge that applied data analysis i s , w i t t i n g l y 

or unwittingly, profoundly concerned with them. 

Linear causality. 

For mathematical convenience—so powerful a convenience that we seldom have 

much p r a c t i c a l alternative—we l a r g e l y r e s t r i c t quantitative models of causality i n 

applied data analysis to cases i n which a variable y i s determined i n P j o i n t l y by 

variables X = <x,,...,x„> and Z = <z,,...,z > i n accord with some li n e a r s t r u c t u r a l 
A ^1' '>in /> i l ' '-ir 

equation 

(1) y = HA 2 w.x. + t V.z. = w + wX + vZ ( assumed ) , 
-0 - i l l - j ; , j -Q - 1 

where w = <«,,...,w> and v = <VT,...,V > are row vectors of conjoint causal weights. 

(Later, X w i l l comprise observed variables while variables Z are unobserved; but 

for now, the p a r t i t i o n between X and Z i n (1) i s arbitrary.) Whenever y's dependence 
A A A 

on <X,Z> i n P i s characterized by an equation of form ( l ) , we s h a l l say that y i s 
A 1 — ^ 

IE-determined ( i . e . . Linearly and Er r o r l e s s l y ) by <X,Z> i n P. 
/I ^ 

Though admittedly an i d e a l i z a t i o n , equation ( l ) i s not nearly so u n r e a l i s t i c 

as the several ways i n which i t i s prima fac i e r e s t r i c t i v e may make i t appear. Since 

we s h a l l be making much of LE-determination l a t e r , i t i s thus wise to begin with 

some c l a r i f i c a t i o n of i t s methodological status, especially i t s cogency as a model 

of real-world causality. 

nil the f i r s t place, without any loss of l i n e a r i t y ' s formal power, addition 

and m u l t i p l i c a t i o n i n ( l ) can be interpreted as any mathematical operations having 



the combinatorial properties that constitute an abstract-algebraic r i n g , so long as 

thi s construal of the operators i s f i x e d through the fvCLl array of form-(l) equations 

under consideration. This i s equivalent to saying that even when plus and times i n 

( l ) are defined by ordinary arithmetic, we are free to choose whatever numerical 

scales for our variables most closely l i n e a r i z e their s t r u c t u r a l r e l a t i o n s . How 

to i d e n t i f y l i n e a r i t y - w i s e optimal scales for our data variables i n practice i s a 

very nice question indeed (For hidden sources, t h i s scaling problem does not arise.) 

But the theory of multivariate relations presupposes the existence of many things 

to which we have only imperfect operational access, and i d e a l scales can just as 

well be included among them. 

Secondly, i f y's causal determination i n P i s only s t o c h a s t i c a l l y 
A 

lawful, with just the expectation of a conditional p r o b a b i l i t y d i s t r i b u t i o n for y 

s t r i c t l y determined by antecedent causes, we can formally treat y's divergence from 
A 

that expectation as an additional "source" of y and thereby regain the mathematics 

of s t r i c t determination. That i s , i f needed we l e t one of variables z. i n ( l ) be 

whatever i n y i s i r r e d u c i b l y indeterministic. To be sure, even i f y's less-than-
A A 

perfect determination by the t o t a l i t y S of i t s r e a l sources can adequately be 

expressed by a function ^ under which S causally imposes a tendency on y to take 
A 

value ji:^{S), i t i s s t i l l moot whether y-tendency fi{S) i s best construed as y's 

s t a t i s t i c a l expectation. But i t i s ex t r a o r d i n a r i l y d i f f i c u l t to conceive how S 

might cause y only semi-deterministically except by envisioning a residual e,̂  such 
/> Ay 

that y = ji^*(S,e-.) f o r some function ^* that i s tantamount to a determinstic causal 

function under which residual e behaves as though i t i s a source of y that has no 

causes of i t s own. Lacking any other way to conceive of p a r t i a l determinacy, i t 

i s not merely appropriate but operationally necessary to treat causality as l o c a l l y 

deterministic; Not a l l variables need have causes, but those having any at a l l are 

determined completely by th e i r sources. 
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Thlrdly:; i f the nvmber of variables fz-^J needed to supplement X i n t o a 

s t r i c t l y complete source of y i s i n f i n i t e — a s i n fact may w e l l be the case—we 

can reasonably presume that there i s a s u f f i c i e n t l y large f i n i t e tuple Z of these 

supplementary sources such that the j o i n t determination of y by X and fz^^ can be 

expressed by a s t r u c t u r a l equation y = /^(X,Z,z*) i n which z* i s some composite of 

the variables i n (z^,} other than i n Z and which either contributes n e g l i g i b l y to 

jrf(X,Z,z*) or for p r a c t i c a l purposes behaves l i k e a stochastic r e s i d u a l . This assump-
^ A A 

-tiogri'ests upon a-certain aftount of b l i n d f a i t h ? but the mathematics of laws 

containing an i n f i n i t e number of independent variables i s not only disturbingly 

enigmatic but to knowledge has not been seriously explored apart from BQT own 

tortuous e f f o r t i n Rozeboom (1978). 

Fourth, since we do not require a l l of c o e f f i c i e n t s ŵ ,...,Wĵ  i n ( l ) to 

be non-zero, we can allow some or a l l of variables X (and s i m i l a r l y for Z) to be 

only putative sources of y, conjoint with the others, that are not t r u l y so. For 

i f any of the Xj do not i n fact share j o i n t r e s p o n s i b i l i t y f o r y with Z and the 

rest of X, that i s expressed by zero values of the corresponding ŵ .̂ I t i s precisely 

to allow zero structural weights that we have provided (p. 10a above) for a sense 

of j o i n t causation under which a s t r u c t u r a l equation's independent variables need 

not be s t r i c t l y j o i n t sources of i t s dependent vari a b l e . We do not want to admit 

irrelevant variables as causal antecedents so promiscuously that causal determination 

loses i t s partial-order character. But i t i s harmlessly convenient to allow that 

i f y = fi{y) i s a structural equation for the complete j o i n t determination of y by 

variables X i n population P, and z i s any variable that does not mediate any of 
A ~" 4 

X's causal influence upon y, then apart from possible exclusions not yet motivated, 

y = ^(X) + 0-z 
4 A 1 

i s also a s t r u c t u r a l equation for j o i n t determination of y by <X,z> i n P. This 
A A 

d e f i n i t i o n i s recursive on the base of s t r u c t u r a l equations that express s t r i c t 

causal r e g u l a r i t i e s ( i . e . , that contain no independent variables that do not work 

j o i n t l y with the r e s t ) , and implies that not a l l independent variables i n a 
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structinral equation necessarily cowt^s^sotirces of i t s dependent variable. 

f l f t b j and of great importance, the formal l i n e a r i t y of ( l ) does not 
much 

preclude any x̂ ^ i n X (or z. i n Z) actually a f f e c t i n g y in^more cur v i l i n e a r fashion. 

For we allow that some of the other variables i n X and Z may be f i x e d nonlinear 

functions of x. and perhaps other variables, or that x^ and certain other variables i n 

*X,Z> may be di f f e r e n t nonlinear abstractions from one or more " r e a l " variables not 

separately included i n <X,Z>. For example, i f y i s a quadratic function of just 

two variables x^ and X2, the dependency has form 

y = + H i ^ i ^ ^ifi ^ ^ 2 ^ % ^ ^ i f 2 ) ' 

which can be subsumed vmder ( l ) by taking, say, X = <x-,,X5> and Z = ^z, ,z-5,Zo> = 
, ) i t J L ( l < - / V A X A f c /\J 

<x?,x?,x,x„>. Again, i f y i s determined nonlinearly by a categorical variable x* 

(or by the cartesian product of a tuple of categorical variables) which has just 

s alternative vaflues ("levels"), we can define a tuple X* =<x?, ...,x* , > of binary 
A ^ L 4 S — X 

variables such that x* (k = l , . . . , s - l ) takes value 1 or 0 according to whether the 
AK — ~ 

subject i s or i s not at the kth l e v e l on x*, and have that the l i n e a r regression of 

y upon X* i s i d e n t i c a l with y's unrestricted c u r v i l i n e a r regression on x*. (This 

technique, with a special r o t a t i o n of X* to a l i g n with "main effects" and various 

orders of "interaction," i s how ANOVA/ANCOVA subsumes y's dependency on multiple 
A 

categorical variables under the general l i n e a r model.) So long as we do not require 

a l l variables i n <X,Z;> to be l o g i c a l l y independent of one another, the L i n IE-deter-
A A 

mination i s not an essential loss of generality. Nonlinearities do create applied 

problems, especially when the data are i n s u f f i c i e n t l y abundant to permit recovery 

of a great many parameters; and parameterizing c u r v i l i n e a r functions l i n e a r l y does 
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not avoid certain obscurities of interpretation to be rel u c t a n t l y noted as we proceed. 

But that i s no objection to the general l i n e a r model's cogency for t h e o r e t i c a l analysis. 

F i n a l l y , i t i s of the utmost importance to be clear that regardless of any 

form idealizations imposed on causal r e g u l a r i t i e s , the law of any variable's causal 

determination i n L i s profoundly nonunique. I t i s f l a g r a n t l y not the case that 

output y has only one complete j o i n t source i n P, not even i f we exclude j o i n t 

sources of y that are not s t r i c t l y so. For i f <,X,Z> determines y, the tuple of 

variables derived from <X,Z> by replacing any variable therein by a complete j o i n t 

source of i t s own i s also a complete j o i n t source of y. For example, i f 
A 

are a l l causal laws i n P, where.Zp does not mediate between <X T , X O> and z, nor z, 

b^etween <X]_,X2>and |2»'t1̂ ®n variables cx3^,X2,x^,Zj^,§2'' causal sources «f y 

in_P (as are also i n turn a l l causal sources of the x ^ ) , and each of 

(2a) y = H 1 Z 1 + W 2 Z 2 + 0-x^ + 0-X2 + O.X3 

(2b) y • = w^z^ + (w2V3)x^ + O . X 2 + (W2V^)X3 

(2c) y = W2Z2 + ( w i v i ) x i + (wiV2)x2 + 0-X3 

(2d) y = (wiVi-fw2V3)xi + (w^V2)x2 + (w2V^)f3 

i s a form-(l) structtxral equation for y's production from i t s sources i n P. (For 
A 

s i m p l i c i t y , these hypothesized determinations omit r e s i d u a l sources that i n practice 

we not only expect but, to wardof f demohs of m u l t i c o l l i n e a r i t y , a c t i v e l y desire 

so long as they are orthogonal to the sources e x p l i c i t l y acknowledged.) I t would 

be a monumental blunder to think that (2b)-(2d) are less genuine, less r e a l , or 

less t r u l y causal than (2a) because they do not give y's dependence upon i t s immediate 
~ A * 

causes. So far as we have any reason to believe, the effect of any source variable 

X. on any output variable y i s always mediated by some tuple F of intervening source 

variables such that x^'s ( p a r t i a l ) causation of y i s by vir t u e of x^'s aff e c t i n g F 

and F's affecting y. Consequently, when variables X determine y p a r t i a l l y or even 

completely i n P, i t i s not meaningful to ask what i s tjie law by which X brings about 
A 
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y i n P. Rather, t h i s question has a unique answer only r e l a t i v e to some choice of 
s t r i c t l y 

supplementary variables Z such that X and Z together include a l complete source of y 

i n P (with any ultimate stochastic uncertainty i n y as an additional "source" i n Z). 
Relative to Z, there w i l l be some s t r u c t u r a l equation y = ̂ (X,Z) characterizing y's 

A ^ A A /I 

dependence on <X,Z> i n P; and i f t h i s equation i s l i n e a r , we can further represent 

the y-influence of each i n X, conjoint with and r e l a t i v e to the remainder of 
A A J - A 

<X,Z>, by a single c o e f f i c i e n t , ( i f some variables i n <X,Z> are nonlinear abstractions 

from others, however, we must be careful how we interpret these c o e f f i c i e n t s . In 

part i c u l a r , the c o e f f i c i e n t of X j cannot then be construed to t e l l how changes i n 
A X x^ affect z when the other variables i n <X,Z> are held constant.) But i f <X,Z,> and 

A J - A " A » ^ 

<X,Zp> each LE-determine y i n P, the c o e f f i c i e n t s of X for y are not the same r e l a t i v e 
A 1 4 •A ,^ 

to Z|̂  as they are r e l a t i v e to Z2 except under special circumstances noted l a t e r . 

The nature of t h i s r e l a t i v i t y i s e n t i r e l y straightforward: Roughly speaking, 

the c o e f f i c i e n t s i n ( l ) express what each x. and z. i n <X,Z> contributes to y 

independently of the other variables i n th i s p a r t i c u l a r tuple of y-sources. So to 

the extent that x^'s causal import for y i s mediated by z^, inc l u s i o n of z^ i n Z 

withdraws some of the weight for y that x. would receive i f Z were not chosen to 

intercept the x.->y connection, and assigns t h i s instead to Z J (or perhaps to other 
A 1 /I A J 

variables i n Z that i n tiu-n mediate between z^ and y ) . Thus i n example ( 2 ) , 
A A J A 

variables <X T , X « , X Q> are a complete j o i n t source of y whose s t r u c t u r a l equation (2d) 

for determining y could be i d e n t i f i e d by computing the regression of y upon just 
A ' <x, ,X5,x-j>. But i f y i s regressed on a l l of ̂ x^ ,x„,x-,z-,Z5> (after adding vanishingly 

A - L A ' - U ^ A i. ^ <• A^ * X A^ 

small residuals to the determinations of"z, and Z o by .^XT , X ' , , X o > to break the m u l t i -
A1 A'^ A± A*^ A^ 

c o l l l n e a r i t i e s ) , we instead obtain equation (2aJ i n which only z-^ and Z2 have 

nonzero c o e f f i c i e n t s because the effects of <X T , X O , X O> on y are wholly mediated by 
/( X A «i A A 

< Z T , Z p > . And when y i s regressed just on ̂ x , , X 5 , X o,z-> or just on < x , , X 9 , X o , Z o > , 

A •'- A * - A X A * - \J A J - •A J - A A ^ A^ 

thereby recovering (2b) or (2c) respectively, x, retains nonzero c o e f f i c i e n t 
- — A X 

(albeit a di f f e r e n t one i n the two cases) because x-ĵ  affects ̂  through multiple 

l i n e s of connection not a l l of which are intercepted by mediators conjoined with x, 
A X 
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In the y-sources to which these c o e f f i c i e n t s are r e l a t i v e . 
•1 

Terminological note: When X and Z are j o i n t l y a complete source of y, we 

s h a l l sneak of X's co e f f i c i e n t s i n st r u c t u r a l equation ( l ) as r e l a t i v e either to 

Z or to <X,Z>, whichever seems more natural i n context, 

"Regularities" and t h e i r transducers. 

Present usage of schema "y = /(X)" or more e x p l i c i t l y "y = i n P" to 

denote r e g u l a r i t i e s , causal or otherwise, i n population P requires a special under­

standing i f i t i s to do i t s job properly. When / and }̂  are both functions from 

the apace of a l l l o g i c a l l y possible values on variables X in t o values of variable y-

but are not se t - t h e o r e t i c a l l y the same function from t h i s dtanaln i n t o t h i s range— 

i . e , when ;^(X) f /(X) for at least one X-value X—we want to be able to say that 
— — /] — ' 

hypothesized r e g u l a r i t i e s y = x^(X) and y = J^(X) i n P are different r e g u l a r i t i e s 

even when fiilO ~ ^or every value X of X that actually occurs i n P. (Need for 

t h i s d i s t i n c t i o n arises when X i s not f u l l y dispersed i n P.) However, what "j^^X) 

(in P)" l i t e r a l l y refers to i s the composition i n t o ^ of the r e s t r i c t i o n Xp of 

variables X to population P, i . e , X i s the function mapping members of P i n t o t h e i r 

X-values. So i f " r e g u l a r i t y y = /(X) ( i n P)" were understood to designate merely 
A A ~ 

the hypothesized fact that the r e s t r i c t i o n y_, of y to P i s i d e n t i c a l with the 
A " "" 

composition of Xp i n t o ^, i . e , that yp = jf^Xp, i t would have the same referent as 

"regularity y = ̂ (X) (in P)" whenever and </> are i d e n t i c a l just over the values A 

of X that actually occur i n P. 

Accordingly, when we write "y = /(X)" to re f e r to a hypothesized r e g u l a r i t y 
A 

i n an i m p l i c i t l y specified population P, we s h a l l understand t h i s to refe r to a 

2-tuple whose f i r s t component i s the (hypothesized) extensional generality that 

function j^(X) i s i d e n t i c a l with function y over P, i . e . the fact that z - ^(L.) 

for a l l subjects s i n P, and whose second component i s what we w i l l c a l l the regu­

l a r i t y ' s transducer, namely, the f u l l function ^ named i n "^ = ;^(X)". Then i f fi y^, 

terms "y = ;^(X)" and "y = 5^(X)" designate d i f f e r e n t r e g u l a r i t i e s i n P even when 
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~ y-p ~ because t h e i r transducers are d i f f e r e n t ; and we can hence claim of 

one that i t i s causal without e n t a i l i n g that the other i s causal as w e l l . S p e c i f i ­

c a l l y , when we conjecture that y = ^(X) i s a causal r e g u l a r i t y i n P, we envision 

that there i s some attri b u t e (or ensemble of attributes) o< common to members of P, 

and a p r i n c i p l e of natural necessitation, such that for every possible value X of X, 

joint possession of properties oi and X necessitates an accompanying value ;($(X) of 

y as w e l l , regardless of whether X i s a c t u a l l y instantiated i n P or elsewhere. In 

th i s way, a t t r i b u t i n g causality to a r e g u l a r i t y makes esse n t i a l reference to the 

regularity's complete transducer, and explains the force of counterfactual statements 

such as "Although no member of P i n fact has value X* of X, i f any subject a i n P 

were to have X-value X*, s's value of y would be /(X*)." 


