Q"ADRATIC FACTOR ANALYSIS: LINEAR DECODING OF THE HIGHER DATA MOMENTS

William W. Rozeboom J. Jack McArdle
University of Alberta
and
Thiversity of Virginia

Abstract

Quadratic factor analysis extends the logic of classical linear factoring for latent sources to analysis of all data moments through the 4th-order. Given the model presumptions, this yields identification of all factor moments through the 4 th-order and from there discloses, inter alia, whether any of the data variables' orthothodoxly recovered common factors are in fact quadratic functions of the others, or nearly so.

Key yords: Quadratic factoring. Higher-moment analysis. Nonlinear factor analysis.

[^0]2TUDRATIC FACTOR ANALYSIS: LMGAR DECODIC OF THE HICHER DATA MOMENTS

William N. Rozeboom "niversity of Alberta
J. Jack McArdle
University of Virginia

Although linear factor analysis traditionally operates upon only the 2nd-order central moments (i.e. covariances) of multivariate data arrays, it has long been known that higher data moments also contain potentially useful information about the data's common sources. Yet apart from Latent Structure Analysis (see Lazersfeld, 1959; Lazersfeld \& Henry, 1968), which has been developed primarily for treatment of binary variables and is severely limited in the complexity it can assimilate, few efforts have yet been made to interpret data moments higher than covariances--nossibly because one might expect their analysis to requirn a mathematics far less tractable than the linear algebra which has proved so effective for aralysis of covariance structures.

It turns out, however, that just as linear algebra can nicely handle curvilinear fimctions whose parameterizations are linear, so can the algorithms developed by linear factor analysis and more recently linear causal modeling informatively decompose data moments of all orders. (See Kenny \& Judd, 1984, for solution of a restricted special case; Mooijaart, 1985, on positioning of factor axes by appeal to 3rd-order moments; and Bentler, 1983, p. 496 f. , for an overview of the generic momert model which does not, however, develop any solution practicalities.) We shall here set out the theory and computational praxis for inclusion of 3rd- and 4th-order data moments in the analysis. (Extension to even higher moments is clearly premature at this time.) It seems natural to call this procedure Guadratic Factor Analysis, or "quad-factoring" for short.

In brief, quad-factoring of data on an array $\underline{Y}=\left\{\underline{X}_{1}\right\}$ of metrical scales suoplements the variables in X by their pairwise products $\left\{\underline{\underline{y}}_{i j}=\underline{Y}_{i} \mathbb{Y}\right\}$, and observes
that any orthodox linear common-factor model for the lst-level array y entails a corresponding linear model for the expanded (2nd-level) array as well. Jist as traditional factoring extracts model parameters from the lst-level data covariances, so does quad-factoring solve the quad-moments counterpart of covariances--namely, the lst-level varishles' moments through the 4 th order--for parameters in the factor model's quadratic extension. In principle, quadratic factoring should disclose the same common-factor loadings and uniquenesses for the data variables as does traditional lst-level factoring. But when the quad-factoring model premises are not violated too outrageously, it should identify comernalities and weak common factors with greater precision than does lst-level analysis. In particular, it resolves uniqueness ambiguities in lst-level factoring such as arise from doublet factors. Even more importantly, quad-factoring recovers not merely comon-factor covariances but all factor moments through the 4th order. Theories of what we can gain from this higher-moment information still remain largely underdeveloped. But one major prospect is detection of nonlinearities in the functions by which our data variables arise from their real underlying sources (see p. 12, below). And it can strongly ajudicate conjectures (e.g., Gangestad \& Snyder, 1985) that the factors diagnosed by certain test items are dichotomous.

Terminology and model presumptions.

The presumptions of quadratic factoring are stronger than traditional in factor analysis, but only modestly so. We begin with any standard metrical data array, that is, the joint distribution in some samole population P on an $n-t u p l e$ $I=\left\langle\underline{Y}_{1}, \ldots, I_{n}\right\rangle$ of metrical output varisbles. (When relevant, read X and other tuples of variables as column vectors of their components.) We shall not here address sampling issues, so for simplicity we equate the arithmetic mean, \underline{m}_{x}, of any measure x distributed in P with $x^{\prime} s$ expectation $E[x]$ in the population sampled. It is convenient to scale all the Y-variables--call these our lst-level data variablesto have zero means in P; but variance normalization is optional, and eventually we
allow lst-level centering to be waived as well. Next, define (proper) 2nd-level data variables $\underline{I}^{*}=\left\{\underline{Y}_{i j}: i=1, \ldots, n ; 1=1, \ldots, n\right\}$ to be the $n(n+1) / 2$ pairwise product variables $\underline{Z}_{i j}=\operatorname{def} Y_{i} \Psi_{j}(\underline{1} \leq i)$ such that each subject's score on $Y_{i j}$ is the oroduct of his scores on Z_{i} and Z_{j}. Each lst-level variable Z_{i}, too, can be viewed as a special 2nd-level variable $Z_{1}=Y_{01}=y_{0} y_{1}$ where y_{0} is the unit variable on which, by definition, all scores are unity. (We shall designate the unit varfable by a variety of letters, but always with a subscript of 0 .) When $\underline{\text {-scores }}$ are known for members of P, the same is evidently true for all product-variables in \underline{Y}^{*}. It will be important to leave each \underline{Y}^{*}-variable $Y_{i j}$ in the metric defined for it by its constituents Z_{i} and Z_{j}. That is, neither the mean nor variance of $Y_{i j}$ is adjusted beyond what is imposed by choice of scales for X_{i} and Y_{j}.

Since we shall have repeated need, with variations, for the notation just introduced, we had best take pains to set this out in full generality. Let $X=$ $\left\langle\underline{x}_{g}, \underline{x}_{s+1}, \ldots, \underline{x}_{n}\right\rangle$ be any $(n-\underline{s}+1)$-tuple of variables indexed consecutively from a starting index s. (We shall use only $\underline{s}=0$ and $\underline{s}=1$.) Then the (full) quadratic development X^{2} of X is the $(n-s+1)^{2}$-tuple of pairwise product-variables

$$
\underline{x}^{0}=\left\{x_{i j}: x_{1 j}=\underline{x}_{1} \underline{x}_{j} ; i, 1=s, \ldots, n\right\} ;
$$

while the (bare) quadratic development X^{*} of X is the $(n-\underline{s}+1)(\underline{q}-\underline{s}+2) / 2-t u 0 l e$ that remains of X^{0} when all $x_{1 j}$ in which $1>1$ are deleted from $i t$, namely,

$$
\underline{x}^{*}=\left\{\underline{x}_{1 j}: \underline{x}_{1 j}=\underline{x}_{i} \underline{x}_{j} ; 1=\underline{s}, \ldots, n ; 1=i, \ldots, n\right\}
$$

(Since $\underline{x}_{i j}=x_{1} x_{j}=\underline{x}_{j} \underline{x}_{1}=x_{j i}, \underline{x^{f}}$ contains $(n-\underline{n}+1)(n-\underline{n}) / 2$ duplications which are eliminated in X^{*}. Our practical work will be with X^{*}; but X^{9} yields the tidier algebraic theory.) Secondly, for any tuple $X=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ of variables with starting index 1, we write X_{0} for X preceded by the unit variable x_{0}. That is,

$$
\underline{X}_{0}=\operatorname{def}\left\langle\underline{x}_{0}, \underline{X}\right\rangle=\left\langle\underline{x}_{0}, x_{1}, \ldots, x_{n}\right\rangle
$$

wherein all scores on x_{0} are unity. Then the full/bare quadratic development of X_{0}
includes not only the full/kare quadratic development of \underline{X} but lst-level variables \underline{X} as well. Specifically,

$$
\underline{x}_{0}^{*}=\left\langle\underline{x}_{00}, \underline{x}_{01}, \ldots, \underline{x}_{0 n}, \underline{x}^{*}\right\rangle=\left\langle\underline{x}_{0}, \underline{x}, \underline{x}^{*}\right\rangle
$$

where $\underline{x}_{00}=\underline{x}_{0} \underline{x}_{0}=\underline{x}_{0}$. And \underline{X}_{0}^{2} similarly includes \underline{x}_{0} and $\underline{\underline{x}}$ along with \underline{x}^{m}. So given a tuple of variables with starting index l, we can refer to fust their proper 2nd-level products as \underline{X}^{*} or (with duplications) as $\underline{X}^{(}$, and to their lst-and-2nd-level ensemble combined along with \underline{x}_{0} as \underline{X}_{0}^{*} or \underline{X}_{0}^{2}.

The matrix $\mathrm{C}_{\mathrm{mXX}}$ of covariances among lst-level output variables \underline{Y} on which linear data analysis traditionally operates comprises the 2 nd-order central moments of the \underline{Y}-distribution in \underline{P}. That is, depending on whether we distinguish $\underset{P}{P}$ from the population sampled by $P,\left[\mathcal{C}_{Y Y}\right]_{i j}$ either equals $\varepsilon\left[\left(\underline{I}_{\mathcal{l}}-\varepsilon\left[\underline{I}_{\mathcal{1}}\right]\right)\left(\underline{y}_{j}-\varepsilon\left[\underline{y}_{j}\right]\right)\right]$ or is a sampling estimate thereof. Quad-factoring, however, works with 2 nd-order moments (of the product-variables) that are not generally centered. So for any two tuples of variables $\underline{X}=\langle\ldots, \underline{\underline{x}}, \ldots\rangle$ and $\underline{Z}=\left\langle\ldots, \underline{z}_{\beta}, \ldots\right\rangle$ (not necessarily $\underline{X} \neq \underline{Z}$), we shall write ${ }_{m}^{M} X Z$ or $\underset{m}{M}(\underline{X}, \underline{Z})$ for the matrix whose $\alpha \beta$ th element $[M X Z]_{\alpha \beta}$ is the mean product of \underline{X}_{α} and ${\underset{Z}{\beta}}$ in whatever population \underline{P} is at issue. That is, under our simplifying identification of sample means with population expectations, $[M X Z]_{\alpha \beta}=\varepsilon\left[\underline{x}_{\alpha} \underline{z}_{\beta}\right]$. This notation does not presume that the explicit index α of \underline{x}_{α} in \underline{x} or β of $\underline{\underline{z}}_{\beta}$ in \underline{Z} is necessarily that variable's count-position in its tuple-cf. cases $\underline{X}_{0}=\left\langle\underline{x}_{0}\right.$, $\left.\underline{x}_{1}, \ldots\right\rangle$ and $\underline{X}^{*}=\left\langle\ldots, \underline{x}_{i j}, \ldots\right\rangle$. Rather, $[M X Z]_{\alpha \beta}$ is the element of $\frac{M}{m Z}$ in the row headed by \underline{x}_{α} and column headed by \underline{z}_{β}. In particular, for any doubly indexed array $\underline{X}^{*},\left[M_{X} X_{X}\right]_{h 1, j k}=\varepsilon\left[\underline{x}_{h 1}, \underline{x}_{j k}\right]=\varepsilon\left[\underline{x}_{h} \underline{x}_{i} \underline{x}_{j} \underline{x}_{k}\right]$.

Because our notation for tuples of 2nd-level variables produces visual monstrosities and typesetters' nightmares when used as subscriots in traditional formulas for moment arrays, we shall henceforth treat $\frac{m}{m}$ (denoting a vector of means), $\underset{m}{C}$ (denoting a covariance matrix), and $\underset{m}{M}$ (denoting a matrix of uncentered 2nd-order moments) notationally as functions of the variables whose moments are at issue.

Thus ${\underset{m}{x}}^{x}$ and $M_{X Z}$ will generally be written as $\underset{m}{m}(\underline{X})$ and $M(\underline{X}, \underline{Z})$, respectively.
Whenever $\underset{m}{M}$ is a matrix whose rows and columns are doubly indexed, we shall say that M_{m}^{M} is quad-symmetric iff $\left[{ }_{m}\right]_{h i}, j k=\left[{ }_{m}\right]_{h^{\prime}} i^{\prime}, j^{\prime} k$, whenever these terms are both well-defined elements of M in which $\left\langle\underline{k}^{\prime}, \underline{1}^{\prime}, \mathbb{1}^{\prime}, \underline{k}^{\prime}\right\rangle$ is a permutation of $\langle\underline{k}, \underline{\underline{1}}, \mathfrak{j}, \underline{k}\rangle$. Clearly, $M\left(X_{0}^{2}, X_{0}^{2}\right)$ and $M\left(X_{0}^{*}, X_{0}^{*}\right)$ are quad-symmetric.

For any array of list-lpvel data variables $\underline{\underline{Y}}=\left\langle Y_{1}, \ldots, Y_{n}\right\rangle$, if \underline{Y}^{*} is the bare quadratic develonment of $\underline{\underline{Y}}$ as defined above, and $\underline{\underline{O}}_{0}^{*}$ is the bare quadratic development of \underline{Y} 's extersion $Y_{0}=\left\langle Y_{0}, \underline{Y}\right\rangle$ to include the unit variable, the 2nd-order

$$
{\underset{m}{M}}_{M\left(Y_{0}^{*}, \underline{Y}_{0}^{*}\right)}=\left[\begin{array}{lll}
1 & & \underline{s y m} \\
m(\underline{Y}) & \underline{M}(\underline{Y}, \underline{Y}) & \\
m\left(\underline{Y}^{*}\right) & M\left(\underline{Y}^{*}, \underline{Y}\right) & \underset{m}{M\left(\underline{I}^{*}, \underline{Y}^{*}\right)}
\end{array}\right] \quad\left(\underline{Y}_{0}^{*}=\left\langle\underline{Y}, \underline{Y}, \underline{I}^{*}\right\rangle\right),
$$

wherein "sym" signifies symmetry. This makes clear that all moments of Y through the 4 th order are contained in $M\left(Y_{0}^{*}, Y_{0}^{*}\right)$. The lst-order moments are in vector $\frac{m}{m}(X)$ ($=\underset{m}{0}$ under centered scaling of Y); the 2nd-order moments are in $M(X, Y)$ ($=C_{M} Y$ under centered scaling) and also, rearranged as a vector, in $\frac{m}{m}\left(\underline{Y}^{*}\right)$; the 3 rd-order moments are in $\left.\underset{m}{M} \underline{I}^{*}, \underline{Y}\right)$; and the 4 th-order moments are in $M\left(I^{*}, I^{*}\right)$.

The point now to be developed is that when all \bar{y}-moments through the 4 th order-call these the "quad-moments" of I-are so treated as the 2nd-order moment matrix of \underline{Y}_{0} 's quadratic development, we can analyze $M_{M}\left(Y_{0}^{*}, Y_{0}^{*}\right)$ for information about I*'s factor composition by the very same linear models that have traditionally worked so well on lst-level covariances. We retain the classic premise that each lst-level data variable is the sum of a common part and unique residual which we find convenient to construe as a psychometric "true-part" and "error," respectively. Specifically, we posit

$$
\begin{equation*}
I_{1}=t_{1}+\varepsilon_{1} \quad(\underline{1}=1, \ldots, n), \tag{1}
\end{equation*}
$$

with "error" characterized by one essential distributional constraint and two auxillary ones that are expository conveniences easily waived in computational practice:

The basic quad-factoring error premise. First-level residuals $E=<\underline{e}_{1}$, $\ldots, e_{n}>$ in (1) have zero expectations, and are distriouted independently of one another and of all true-parts $T=\left\langle t_{1}, \ldots, t_{n}\right\rangle$. (See Appendix A, Note, for

Strong error-model addenda [optional]. The marginal distribution of each e_{i} in (1) has the same skew and kurtosis as a Normal distribution.

Meanwhile, lst-level true-parts I are presumed to be linear combinations of a smaller number of common factors which in turn may or may not be different linear/nonlinear functions of a still-smaller number of substantively distinct common sources. This lst-level factor model entails a well-behaved factor model for the 2nd-level data variables as well, or rather for their true-parts. The 2nd-level error model for quad-factoring, however, is more complicated than its lst-level counterpart; and its theory is our lead-off concern.

Second-level error theory.

Given psychometric model (1) for lst-level variables Y, each 2 nd-level variable $Z_{i j}=Z_{i} Z_{j}=\left(\underline{t}_{i}+e_{i}\right)\left(\underline{t}_{j}+{\underset{\varepsilon}{j}}\right)$ in \underline{Y}^{*} has true-part/error composition

$$
\begin{equation*}
z_{i j}=t_{i j}+e_{i j} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{t}_{1 j}=\operatorname{def} \underline{t}_{i} t_{j}, \quad e_{i j}=\operatorname{def} \underline{t}_{i} e_{j}+e_{i} \underline{t}_{j}+e_{i} e_{j} \tag{2.2}
\end{equation*}
$$

For $\mathfrak{j}=0$ we stipulate

$$
t_{0}=1, \quad e_{0}=0,
$$

to yield

$$
t_{0 j}=t_{j}, \quad e_{0 j}=e_{j}, \quad(\underline{j}=0,1, \ldots, n)
$$

and hence $Z_{0 j}=t_{0 j}+e_{0 j}$ for each $\underline{1}=0,1, \ldots, I_{\text {. }}$. So if we write

$$
\underline{E}_{0}^{+}=\operatorname{def}\left\{\underline{e}_{1 j}: \underline{i}=0,1, \ldots, n ; i=1, \ldots, n\right\},
$$

(1) becomes a fragment of

$$
\begin{equation*}
\underline{Y}_{0}^{*}=\underline{T}_{0}^{*}+\underline{E}_{0}^{+} \tag{3}
\end{equation*}
$$

Wherein \underline{Y}_{0}^{*} and T_{-}^{*} are the bare quadratic developments of lst-level data variables $\underline{Y}_{0}=\left\langle\underline{Y}_{0}, I\right\rangle$ and their true-parts $T_{0}=\left\langle\underline{t}_{0}, I\right\rangle$, and E_{0}^{+}comprises the corresponding residuals. (Note from (2.2), however, that E_{0}^{+}is not quadratic dovelopment E_{0}^{*} of E_{0}. Rather, E_{0}^{*} is just one of three components in E_{0}^{+}. And e_{0}^{0} is constant at zero rather than at unity. So the e-variables are exceptions to the subscript conventions we have adopted for non-error variables.) T_{0}^{*} and E_{0}^{+}are respectively the true-part and error components of 2nd-level data variables \underline{I}_{0}^{*}; and (3)'s additivity insures that data quad-moments $M\left(\underline{Y}_{0}^{*}, Y_{0}^{*}\right)$ likewise decompose as a sum of true-part and error terms.

From (2.1), it is evident that each 2 nd-order moment $\left[M\left(Y^{*}, I^{*}\right)\right]_{h i, j k}$ of \underline{I}_{0} 's quadratic develooment \underline{Y}_{0}^{*} has composition $\varepsilon\left[\underline{y}_{h i} \underline{I}_{j k}\right]=\varepsilon\left[\left(\underline{t}_{h i}+\varepsilon_{h 1}\right)\left(\underline{t}_{j k}+\varepsilon_{j k}\right)\right]=$ $\varepsilon\left[\underline{t}_{h i} \underline{\underline{l}}_{j k}\right]+\varepsilon\left[e_{h i} \underline{t}_{j k}\right]+\varepsilon\left[\underline{e}_{h i} \underline{t}_{j k}\right]+\varepsilon\left[\underline{e}_{h i} e_{j k}\right]$. That is,

$$
\begin{equation*}
M\left(Y_{-}^{*}, Y_{0}^{*}\right)=M\left(T_{0}^{*}, T_{0}^{*}\right)+\underset{m}{M}\left(T_{0}^{*}, \mathbb{E}_{0}^{+}\right)+M_{m}^{M}\left(T_{0}^{*}, E_{0}^{+}\right)+\underset{m}{M}\left(E_{0}^{+}, E_{0}^{+}\right) . \tag{4}
\end{equation*}
$$

Unlike error covariances in lst-level data, $M_{m}\left(E_{0}^{+}, \underline{E}_{0}^{+}\right)$is not altogether diagonal nor is $M_{m}\left(T_{0}^{*}, \underline{E}_{0}^{+}\right)$wholly zero. Even $s o$, under the quad-factoring error premises these are identifisble from the lst-level uniquenesses (error variances) and observed lst-level covariances. For parameters, let us write

$$
\underline{u}_{i}={ }_{\operatorname{def}} \varepsilon\left[e_{i}^{2}\right], \quad \varepsilon_{i j}=\operatorname{def}\left\{\begin{array}{ll}
\varepsilon\left[y_{i}^{2}\right]=\varepsilon\left[t_{i}^{2}\right]+u_{1} & \text { if } 1=1 \\
\varepsilon\left[y_{i} y_{j}\right]=\varepsilon\left[t_{i} t_{j}\right] & \text { if } 1 \neq 1
\end{array},\right.
$$

noting that $u_{0}=0, \underline{c}_{00}=1$, and $\varepsilon_{0 j}=\varepsilon\left[\underline{y}_{j}\right]$ for index 0 . That is, for $1, j=0, \ldots, n$,

$$
\underline{c}_{1 j}=\left[M\left(\underline{Y}_{0}, \underline{Y}_{0}\right)\right]_{i j}, \quad \underline{u}_{1}=\left[M\left(\underline{Y}_{0}, \underline{Y}_{0}\right)-M\left(\underline{T}_{0}, \underline{I}_{0}\right)\right]_{i 1} .
$$

For centered $\underline{Y}, \varepsilon_{i j}$ equals data covariance $\left[\mathcal{C}_{M Y Y}\right]_{i j}$ for $\underline{i}, \dot{1}>0$; and \underline{i}_{1} is the traditional "uniqueness" of data variable I_{i}.

In the strong error model, the lst-level $\left\{\underline{u}_{1}\right\}$ are the only umknown error parameters. But to waive the strong error model's Normality assumption, we also require darameters for the raw (unstandardized) error skew and kurtosis. So for these we shall write

$$
\underline{u}_{1}^{[3]}={ }_{\operatorname{def}} \varepsilon\left[\underline{e}_{1}^{3}\right], \quad \underline{u}_{1}^{[4]}={ }_{\operatorname{def}} \varepsilon\left[\underline{e}_{1}^{4}\right],
$$

for $i=1, \ldots, n$. In the strong error model, $u_{i}^{[3]}=0$ and $\underline{u}_{i}^{[4]}=3 \underline{u}_{i}$.
Finally, since separation of the three error matrices in (4) serves no purpose, we put

$$
\mathrm{Q}_{m}\left(\underline{E}_{0}^{+}\right)={ }_{\mathrm{def}} \mathrm{M}_{-T_{0}^{*}}\left(\mathrm{E}_{0}^{+}\right)+\mathrm{M}_{m}^{\prime}\left(\underline{T}_{0}^{*}, \underline{E}_{0}^{+}\right)+\mathrm{M}_{m}\left(\mathrm{E}_{0}^{+}, \underline{E}_{0}^{+}\right),
$$

whence (4) simplifies to

Because (4') is the error/true-part decomposition of Y 's bare quadratic development \underline{Y}_{0}^{*}, the elements $\left[\underset{\sim}{2}\left(\underline{E}_{0}^{+}\right)\right]_{h 1, j k}$ of $Q_{m}\left(E_{0}^{+}\right)$are under index constraint $h \leq i$ and $i \leqslant k$. To avoid this expository nusiance, we shall speak instead of $Q_{m}\left(E_{0}^{+}\right)$'s full-quadraticdevelopment counterpart

$$
\begin{equation*}
Q\left(E_{0}^{\oplus}\right)={ }_{\text {def }} M\left(\underline{Y}_{0}^{Q}, \underline{Y}_{0}^{Q}\right)-M\left(\underline{I}_{0}^{Q}, \underline{I}_{0}^{Q}\right) \tag{5}
\end{equation*}
$$

and write $q_{h i, j k}$ for an arbitrary element thereof. That is,
for all $h, i, i, k=0,1, \ldots, n$, with $\underline{q}_{h i}, j k$ being also the < hi, fik>th element of $Q\left(\underline{E}_{0}^{+}\right)$iff $0 \leq h \leq i \leq n$ and $0 \leq j \leq \underline{k} \leq n$.

In Apperdix A, we show that each element of $\underset{\sim}{Q}\left(\mathrm{E}_{0}^{\infty}\right)$ is identical up to permutation of its four lst-order indices with some subscript instantiation in

$$
\begin{align*}
& a_{01,0 j}=0, \tag{6}\\
& g_{h i, j k}=0 \quad(\underline{h}, \underline{1}, \mathbf{i}, \underline{k} \text { all distinct }) \text {, } \\
& g_{1 i, j k}=\underline{c}_{j k u_{1}} \quad(\underline{i}, 1, \underline{k} \text { all distirct)}) \text {, } \\
& g_{01, \text { ii }}={\frac{u_{1}}{[3]}}^{[3]}\left(\text { centered } \eta_{i}\right) \text {, } \\
& =0 \text { in the strong error model, } \\
& \exists_{h i, i 1}=3 c_{h 1} \underline{u}_{i} \quad\left(0<\underline{h} \neq \underline{i} ; \text { centered } y_{i}\right) \text {, } \\
& \begin{aligned}
\underline{g}_{i i, j j} & \left.=\left(\underline{c}_{i i}-\underline{u}_{1}\right) \underline{u}_{j}+\left(\underline{c}_{j j}-\underline{u}_{j}\right) \underline{u}_{i}+\underline{u}_{i} \underline{u}_{j}\right\} \quad(\underline{i} \neq 1), \\
& =\varepsilon_{i} \underline{u}_{j}+c_{j j} \underline{u}_{i}-\underline{u}_{i} \underline{u}_{j}
\end{aligned} \\
& =\varepsilon_{i i} u_{j}+\varepsilon_{j j} u_{i}-\underline{u}_{i} u_{j} \\
& q_{1 i, 1 i}=6\left(\underline{c}_{1 i}-\underline{u}_{1}\right) \underline{u}_{1}+\underline{u}_{1}^{[4]} \\
& =6 \underline{c}_{11} u_{i}-3 y_{i}^{2} \text { in the strong error model. }
\end{align*}
$$

The elements of $Q\left(\underline{E}_{0}^{\oplus}\right)$ are indifferent to all permutations of their lst-order indices, which is to say not merely that $g_{h i, j k}=g_{j k, h i}$ and $\underline{q}_{h i, j k}=g_{i h, j k}=g_{h i, k j}$, but also $q_{h i, j k}=g_{h j, i k}=g_{j i, h k}$. When all I-variables have standard scales, i.e. zero means and unit variances, $\varepsilon_{i 1}=c_{j j}=1$ in the formulas for $g_{i i, j j}$ and $g_{i 1,11}$.

Given the lst-level data covariances, it is straightforward to produce 2nd-level error matrix $G_{m}\left(E_{0}^{+}\right)$from (6) either algebraically as a function of $C_{m} Y$ and the uaiqueness oarameters or as a numerical estimate derived from $C_{Y Y}$ and a provisional solution for the latter. And the solution algorithm can iterate estimation of $\left.\underset{m}{\mathrm{E}}{\underset{\sim}{0}}^{+}\right)$just as lst-level factor analysis has traditionally iterated uniqueness estimation when high-grade results are wanted. Whatever our provisional solution for ${\underset{\sim}{~}}^{2}\left(\mathrm{E}_{0}^{+}\right)$, this gives a corresponding estimate of the 2 nd-level true-parts ${ }^{\prime}$
 covariances and can be searched for interpretable structure by standard methods of matrix decomposition. But we have not yet considered what is there to be found.

Second-level factor patterns.

As already declared, we posit traditional factor model

$$
\begin{equation*}
\underline{t}_{i}=\sum_{j=1}^{n} \underline{a}_{i j} \underline{f}_{j} \quad(\underline{1}=1, \ldots, \underline{n} ; \underline{r}<n) \tag{7}
\end{equation*}
$$

for our centered lst-level data variables' true-parts, with the number x of lstlevel factors $\underline{f}_{1}, \ldots, f_{r}$ an open parameter. It is notorious that this decomposition of I is flagrantly nonunique, not merely under factor rotation but even in its dimensionality albeit we orthodoxly choose r as small as is compatable with good reproduction of the data covariances. Even so, for any specific choice of factors $\underline{F}=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ in (7) there is a corresponding factor decomposition of the trueparts $\underline{T}^{*}=\left\langle\ldots, t_{1 j}, \ldots\right\rangle$ of 2nd-level data variables \underline{Y}^{*}. For it is an obvious consequence of (2.2) and (7) that

$$
\begin{equation*}
\underline{t}_{h i}=\left(\sum_{j=1}^{n} \underline{a}_{h j} \underline{\underline{f}}_{j}\right)\left(\sum_{j=1}^{n} \underline{a}_{i k} \underline{f}_{k}\right)=\sum_{k=1}^{n} \sum_{j=1}^{n} \underline{a}_{h j} \underline{\underline{a}}_{i k} \underline{\underline{f}}_{j} \underline{f}_{k} . \tag{8}
\end{equation*}
$$

Let $\underline{F}^{*}=\left\langle\ldots, \underline{f}_{j k}, \ldots\right\rangle$ be the bare quadratic development of lst-level factors E, f.e.

$$
\underline{f}_{j k}={ }_{\operatorname{def}} \quad \underline{f}_{j} f_{k} \quad(\underline{j}=1, \ldots, \underline{\underline{k}} ; \underline{k}=1, \ldots, \underline{x}) .
$$

Thecry will soon prefer that we extend (8) into a 2nd-level factor pattern for the
 the pattern of T^{*} : upon the proper 2nd-level factors \underline{F}^{*}. Noting that $f_{j k}$ occurs twice in (8) if $\mathcal{L} \neq \underline{k}$, once as $f_{j} f_{k}$ and again as $f_{k} f_{j}$, we can rewrite (8) as

$$
\begin{equation*}
t_{h i}=\sum_{j=1}^{n} \sum_{n \cdot j}^{n} \underline{a}_{h i}, j k \underline{f}_{j k} \quad(n=1, \ldots, n ; 1=h, \ldots, n) \tag{9.1}
\end{equation*}
$$

wherein

$$
a_{h i, j k}=\operatorname{def}\left\{\begin{array}{cc}
a_{h j} a_{1 k}+a_{h k} a_{1 j} & \text { if } 1 \neq \underline{k} \tag{9.2}\\
a_{h j} a_{1 k} & \text { if } 1=\underline{k}
\end{array} .\right.
$$

Most noteworthy about (9) is simply its exhibiting how 2nd-level true-part variables T^{*} inherit a linear factor composition from any that holds for their lstlevel generators T. So this 2nd-level pattern, along with factor moments ${\underset{m}{m}}_{\left(F^{*}, F^{*}\right) \text {, }, ~}^{\text {(}}$ should be recoverable from $\mathbb{M}_{\left(T^{*}, T^{*}\right)}$ by methods already familiar in lst-level factoring. Indeed, the factor pattern in (9) appears even more strongly structured than is the lst-level pattern from which it derives: Whereas the number-of-factors/number-of-data-variables ratio at the lst level is r / n, at the 2 nd level this is only
$\underline{\underline{r}}(\underline{\underline{r}}+1) / n(\underline{n}+1) \simeq(\underline{r} / \underline{n})^{2}$. And 2nd-level variable $X_{h i}$ has appreciable loading on 2nd-level factor $f_{j k}$ only if y_{h} has appreciable loading on one of f_{j} or f_{k} while y_{i} loads appreciably on the other. So one might also anticipate that quad-factoring should identify simple-structure hyperplanes more sharply than lst-level factoring usually achieves. Jnhappily, our inquiry into this prospect suggests it to be largely illusory (cf. p. 22, below). But it still remains one incentive to explcre quad-factoring's potential with some care.

Why bother?

Eefore grubbing into solution details, some motivation stronger than hopes for pretty hyperplanes seems called for: It is all very well to observe that lstlevel factor patterns entail 2nd-level ones. But if the latter are redundant with the former, what point might there be in seeking solutions at both levels? Our wisdom in this regard is still too nascent for a confident answer. But we foresee two ways in which this may well orove profitable.

One important prospect lies in the lst-level/2nd-level pattern redundancy itself. It is well known that comen-factoring seldom picks out one particular solution as pronouncedly superior to all alternatives. Solving for lst- and 2ndlevel patterns simultaneously under constraint (9.2) in principle yields results more strongly overdetermined, and hence more finely discriminating of what seems ootimal, than lst-level analysis alone can provide. In particular, enhanced overdetermination should enable quad-factoring to capture factors too weak for detection at just the lst level. (How well this will work out in the teeth of sampling error and other real-data model violations remains to be seen; but the artificial-data stidies summarized in Appendix D are mildly encouraging.)

Even more provocative is what quad-factoring can tell us about the 3rd- and 4th-order moments of the lst-level factors. Identifying these higher factor moments is straightforward in principle: when our factoring of the $2 n d-l e v e l$ variables rotates their true-parts' factor axes to positions and scalings on which the 2nd-
level pattern is related to the lst-level one as (9) is to (7), then each 2nd-level factor is tagged as the product of two particular lst-level factors (or as the square of one). And the mean product of 2 nd-level factors $f_{h i}=f_{h} f_{1}$ and $f_{j k}=f_{j} f_{k}$, which we compute along with the factor pattern, is then a 4 th-order moment $\varepsilon\left[f_{h} \hat{\epsilon}_{i} \underline{f}_{j} f_{k}\right]$ of the lst-level factor distribution. More completely, analysis of combined-levels data variables Y_{0}^{*} gives us the array $\underset{\sim}{M}\left(F_{0}^{*}, F_{0}^{*}\right)$ of all F-moments throigh the 4 th order. And that in turn diagnoses, inter alla, whether some of lst-level factors F are themselves quadratic functions of the others, or nearly so. There is nothing in the linearity of an orthodox lst-level factor decompesition to preclude its being an artifact of what in reality is a curvilinear production of these outputs by their common causes. Specifically, (7) may well be a linear parameterization of some nonlinear determination

$$
t_{1}=\sum_{i=1}^{n} \underline{a}_{1 j} \phi_{j}\left(g_{1}, \ldots, a_{s}\right) \quad(i=1, \ldots, n)
$$

of the data variables' true-parts by certain sources $G=\left\langle g_{1}, \ldots, g_{s}\right\rangle$ of which the more manifest factors $\underset{F}{F}=\left\langle\underline{f}_{1}, \ldots, \underline{f}_{r}\right\rangle$ are various nonlinear composites $\left\{\underline{f}_{j}=\mathbb{g}_{j}(\underline{G})\right\}$. (Cf. MeDonald, 1962; Rozeboom, 1965, p. 523ff.) If so, Taylor-series expansion allows us to hove that many-with luck, most or all-of these $\gamma_{j}(\underline{G})$ are approximated by quadratic functions of G closely enough to leave negligible resifuals. (For example, f_{1}, \ldots, f_{5} might be centerings of quadratic functions $g_{1}, g_{2}, g_{1}^{2}, g_{2}^{2}, g_{1} g_{2}$, respectively, of just two real sources $G=\left\langle g_{1}, g_{2}\right\rangle$.) If so, whatever lst-level factors of \underline{Y} are quadratic functions of the others will lie in the quadratic space of $\underline{Y}_{0}^{\prime}$'s true-part T_{0}, and can be identified as such from $M\left(F_{0}^{*}, F_{0}^{*}\right)$.

Fragments of the theory of guadratic spaces (procis).

As you might expect, certain technicalities in the mathematics of quadratic functions have considerable importance for the theory of quadratic factoring. Those that we find especially salient are developed in Appendix C and sumarized here.
(Note: These definitions and their consequences are relative to some ifxed population over which the variables at issue have a joint frequency or probability distribution as required to define moments and functional dependencies.)

Definitions

Let $\underline{X}=\left\langle\underline{X}_{1}, \ldots, \underline{X}_{n}\right\rangle$ be any tuple (algebraically, a column vector) of variables. Then a variable \underline{z} is a quadratic function of X just in case, for some $\mathrm{n} \times \mathrm{n}$ symmetric real matrix $\underset{\mathrm{m}}{\mathrm{m}} \mathrm{z}=\mathrm{X}^{\prime} \mathrm{m}_{\mathrm{m}} \mathrm{X}$.

The quadratic space, Q_{X}, generated by variables X is the set of all variables that are quadratic functions of X.

The linear soace, $\mathcal{L} X$, of variables X is the space linearly spanned by X. That is, \mathcal{L}_{X} comprises all homogeneous linear functions of X.

A tuple X of variables is (implicitly) complete iff \mathcal{L}_{X} contains unit variable X_{0}, and is m(anifestly)-complete iff X_{0} is a component of X. If X is not m-complete, its \underline{m}-completion is $\left\langle X_{0}, X\right\rangle$.

Consequonces

If X is complete, the linear space \mathcal{L}_{X} of X is included in its quadratic space Q_{X}. That is, the quadratic functions of a complete X admit linear terms and additive constants.

If \underline{X} and \underline{Z} linearly span the same space $\mathcal{L}_{X}=\mathcal{L}_{Z}$, then \underline{X} and \underline{Z} also generate the same quadratic space $Q_{X}=Q_{Z}$.

The quadratic space G_{X} generated by variables X is also a linear space soanned, inter alia, by X^{*} and by $X^{\text {. }}$ However, Q_{X} is also linearly spanned by many other tuples of quadrstic functions of X which are not in general quadratic developments of any tuples in \mathcal{L}_{X}.

Hence when we seek to fit quad-factor model (9) to the quad-moments of cur datavariables' true-parts $\underline{T}=\left\langle\underline{t}_{1}, \ldots, t_{n}\right\rangle$, although the latter can routinely be decomoosed in classic form $\underset{m}{M}\left(\underline{I}^{Q}, \underline{I}^{\underline{Q}}\right)=\underset{\sim}{B M}(\underline{G}, \underline{Q}){ }_{M}^{\prime}$ for one or another linear basis \underline{G} of Q_{T}, an arbitrary choice of 2nd-level factors \underline{G} will almost certainly not be the quadratic development of any list-level factor basis for \mathcal{L}_{T}. This raises quad-factoring's alignment oroblem: when decomposing the lst- and 2nd-level true-part moments

 will show, the answer is hanpily straightforward.

If X is a basis for its linear space \mathcal{L}_{X}, X^{*} fails to be a linear basis for Q_{X} just in case, for some tuple \underline{Z} of variables in \mathcal{L}_{X}, all joint scores on \underline{Z} lie on a hyperbolic surface.

The significance of this theorem is, first of all, that $M\left(X^{*}, X^{*}\right)$ can be singular even when ${ }_{m}^{M}(X, X)$ is not, and secondly that singular $M_{m}^{M}\left(X^{*}, X^{*}\right)$ can arise in ways other than the one that seems most interpretively significant when \underline{X}^{*} is m-complete (see. p. $25 \mathrm{ff} .$, below).

Tensor-alcebraic formulations of guad-factoring relations.

For any tuple \underline{X} of variables, the full quadratic development $\underline{x}^{\hat{N}}$ of \underline{X} can be written as the Kronecker product of X with itself. That is,

$$
\underline{x}^{\oplus}=\operatorname{def} \operatorname{rec}\left(\underline{X X} \underline{x}^{\prime}\right)=\underline{x} \underline{x} .
$$

If \underline{Z} is in the linear space $\mathcal{L} X$ of \underline{X}, so that $\underline{Z}=\mathbb{A} X$ for some coefficient matrix $A, \underline{X}^{(}$determines $\underline{Z}^{\text {accoring to }}$

$$
\underline{Z}^{Q}=\underline{Z} \underline{Z}=\underline{A X} \underline{A} \underline{A} \underline{X}=(\underset{\sim}{A} \underline{A})(\underline{X} Q \underline{X})=(\underset{m}{A} A) \underline{Q} .
$$

Moreover, if \underline{X} is a basis for $\mathscr{L} X$, lst-level coefficient matrix A has a left-inverse A^{L} such that $A^{I_{A}}=I$, whence \underline{X} and \underline{X}^{Q} can be recovered from \underline{Z} by

Evidently we have not merely
in this case but also

The quad-factoring uniqueness theorem. Suppose that the quad-moments of variables I have a decomposition of form

$$
M\left(\underline{X}^{Q}, \underline{X}^{Q}\right)=(\underset{\sim}{A} \triangle \underset{M}{A}(A-A)
$$

for some identified matrix A having a left-inverse A^{L}. Then there exists a tuple of lst-level factors \underline{F} of \underline{X}, namely $\underline{F}=\operatorname{def} A^{\perp} \underline{X}$, such that

$$
\underline{X}=A F, \quad X^{Q}=(A M A) F^{Q}, \quad M(F, \underline{F})=M_{G} .
$$ Moreover, for any tuple of variables G in Q_{X} that reproduces the quad-moments of \underline{Y} by this same 2nd-level pattern $A \mathbb{A} \underset{m}{A}$, 1.e. for which $M\left(\underline{X}^{(N)}, \underline{X}^{Q}\right)=$ $(A \cap A) M(G, G)(A \cap A)$, we have $G=F_{a}^{\prime}$ for some lst-level factor tuple E_{a} only if F_{a} differs from E by at most a reflection of axes.

Hence we solve the alignment problem by imposing the constraint that the pattern matrix in our decomposition of true-part quad-moments $M_{m}\left(I^{\rho}, \underline{I}^{0}\right)$ have structure A for a left-invertible lst-level pattern matrix A. Choice of A is non-unique in the very same way that lst-level factor patterns are nonunique. But whatever side conditions suffice to select a specific A in $\underset{m}{M}(T, T)=\underset{\sim}{A M}(F, F) A_{m}^{\prime}$ (notably, accounted-for-variance maximization for initial extraction, eventually followed by rotation to simple structure) also suffice to identify a factor tuple satisfying the quadfactoring model that is essentially unique relative to I and A.

Inductive solutions for 2 nd-level factor patterns.

To embed lst-level factoring of data variables Y in $2 n d-l a v e l$ factoring of $\underline{Y}^{(}$(or rather, in practice, of \underline{Y}^{*}), we must include the unit variable among the lst-level factors as well as, for conccotual convenience, among the variables factored. Accordingly, we expand the orthodox lst-level arrays of data variables $\underline{Y}=\left\langle\underline{Y}_{1}, \ldots, \underline{I}_{n}\right\rangle$, their true-narts $\underline{T}=\left\langle\underline{t}_{1}, \ldots, t_{n}\right\rangle$, and their comr on factors $\underline{F}=$ $\left\langle\underline{f}_{1}, \ldots, \underline{f}_{r}\right\rangle$ into their respective m-completions $\underline{Y}_{0}=\left\langle\underline{Y}_{0}, \underline{\underline{Y}}\right\rangle, \underline{I}_{0}=\left\langle\underline{t}_{0}, T\right\rangle$, and
 menting (1) by the trivial ${\underset{O}{0}}=\underline{t}_{0}+\underline{e}_{0}\left(\underline{e}_{0}\right.$ constant at zero) extends our lst-level data varłables' true-part/error decomposition to

$$
\begin{equation*}
\underline{\underline{Y}}_{0}=\underline{T}_{0}+\underline{E}_{0} \tag{10}
\end{equation*}
$$

while lst-level factor model (7) becomes

$$
\underline{t}_{i}=\sum_{j=0}^{n} \underline{a}_{i j} \underline{f}_{j} \quad(i=0,1, \ldots, n)
$$

or equivalently

$$
\begin{equation*}
I_{0}=A F_{0} \tag{11}
\end{equation*}
$$

wherein ${\underset{m}{m}}^{\text {is }}$ of course the $(1+\underline{n}) x(1+\underline{r})$ matrix of pattern coefficients $\left\{\underline{a}_{1 j}\right\}$.
Compared to orthodox lst-level factor models, pattern matrix A in (11) has an extra row and an extra column. Its extra row, the pattern for t_{0}, is inflexibly all zero except $a_{00}=1$. In contrast, the added first column of A, i.e. the latlevel pattern coefficients $\left\{\underline{\underline{a}}_{10}\right\}$ on unit factor f_{0}, is open to a variety of numerical soecifications. Whether these make (11) differ more than trivially from conventional factoring depends on whether \mathcal{F} is constrained by orthogonality to f_{0}. (We use "orthogonality" here in its generic sense of zero expected pairwise products rather than its special sense of zero covariances.) If f_{1}, \ldots, f_{r} are required as usual to have zero means, i.e. to be orthogonal to \underline{f}_{0}, then $\underline{a}_{10}=\varepsilon\left[\underline{t}_{1}\right]$ $=m_{y_{1}}$ for each $i=1, \ldots, n-w h e n c e$ under centered scaling for I the first colum of A becomes all zerio save $a_{00}=1$. But allowing lst-level variables I to retain
natural means has no effect in this case on the rest of A. That is, so long as F is orthogonal to f_{0}, the nart of A that remains after deletion of its first row and column is some more-or-less orthodox nattern obtainable by factoring the \underline{Y}-covariances withcut regard for how the \underline{Y}-means are scaled.

On the other hand, if factors f_{1}, \ldots, f_{r} in (11) are not all orthogonal to \mathcal{I}_{0}, each \underline{a}_{10} continues to be the additive constant in \underline{X}_{i} 's regression upon $\underset{F}{ }$ but almost certainly differs from $\underline{\underline{m}}_{1}$. Allowing the $\underset{\text { F-means to be nonzero is not only }}{ }$ unconventional but would usually be unmotivated as well, especially for lat-level factorirg of centered data. Yet there do exist circumstances of quad-factoring, and even occasionally of ordinary lst-level factoring, in which it makes interpretive sense to allow factor rotations in which F becomes oblique to f_{0}. Quadratic factors are best initially extracted under orthogonality of F to \tilde{f}_{0}; but eventually we may find reasons to relax this constraint.
(Once we consider rotation of (11), still another possibility for the extended lst-level pattern is to let this comprise the coefficients for T_{0} on some basis F_{1} for F_{-}-space in which rotated axis tuple $F_{1}=W F_{0}$ is not m-complete. But we can think of no meaningful interpretation for the pattern AW^{-1} on factors so nositioned.)

Because $\underline{Y}_{0}=\left\langle\underline{Y}_{0}, \underline{\underline{Y}}\right\rangle=\left\langle\underline{Y}_{0}, \underline{Y}_{1}, \ldots, Y_{n}\right\rangle$ is m-complete, its full quadratic develooment

$$
\underline{Y}_{0}^{g}={ }_{\text {def }} \quad \operatorname{Vec}\left(Y_{0} Y_{0}^{\prime}\right)=\underline{Y}_{0} \underline{Y}_{0}
$$

comprises not merely the proper 2nd-level product variables $\left\{I_{1} I_{j}: 1,1=1, \ldots, n\right\}$ but all lst-level data variables $\left\{\underline{I}_{1}\left(=y_{0} \underline{Y}_{1}\right): \underline{1}=1, \ldots, n\right\}$ and unit variable y_{0} ($=y_{0} \underline{Y}_{0}$) as well. The true-part/error decomposition of $\underline{\underline{n}}_{0}^{0}$ is of course

$$
\begin{aligned}
\underline{Y}_{0}^{Q} & =\left(\underline{I}_{0}+\underline{E}_{0}\right) \cdot\left(\underline{I}_{0}+\underline{E}_{0}\right)=\left(\underline{I}_{0} \underline{I}_{0}\right)+\left(\underline{I}_{0} \underline{E}_{0}\right)+\left(\underline{E}_{0} \underline{I}_{0}\right)+\left(\underline{E}_{0} \underline{E}_{0}\right) \\
& =\underline{I}_{0}^{Q}+\underline{E}_{0}^{\theta}
\end{aligned}
$$

wherein $\underline{T}_{0}^{Q}=\underline{T}_{0} \underline{T}_{0}$ is the true-part of \underline{Y}_{0} 's full quadratic development \underline{Y}_{0}^{Q} while
the residual E_{0}^{θ} thereof is

$$
\underline{E}_{0}^{\oplus}=\operatorname{def} \quad \underline{I}_{0}^{0}-\underline{T}_{0}^{0}=\left(\underline{I}_{0} \underline{E}_{0}\right)+\left(\underline{E}_{0} \underline{I}_{0}\right)+\underline{E}_{0}^{0}
$$

So the 2rd-order moment matrix for \underline{Y}_{0}^{2}--which by virtue of $\underline{Y}_{0}^{\prime}$'s m-completeness actually comorises all Ψ-moments through the 4 th order-has composition

$$
\begin{align*}
& =\underset{m}{M}\left(T_{0}^{0}, T_{0}^{0}\right)+\underset{m}{Q}\left(E_{0}^{\oplus}\right) \text {, } \tag{12}
\end{align*}
$$

where total-error matrix $\underset{m}{Q}\left(E_{0}^{\oplus}\right)$ (see definition (5)) is specified by $M(Y, Y$) and the uniqueness parameters-namely ${\underset{m}{m}}^{u_{2}}\left\langle\underline{u}_{1}, \ldots, u_{n}\right\rangle$ and, if not presumed Normal, ${\underset{m}{u}}_{[3]}^{[3]}\left\langle\underline{u}_{1}^{[3]}, \ldots, \underline{u}_{n}^{[3]}\right\rangle$ and ${\underset{m}{u}}_{[4]}^{[3]}\left\langle\underline{u}_{1}^{[4]}, \ldots, \frac{u}{n}_{[4]}^{[4}\right\rangle$-according to (6). Conditional on our choice of error-model strength, let us say

$$
\underset{m}{u^{+}}=\operatorname{def}\left\{\begin{array}{l}
\underset{m}{u} \text { if Normality of both }{\underset{m}{u}}_{[3]} \text { and }{\underset{m}{u}}_{[4]} \text { is presumed } \\
\langle\underset{\sim}{u}, \underset{\sim}{u} \\
\langle 4]\rangle \text { if Normality just of } \underset{m}{u_{m}^{u}}[4], \underset{m}{[3]} \text { is presumed }
\end{array}\right.
$$

(These are the only a priori error-model alternatives that we have programred. But additional variants would be routine to include were not need for them obviated by our new technique, described in Appendix B, for ad hoc relaxation of (6) at points of greatest model misfit.) It is straightforward to program specifications (6) into an algorithm that maps $M\left(\Psi_{0}, \underline{\Xi}_{0}\right)$ and anj numerical estimate of ${\underset{m}{t}}^{+}$into a corresponding numerical estimate of $Q\left(E_{0}^{+}\right)$and from there of $M\left(T_{0}^{\infty}, T_{0}^{9}\right)$. And starting from any initial estimate of ${\underset{m}{u}}^{+}$(as provided, say, by orthodox lst-level factoring of $\underset{m}{C}(\underline{Y}, \underline{Y}$) along with the strong error model), we are able to iterate improvements on this as the analysis progresses. So estimating $M\left(T_{0}^{Q}, T_{0}^{9}\right)$ is essentially routine. Our main problem is how to convert the latter, in turn, into richer information about factors F and their determination of I than can be extracted just from $\underset{\sim}{C}(\underline{\underline{Y}}, \underline{\underline{Y}})$.

According to model (11), the full quadratic development of our data variables ${ }^{\prime}$ true-parts has composition

So the quad-momerts of T_{0} decomoose as

$$
\begin{equation*}
M\left(T_{0}^{Q}, I_{0}^{Q}\right)=(\underset{m}{A} \underset{m}{A}) M\left(\underline{E}_{0}^{2}, \underline{F}_{0}^{Q}\right)\left(A A_{m}^{A}\right), \tag{14}
\end{equation*}
$$

and the task of quadratic factor analysis is to find estimates of A and $\underset{m}{M}\left(\mathbb{F}_{0}^{\mathbf{m}}, \underline{F}_{0}^{(Q)}\right)$ which, together with our estimates of the error terms in $\underset{m}{Q}\left(\underline{E}_{-0}^{\oplus}\right)$, tidily reproduce data quad-moment matrix $M\left(Y_{0}^{8}, \underline{Y}_{0}^{8}\right)$. or rather, this is quad-factoring's theoretically versoicuous descriotion. In practice, since (13) relates the full quadratic development of T_{0} to that of \underline{F}_{0}, there are massive redundancies in (14) that make direct analysis of $M\left(T_{0}^{Q}, T_{0}^{2}\right)$ inexoedient. Far easier is to work instead with the counterparts of (13/14) for the bare quadratic developments of I_{0} and E_{0}, namely,

$$
\begin{align*}
& \underline{T}_{0}^{*}=A_{A} \underline{F}_{0}^{*}, \tag{13a}
\end{align*}
$$

In which the elements of A_{*} are derived from those of A_{m} according to formula (9) exmanded to include index 0 . That is, for $h=0,1, \ldots, \underline{n}, \underline{i}=\underline{h}, \ldots, n, i=0,1, \ldots, \underline{r}$, $\underline{k}=1, \ldots, \underline{\underline{r}}$,

$$
\left[A_{m}\right]_{h 1, j k}=\left\{\begin{array} { c l }
{ [A] _ { h j } [A] _ { i k } + [A] _ { h k } [A] _ { 1 j } } & { \text { if } \underline { j } < \underline { k } } \tag{15}\\
{ [A] _ { h j } [A] _ { i k } } & { \text { if } \underline { j } = \underline { k } }
\end{array} \quad \left([A]_{01}=\left\{\begin{array}{ll}
1 \text { if } \underline{i}=0 \\
0 \text { if } \underline{1}>0
\end{array}\right)\right.\right.
$$

Since A_{m} is the upper-left $(1+n) x(1+\underline{r})$ submatrix of both A and A_{m}, any one of
 deleting from the former all rows $h i$ and column ik for which $h>i$ or $1>k$. Oparationally, we disregard $\underset{m}{M}\left(T_{0}^{9}, I_{0}^{\text {i }}\right)$ altogether and instead estimate $M\left(\underline{T}^{*}, \underline{T}^{*}\right)$ directly from $M\left(Y^{*}, \underline{I}^{*}\right)$ and our running estimate of the error terms in (12)'s counterpart

$$
\begin{align*}
M\left(\underline{Y}^{*}, \underline{I}^{*}\right) & =M\left(\underline{T}_{0}^{*}, \underline{T}_{0}^{*}\right)+M\left(\underline{I}_{0}^{*}, \mathbb{E}_{0}^{+}\right)+M\left(\underline{E}_{0}^{+}, \underline{T}_{0}^{*}\right)+M\left(\underline{E}_{0}^{+}, \underline{E}_{0}^{+}\right) \tag{12a}\\
& =M\left(\underline{T}_{0}^{*}, \underline{T}_{0}^{*}\right)+\underline{Q}\left(E_{0}^{+}\right) \quad .
\end{align*}
$$

(We have oreviously written (12a) as equations (4) and (4').) Combining our two
moment models--the one for errors and the one for factors-into a single equation, we can then say that quad-factoring is a decomposition of the data variables' quadmoment matrix having form

$$
\begin{equation*}
M\left(Y_{0}^{2}, Y_{0}^{2}\right)=(\underset{m}{A} A) M\left(\underline{E}_{0}^{Q}, \underline{F}_{0}^{2}\right)\left(A A_{m}^{A}\right)+\underset{\sim}{Q}\left(E_{0}^{\oplus}\right) \tag{16}
\end{equation*}
$$

or less redundantly

Wherein A_{m} has structure (15) while $Q\left(E_{0}^{\oplus}\right)$ and its less redundant subarray $Q\left(E_{0}^{+}\right)$are soecified from $M\left(\underline{m}, \underline{Y}\right.$) and uniqueness parameters ${\underset{m}{+}}^{+}$by model (6).

In principle, it should be routine to solve the quad-factoring model by any modern structursl-modelling logic such as LISREL or RAM (McArdle \& McDonald, 1984). The composition of equations $(6,15)$ into equation ($16 a$) defines a computable function Φ from guesses $\left\langle\hat{u}_{n}^{+}, \hat{A}, \hat{M}_{\mathrm{M}}\right\rangle$ at $\left\langle{\underset{m}{u}}_{+}^{+}, \underset{m}{A}, M_{m}\left(F_{-}^{*}, F_{-}^{*}\right)\right\rangle$ into reproductions of data array $\underset{m}{M}\left(Y_{0}^{*}, Y_{0}^{*}\right)$. So relative to any chosen loss function, the best estimate of our empirical quad-moments' source darameters is the $\left\langle\hat{u}_{m}^{+}, \hat{A}_{m}^{A}, \hat{M}_{F}\right\rangle$ for which the loss of approximating $\underset{m}{M}\left(\underline{Y}_{0}^{*}, \Psi_{0}^{*}\right)$ by $\Phi\left({\underset{m}{u}}_{+}^{+}, \underset{m}{A}, M_{m}\right)$ is minimal. In practice, however, the problem size for quad-factoring even modestly many data variables is so large that we have not yet managed to set up the subroutines required for a complete structural-modelling solution. We have, however, operationalized solutions using more classical routines that allow quad-factoring to be tested in practice even as we seek more powerfin algorithms that lessen certain admitted suboptimalities in our present procedure.

In fact, we have devised a spectrum of quad-factoring alternatives, selected by control-parameter specification in our generic QTADFAC progrsm and differing inter alia in how strong an error-model is presumed crossed with what portion of comolete residual array (6) is used to estimate u. (QUADFAC 's FORTRAN-77 source code, together with a package of supporting programs, is available. Ask and ye shall receive.) At one extreme--call this "fast QTADFAC"--the routine is computationally quite frugal, albeit by deriving the factor pattern just from the lat-lovel data
covariances and thus losing the higher-moment pattern information whose exploitation is one of quad-factoring's hoved-for benefits. In contrast, QTADFAC's other versions use all the data quad-moments for identifying the factor pattern, though at computer costs several times that of fast $\operatorname{CTACF} \dot{C}$ and still not as thoroughly as we hope ultimately to attain. Details of PTADFAC's solution logic are develoded in Appendix B, while Annendix D compares ajaDEAC's accuracy at Darameter recovery from artificial data under all its main procedural variants crossed with variation in factor structure and sampling noise.

Interoretation of results.

Once QTJADFAC iteration has converged upon estimates of ${\underset{m}{u}}_{+}$and the $\left\langle A, M\left(\bar{Y}_{-1}^{*}, Y_{0}^{*}\right)\right\rangle$ defined by nrincipal-axes positioning of $\underset{-}{F}$ with $\underset{m}{M}\left(\underline{Y}_{0}^{*}, Y_{0}^{*}\right)$-reproduction loss small enough to warrant taking the results seriously, we turn to final adjustments that enhance meaningfulness of results. (We shall not here distinguish notationally between model darameters and our computed estimates thereof.) First comes rotation of lst-level factor axes to Dositions that seemingly make the greatest interpretive sense. Quadratic factor theory is entirely oven to any criterion for this; but We shall oresime that you share our preference for oblique simple structure.

Rotation of axes.

If lst-level factor axes ${\underset{F}{0}}$ in $T_{0}={\underset{\sim}{A}}^{A} F_{0}$ are rotated to $G_{0}=W F_{0}$, the effect thereof on factor pattern at both lst and 2nd levels is

$$
\underline{T}_{0}=\left(\underset{m}{A W^{-1}}\right) \underline{G}_{0}, \quad T_{0}^{*}=\left(A W_{m}^{-1}\right)_{*} G_{0}^{*}, \quad T_{0}^{0}=\left(\underset{m}{A W^{-1}} \underset{m}{A W^{-1}}\right) \underline{G}_{0}^{0}=\left(A A_{m}^{A}\right)\left(N W_{m}\right)^{-1} \underline{G}_{0}^{Q},
$$

where () is the function defined by equation (15). And the rotated factor quadmoments are

$$
\underset{m}{M}\left(\underline{G}_{0}^{*}, G_{0}^{*}\right)={\underset{m}{*}}_{W_{m}}^{M}\left(F_{0}^{*}, F_{0}^{*}\right) W_{m}^{\prime}, \quad \underset{m}{M}\left(G_{0}^{0}, G_{0}^{Q}\right)=(\underset{m}{W} \underset{m}{W}) \underset{m}{M}\left(F_{0}^{O}, E_{0}^{0}\right)(\underset{m}{W})^{\prime} .
$$

It is evident here that when positioning factor axes, quad-factoring is not limited to selection of ${ }^{\mathrm{d}} \mathrm{d}$ just in light of what this does to rotated lst-level pattern AW^{-1}
but can examine its offect on the much larger coefficient array (AAA) (NAN $)^{-1}$. We might hove, therefore, that simole-structure hyperplanes can be discerned more sharply in a quadratic factor pattern than are clear in just the embedded lst-level rattern. And to our surprise we find that solving for in $(A 8 A)(N 8)^{-1}$ to maximize 2nd-level hyoerolane strength is indeed operationally feasible. Disaprointingly, however, the theory of this shows also that $2 n d-l e v e l$ rotation of the pattern in $T_{0}^{2}=(A \operatorname{A}){\underset{O}{0}}^{2}$ is virtually equivalont to rotating the lst-lovel pattern in

$$
\left[\begin{array}{c}
\vdots \\
\vdots \\
\underline{a}_{1 j} \underline{I}_{0} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\vdots \\
\vdots \\
\underline{a}_{1 j j_{m}^{A}} \\
\vdots
\end{array}\right]{ }_{-0}
$$

 the various elements aif $_{\text {if }}$ of. And there is no evident reason why any such aggregated multicooying of lst-level pattern $\underset{m}{A}$ should demark hyperplanes more clearly than dces A by itself. (If you look at the multicopied pattern olot for one pair of factor axes, you'll see what we mean.)

Accordingly, with one important exception (namely, cases where we suspect that some dimensions of $\mathscr{L} F_{0}$ are quad-functions of otrers--see below, we recommend that factor axes be terminally positioned by rotating just the lst-level part A of iritial 2nd-level oattern $A_{\#}$ * to simple structure by whatever algorithm for this Vou prefer, with subsequent use of the W so found to compute the rotated factor quad-moments (and, if you want it, the rotated $2 n d-l e v e l$ pattern) as shown above. (If you feed your QJADFAC output into the HYBALL orogram for lst-level factor rotation described in Rozeboom, 198 , your rotated oattern printout will be automatically accompanied by the rotated factor quad-moments.) And we also recommend constraining this rotation to form

$$
\left[\begin{array}{l}
\mathbf{E}_{0} \\
\underline{G}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & W_{F}
\end{array}\right]\left[\begin{array}{l}
\underline{f_{0}} \\
\underline{F}
\end{array}\right]
$$

with rotation of initial nattern $A=\left[\begin{array}{ll}1 & 0 \\ m_{Y} & A_{F}\end{array}\right]$ correspondingly restricted to form

$$
A_{n=1}^{A^{1} W^{-1}}=\left[\begin{array}{cc}
1 & 0 \\
m_{Y} & A_{m} W_{F}^{-1}
\end{array}\right]
$$

This keeos the rotation fust within the sibspace of F_{0} orthogonal to f_{0}. As observed earlier (0.17), the main alternative to this constraint is to fix $f_{0}\left(=g_{0}\right)$ but allow G to become oblique to g_{0}. A minor reprogramming of HYBALL can easily accomDlish this, but it serves no purpose unless data variables I have non-arbitrary means. For allowing obliquity of G to \mathcal{E}_{0} affects the pattern attainable on \underline{G} only in the colum scalings that normalize factor variances; and although it can simplify the pattern on f_{0} when this initially contains natural means, the first column of $\underset{m}{A}$ is already ideal by artifice when the data variables are centered.

What to do with factor quad-moments.

Let us revert to notation "F" for the lst-level factors we howe to interpret, however these may have been repositioned after initial extraction. Now that our solution for $M_{m}^{M}\left(F_{0}^{*}, F_{0}^{*}\right)$ has given us the $F-d i s t r i b u t i o n ' s ~ m o m e n t s ~ t h r o u g h ~ t h e ~ 4 t h ~$ orier, what good is this information?

Having raised this question, we must confess that our ability to answer it is still rather limited. But the obvions first interpretive step is to check out $\underset{m}{M}\left(F_{-}^{*}, F_{0}^{*}\right)$'s compatability with our sample F-distribution's being viewed as approximately Normal. Were $\underset{F}{ }=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ to be Normally distributed, with the lst-level moment matrix for its m-completion Gram-factorable as $M\left(F_{0}, F_{0}\right)=W_{-m}^{W}$, the bare quad-moment matrix for $\underline{F}_{0}=\left\langle\underline{f}_{0}, \underline{F}\right\rangle$ would be

$$
\underset{m}{M\left(F_{0}^{*}, \underline{F}_{0}^{*}\right)=W_{m} W_{m m} K W_{m}^{\prime}, ~}
$$

wherein $\underset{\mathrm{m}}{\mathrm{K}}$ is the bare quad-moment matrix for the m-completion of any r-tuple of Normal variables that are also centered and orthonormal. Soecifically,

$$
\begin{aligned}
& {[\underset{\sim}{K}]_{i 1, j j}=[\underline{K}]_{j j, 1 i}=\left[K_{m}\right]_{1 j, i j}=1 \quad(\underline{1}<\underline{1})} \\
& {\left[K_{i 1, i i}= \begin{cases}1 & \text { if } \underline{1}=0 \\
3 & \text { if } \underline{i}>0\end{cases} \right.}
\end{aligned}
$$

$$
[\mathrm{K}]_{\mathrm{hi}, j k}=0 \text { otherwise } .
$$

 for orthonormal ${\underset{F}{O}}$) to $\underset{m}{K}$ avoraises the degree of Normality in $\underset{m}{F}$'s quad-moments. If this comparison Aiscredits the hyoothesis of factor Normality (a judgment which by rights should include some statistical tecting whose analytic develooment lies beyond our competence), whatever featires of the rotated factor quad-moments appear most saliently nonNormal stand as empirical disclosures awaiting explaination by sibstantive theories of these data.

Ceneric interoretation of nonNormality in factor quad-moments is still largely terra incognita for us. Even so, we direct your attention to two special nrospects, one minor but the other major. The first is diagnosis whether any of the E-factors are dichotomous. Despite the optimism of Gangestad \& Snyder (1985), however, we doibt that many dichotomous source variables are out there awaiting detection. More orovocative is the prospect that arises when near-zero roots in
 any generic significance deeper than the hyperbolic-surface theorem reported on o. 14, above, we do not know. But one outstandingly important way for F_{-}^{*} to contain linear dependencies is for some of lst-level factors ${\underset{\sim}{f}}^{F_{0}}=\left\langle f_{0}, f_{1}, \ldots, f_{r}\right\rangle$ to be quadratic functions of the others. For f_{1} is in the quadratic space of, say, $\underline{X}_{0}=$
 And if f_{s+1}, \ldots, f_{r} are all quadratic functions of X_{0}, then the lst-level data variables' true parts that we have found to be linoarly decomposable as $T_{0}=A F_{0}$ are reslly quad-functions just of \underline{X}_{0}. So quad-factoring is in effect also a version of nonlinear factor analysis (see McDonald, 1967; Etezadi-Amoli \& McDonald, 1983) --not however by coersion but by permissive discovery.

Diagnosis of dichotomies. For any variable x with mean μ_{x} and variance σ_{x}^{2}, the skew skx and kurtosis kt_{x} in a given distribution of x may be defined

$$
\underline{s k}_{x}=\operatorname{def} \varepsilon\left[\left(\underline{x}-m_{x}\right)^{3}\right] / \sigma_{x}^{3}, \quad \underline{k t}_{x}=\operatorname{def} \varepsilon\left[\left(x-m_{x}\right)^{4}\right] / \sigma_{x}^{4}
$$

(Ne dedart here from the tradition of defining kurtosis as kt minus 3. The subtraction makes a comparison to Normality that analytically is a useless comolication.) And for the list-level factors $E=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ whose quad-moments are foumd by QJADFAC under assignment of standard scaling, this becomes simoly

$$
\underline{s k}_{f_{i}}=\left[M_{m}^{M}\left(\underline{F}_{0}^{*}, \underline{F}_{0}^{*}\right)\right]_{O 1,11}, \quad \operatorname{kt}_{f_{i}}=\left[\underset{m}{M}\left(\underline{F}_{0}^{*}, F_{0}^{*}\right)\right]_{1 i, 1 i} .
$$

Now, it is easy to show that if numerically scaled variable x is dichotomous, with $g_{x}\left(q_{x}\right)$ the DoDulation proportion in its higher (lower) category,

$$
\left.\underline{k t_{x}}+3=\left(\mathrm{p}_{\mathrm{x}}^{\mathrm{q}_{x}}\right)^{-1}=\underline{\mathrm{sk}}_{\mathrm{x}}^{2}+4 \quad \text { (dichotomous } \underline{x}\right)
$$

So quad-factoring anpraises whether lst-level factor f_{i} is dichotomous by fudging whether $\left[M\left(F_{-}^{*}, F_{-}^{*}\right)\right]_{i i, i 1}$ is essentially equal to $1+\left[M\left(F^{*}, F^{*}\right)\right]_{0 i, i i}^{2}$. Tnhapoily, our Derformance studies show that with noisy data, QJADFAC's present computations of ten overestimate factor kurtosis, sometimes disagreeably so. But we are confident that reliability of the factor quad-moment solution can be substantially improved.

Diagnosis of guadratic factor dependencies. In principle, it is entirely straightforward to determine which dimensions of F-space, if any, are quadratic functions of others. Sumoose that \underline{Z} and X are subsets of factors $E=\left\langle f_{1}, \ldots, f_{r}\right\rangle$, or of some rotation of \underline{F}, while $\underline{X}_{0}=\left\langle\underline{X}_{0}, \underline{X}\right\rangle$ is the m-completion of \underline{X}. (\underline{X} and \underline{Z} need not be disjoint; in fact, for some purnoses we want $\underline{Z}=\underline{F}$.) Then the quadratic regression of Z upon X is $\underset{Z}{\dot{Z}}=B_{Z} X_{0}^{*}$ for coefficient matrix

$$
\underset{m}{B_{Z}}=\underset{m}{M}\left(\underline{Z}, X_{0}^{*}\right){\underset{m}{M}}^{+}\left(\underline{X}_{0}^{*}, X_{0}^{*}\right),
$$

where $\mathrm{Mm}^{+}\left(\underline{X}_{0}^{*}, \underline{X}_{0}^{*}\right)$ is the inverse or, when necessary, the nseudo-inverse of $\underline{X}^{\prime} s$ quadmoment matrix. And the diagonal of

$$
\begin{equation*}
\underset{M}{M}\left(\underline{Z}, \underline{Z} ; \underline{X}_{0}^{*}\right)=\underset{m}{M}(\underline{Z}, \underline{Z})-\underset{m}{M}\left(\underline{Z}, \underline{X}_{0}^{*}\right) M_{m}^{+}\left(\underline{X}_{0}^{*}, \underline{X}_{0}^{*}\right) M_{m}^{\prime}\left(\underline{Z}, \underline{X}_{0}^{*}\right) \tag{17}
\end{equation*}
$$

comorises the residual variances of factors Z after their quadratic regression on X
is oartialled out. When X and \underline{Z} are both subtuples of \underline{F}, all terms on the right in (17) are contained in $M\left(F^{*}, \underline{F}^{*}\right)$; whence to judge which factors in \underline{Z} are (nearly) quadfunctions of factor subtiple \underline{X} we need only compute the diagonal elements of $\underset{m}{M}\left(\underline{Z}, \underline{Z} ; X_{0}^{*}\right)$ and note which ones are (nearly) zero. Supoose that when X_{0} and Z jointly span $\mathcal{L} F_{0}$, 911 factors in Z pass this zero-residuals test. Then all dimensions in linear ${\underset{\sim}{0}}^{-}$ space, the true-parts of \underline{Y} in particular, are quad-functions just of \underline{X}_{0}. And the composition of $\dot{Z}={\underset{\sim}{Z}}_{Z}{\underset{\sim}{X}}_{0}^{*}$ into the components of \underline{Z} on the right in $T_{0}={ }_{n}^{A F} \mathcal{F}_{0}$ yields coefficionts for the outative quadratic determination of I_{0} and hence \underline{I}_{0} by lstlevel factors X_{0}.

Practical application of this quad-dependency diagnostic, however, incurs a comolication whose management seems clear in theory but requires nonlinear-optimization orograming that we have not yet accomplished: What dimensions of E-space should we olck for X and Z ? When rotation of lst-level axes has properly aligned F with genuine causal sources of data variables I, it suffices to apply (17) to each partition $\langle\underline{X}, \underline{Z}\rangle$ of \underline{F}, with the number s of dimensions in X taken first to be $\underline{g}=\underline{r}-1$, next to be $\underline{s}=\underline{r}-2$, and so on, stopoing when no s-selection from E quadratically accounts adequately for F's remainder. But interpretively optimal factor positioning $^{\prime}$ is a chancy attainment at best. Our only decent criterion for this is simple structure; yet it does not take much meditation on the logic of single-plane rotation to appreciate how unreliable we must expect this to be. And when we suspect that some of the factors in a suitably rotated F are quad-functions of others, simple structure is not even approoriate in all planes: When $\underline{f}_{\mathrm{j}}$ is a quad-function of, inter alia, f_{i}, we still wish to maximize the number of pattern points in the f_{i} / f_{-m} olane that lie close to the f_{i}-axis; but there is no rationale for trying to achieve the same for the f_{j}-axis unless data variables I all have natural means, i.e., no scale centering. (To appreciate this point, consider the simple structure of Galileo's law of falling bodies before and after centering in a distribution of distance-and-duration-of-travel observations.) And proper axis placement is crucial
for disclosure of factor quad-ievendencies by diagnostic (17), insomuch as when E has an $\langle\underline{X}, \underline{Z}$ partition for which non-null Z is quad-devendent on X, this does not generally remain true under rotation of F.

For any $s<\underline{I}$, one way to find \underline{s} independent dimensinns \underline{X} of linear F_{-}-space that best fit the hypothesis $\mathcal{L} F_{0} \subset Q_{X_{0}}$--the simplest we have been able to envision-is as follows: Starting with F_{O} orthonormal, let $\underset{m}{\mathrm{R}}$ be an arbitrary $(1+\underline{s}) \times(1+\underline{r})$ row-wise orthonormal coefficient matrix whose first row and column are all zero except a leading 1. Then

$$
\underline{X}_{0}=\left\langle\underline{x}_{0}, \underline{X} \underline{X e f}_{\operatorname{def}} \underset{\sim}{R} \underset{-0}{ }\right.
$$

is an m-complete orthonormal basis for some (l+g)-dimensional subspace of $\mathcal{L}_{F_{0}}$, while the bare quadratic develonment of X_{0} is

$$
{\underset{0}{X}}_{X^{*}}^{R_{*}} \underline{F}_{0}^{*}
$$

With $\underset{m}{R}$. defined from $\underset{m}{R}$ by the form-(15) expansion. If each ${\underset{-N}{-}}^{-}$-factor is in $Q X_{0}$, as we hone to achieve by suitable choice of \underline{s} and \underline{R}, there exists some coefficient

Although we have not yet accomplished the programing, solution of (18) for bestfitting B_{F} and $\underset{m}{R}$ is a straightforward application of modern structural modeling.

$$
\begin{equation*}
\underset{m}{M}\left(F_{0}, F_{0}\right)=\left({\underset{m}{F}}_{F_{m}}^{R_{n}}\right) \underset{m}{M}\left(F_{-0}^{*}, \underline{F}_{0}\right), \tag{19}
\end{equation*}
$$

albeit we are not sure how easily extant structural-modeling programs can be adapted to (19)'s asymmetry in its unknowns. Once a solution of (18) or (19) is in hand, lst-level dattern A of \underline{I}_{0} upon initial factors F_{0} converts immediately into coefficient matrix $\underset{m m}{A B}$ of \underline{I}_{0} 's quad-dependency upon $X_{0}(=\underset{m}{R})$.

For fixed s, the solution for best-fitting B_{F} and ${\underset{m}{m}}^{R}$ in (18) or (19) is unique only under side conditions defining an arbitrary placement of axes in X-space. So once we have found T_{0}^{\prime} 's quadratic determination $T_{0}=A B_{F} X_{0}^{*}$ by the initially positfoned X we want to search out a transformation matrix $\underset{m}{W}$ in
that rotates X to an interncetively optimal pattern on $\left(\underset{M}{W} X_{0}\right)^{*}$. Although we are
 rewrite (20) as T_{0} 's linear dependency on the frill quadratic develooment ($W_{0} \mathcal{N}_{0}$)

$$
\begin{equation*}
T_{0}=A B_{Q}\left(W^{-1} W^{-1}\right)\left(W_{-}^{W}\right)^{2} \tag{21}
\end{equation*}
$$

 how to find the W_{M}^{N} that optimizes simple structure in rotated pattern $A B_{Q}\left(W_{m}^{-1} W_{m}^{-1}\right)$, and that converts directly to a corresponding simple-structured $A B_{F_{n}} W^{-1}$. When solution algorithms for (18) or (19) become available, we will pass along this rotation technique as well.

Bottom-line Practicalities.

Tnless you are working with data whose latent-source theory has evident distributional implications, you will probably see little reason to give quad-factoring a try until its programming includes the promised routine for identifying factor quad-dependencies. Even so, thinking about what you might do with factor quadmoments may tempt you to take the next step of actually harvesting this information from whatever multivariate data arrays are your cimrent concern. So we had best warn you sbout a practical limitation on quad-factoring that will likely persist even aftor QTADFAC's computational procedures have been optimized. This is simply that quad-factoring requires orocessing of number arrays whose dimensions are roughly provortional to the squares of the corresponding array sizes in lst-level factoring;
and these quickly become enormous as the number of list-level variables becomes appreciable. Not merely does this make for expensive computing, you may woll find that the number of variables you wish to quad-factor exceeds the capacity of any mainframe comouter to which you have local access. For examole, the infv. of Alberta's Amdahl 5870, with 32 megabytes of memory, will allocate quad-factoring storage space for no more than 15 lst-level variables. The new generation of super-computers should be somewhat more dermissive than this, just how much so we are now attempting to ascertain. But even so, the size-window for effective quad-factoring, bounded from below by the number of lst-level variables required for an informative moment structire and from above by computer caoacity, will probably always remain uncomfortably narrow.

To prevail over this window-of-effectiveness bind, applied quad-factoring needs to select its data with exceptional care. For it cannot count on substantial model violations to be averaged out by abundant data redundancies; rather, one or two lst-level variables that fit poorly may suffice to muddy parameter recovery beyond the limits of useful return. (We do not know this to be so, but see good reason to fear it.) Accordingly, it seems best that empirical quad-factoring resparch be conducted as a two-stage operation whose first stage is a brutal pruning from one's original battery of data measures those that exhibit conspicuous anomalies --large residuals and method chatter--in preliminary quad-factorings. Specifically, if the maximum number, n_{T}, of $1 s t-l e v e l$ measures to which your computer can allocate quad-factoring storage space is less than the number on which you have sample data, you can scan your full array by fast-QTADFAC rum on assorted H_{T}-item subsets thereof. The orint-out shows reproduction errors specifically associated with each variable, as well as u-estimates from all four levels of model-(6) utilization described in Appendix B; and this should tell you what oick of at most ar of these items can be passed on to more intensive QTADFAC analysis with minimal manifest model misfit.

And one other admonition: Don't bother to quad-factor small-sample data. Although our studies of QTADFAC performance are still too narrow for arthoritative
conclusions, we have investigated various levels of sampling noise in arrays of 8 and 12 lst-level variables. (See Appendix D for the 8 -variable results.) And Whereas source-parameter recovery is near-perfect for artificial data from infinite populations (i.o., no sampling error), and gratifyingly accurate from samples of size 1000 , recovery from samples of size 100 is a matter of mirth.

Anderson, T. N. (1959). Some scaling models and estimation procedures in the latent cias model. In Grenander, T. (ed.) Probability and Statistics. New York: Wiley. Bentler, P. (1983). Some contributions to efficient statistics in structural models; specification and estimation of moment structures. Dsychometrika, 48, 493-517. Etezadi-Amoli, J., \& McJonald, R. D. (1993). A second generation nonlinear factor analysis. Psychometrika, 48, 315-342.
Cangestad, S., ? Snyder, M. (1985). "To carve natrere at its joints": On the existence of discrete classes in nersonality. Psychological Review, 92, 317-349.

Kenny, D. A., \& Jidd, C. M. (1984). Estimating the nonlinear and interactive effects of latent varisbles. Psychological Bulletin, 96, 201-210.
Lazarsfeld, P. F. (1959). Latent structure analysis. In: Koch, S. (ed.), Psychology:
A Study of a Science, Vol. 3. Mew York: McGraw-Hill.
Lazarsfeld, P. F., \& Henry, N. W. (1968). Latent Structure Analysis. Boston: Houghton Mifflin.

McArdle, J. J., \&e McDonald, R. P. (1984). Some algebraic properties of the reticilar action model for moment structures. The British Journal of Mathematical and Statistical Psychology, 37, 234-251.
Mchonald, R. P. (1962). A general aporoach to nonlinear factor analysis. Psychometrikg, 27, 397-415.
$\xrightarrow{M c D o n a l d, ~ R . ~ P . ~(1967) . ~ N o n l i n e a r ~ f a c t o r ~ a n a l y s i s . ~ P s y c h o m e t r i k a ~ M o n o g r a p h s ~ N o . ~} 15$.
Mooijaart, A. (1985). Factor analysis for non-normal variables. Psychometrika, 50 , 323-342.

Pollock, D. S. G. (1979). The Algebra of Econometrics. Chichester, England: Wiley \& Sons.

Rozeboom, N. W. (1966). Foundations of the Theory of Prediction. Homewood, Ill.: Dorsey Press.

Rozeboom, i. W. (198). HYBALL: A. method for subspace-constrained oblique factor rotation. (Forthcoming)

Rozeboom, W. W. (198). Factor indeterminacy: The saga continues. (Forthcoming)
McDonald, R. P. (1982). Linear versus nonlinear moriels in item response theory.
Anolied Psychological Measurement, 6, 379-396.

Aopendix A．Derivation of the guad－error exoectations．
Problem：To determine the expected values of $Q\left(\mathrm{E}_{-}^{0}\right)$－elements

$$
\begin{equation*}
\underline{q}_{h i, j k}=\varepsilon\left[\underline{t}_{h i} \underline{e}_{j k}\right]+\varepsilon\left[\underline{e}_{h i} \underline{t}_{j k}\right]+\varepsilon\left[{\underline{e_{h i}}}^{\varepsilon_{j k}}\right] \tag{A1}
\end{equation*}
$$

wherein

$$
\underline{e}_{i j}=\underline{t}_{i} \hat{E}_{j}+\underline{e}_{i} t_{j}+\underline{e}_{i} e_{j}
$$

Solution：For all 2nd－level index pairs 〈hi，ik〉，including index 0 for t_{0} and e_{0} ，it follows from（2．2）that the expected product of $t_{h i}$ and $e_{j k}$ has composition

$$
\begin{equation*}
\varepsilon\left[\underline{t}_{h i} \underline{e}_{j k}\right]=\varepsilon\left[\underline{t}_{h} \underline{t}_{1} \underline{t}_{j} e_{k}\right]+\varepsilon\left[\underline{t}_{h} \underline{t}_{i} \underline{e}_{j} t_{k}\right]+\varepsilon\left[\underline{t}_{h} \underline{t}_{i} e_{j} e_{k}\right] \tag{A2}
\end{equation*}
$$

while the expected product of ${\underset{h}{h i}}$ and $\underline{e}_{\mathbf{j k}}$ is

$$
\begin{align*}
& \varepsilon\left[\underline{e}_{h 1} \varepsilon_{j k}\right]=\varepsilon\left[\underline{t}_{h} \underline{e}_{1} \underline{t}_{j} e_{k}\right]+\varepsilon\left[\underline{t}_{h} \varepsilon_{i} e_{j} \underline{t}_{k}\right]+\varepsilon\left[t_{h} \varepsilon_{i} \varepsilon_{j} e_{k}\right]+ \tag{A3}\\
& \varepsilon\left[e_{h} \underline{t}_{i} t_{j} e_{k}\right]+\varepsilon\left[\varepsilon_{h} t_{i} \varepsilon_{j} t_{k}\right]+\varepsilon\left[\varepsilon_{h} t_{i} \varepsilon_{j} \varepsilon_{k}\right]+ \\
& \varepsilon\left[\varepsilon_{h} \underline{e}_{i} \underline{j}_{j} e_{k}\right]+\varepsilon\left[e_{h} \underline{e}_{i} \varepsilon_{j} t_{k}\right]+\varepsilon\left[\varepsilon_{h} \varepsilon_{i} \varepsilon_{j} \varepsilon_{k}\right] .
\end{align*}
$$

Tnder the basic error－model＇s presumption of error independence，together with stipu－ lation of centered scales，most of these terms are zero．But several subcases must be distinguished according to how the various lst－order subscripts differ therein． The principle of evaluation here is that any term $E\left[\underline{z}_{h} z_{1} z_{j} z_{k}\right]$ in（A2，AB）（z either t or e）is zero whenever it contains just one t－component other than $t o$ or when any of its e components is either e_{0} or occurs just once therein．For example，if $i \neq j$ ， $\varepsilon\left[\underline{t}_{h} \underline{e}_{1} \underline{\varepsilon}_{j} t_{k}\right]=\varepsilon\left[\underline{t}_{h} \underline{t}_{k}\right] \varepsilon\left[\underline{e}_{i}\right] \varepsilon\left[\underline{e}_{j}\right]=0$ by independence and zero error expectation．And when either $h \neq 0$ or one of i, j, k is distinct from the others，$\varepsilon\left[t_{h} \varepsilon_{i} e_{j} e_{k}\right]=$ $\varepsilon\left[t_{h}\right] \varepsilon\left[e_{1} e_{j} e_{k}\right]=0$ either because $\varepsilon\left[e_{i} e_{j} e_{k}\right]=0$ or，when $\underline{i}=\underline{1}=\underline{k}$ but $\underline{h} \neq 0$ ， because centering of I contrives $\varepsilon\left[t_{h}\right]=0$ ．

It follows that the only nonzero terms in（ $A 2, A 3$ ）for a particular choice of 〈hi，ik〉 are ones wherein either two e－components each occur twice，one sectrs four times，or one occurs three times together with \underline{t}_{0} ．Accordingly，

$$
\begin{aligned}
& \varepsilon\left[\underline{t}_{0} t_{0} \underline{e}_{k} \underline{e}_{k}\right]=\varepsilon\left[\underline{e}_{k}^{2}\right]=u_{k}, \\
& \varepsilon\left[\underline{t}_{i} \underline{t}_{j} e_{k} \varepsilon_{k}\right]=\varepsilon\left[\underline{t}_{i} \underline{t}_{j}\right] \varepsilon\left[\varepsilon_{k}^{2}\right]=c_{i j} u_{k} \quad \text { if } 1 \neq 1 \text {, } \\
& \varepsilon\left[\underline{t}_{i} \underline{t}_{i} \varepsilon_{k} e_{k}\right]=\hat{\varepsilon}\left[\underline{t}_{i}^{2}\right] \varepsilon\left[\underline{e}_{k}^{2}\right]=\left(\underline{\varepsilon}_{i i}-\underline{u}_{i}\right) \underline{u}_{i} \text {, } \\
& \varepsilon\left[\underline{e}_{i} \varepsilon_{i} \varepsilon_{k} \varepsilon_{k}\right]=\varepsilon\left[\underline{e}_{i}^{2}\right] \varepsilon\left[\varepsilon_{k}^{2}\right]=u_{i} \underline{u}_{k} \text {. if } \underline{\underline{i} \neq \underline{k}} \text {, } \\
& \varepsilon\left[\underline{t}_{0} \underline{e}_{i} \underline{e}_{1} \underline{e}_{1}\right]=\varepsilon\left[\underline{e}_{1}^{3}\right]=\underline{\underline{n}}_{1}^{[3]} \text {, } \\
& \varepsilon\left[\underline{e}_{i} \underline{e}_{i} \underline{e}_{i} \underline{e}_{i}\right]=\varepsilon\left[\underline{e}_{i}^{4}\right]=u_{i}^{[4]} \text {. }
\end{aligned}
$$

Inserting these expectations into ($A 2, A 3$) for all the distinctive subcases of 2nd-level index pairs < hi, in> then yields

$$
\begin{aligned}
& \varepsilon\left[t_{h i} \varepsilon_{j k}\right]=0 \text { unless } 1=\underline{k} \neq 0 . \text { In that case: } \\
& \varepsilon\left[t_{h 1} \varepsilon_{j j}\right]=\varepsilon\left[t_{h} \underline{t}_{1}\right] \varepsilon\left[\varepsilon_{j}^{2}\right]=c_{h i} \underline{u}_{j} \text { if } \underline{k} \neq 1, \\
& \varepsilon\left[\underline{t}_{i 1} \varepsilon_{j j}\right]=\varepsilon\left[t_{i}^{2}\right] \varepsilon\left[\varepsilon_{j}^{2}\right]=\left(\varepsilon_{11}-\underline{u}_{1}\right) u_{j},
\end{aligned}
$$

for the elements of $M\left(T_{0}^{\infty}, E_{0}^{\oplus}\right)$. And the elements of $\frac{M}{m}\left(E_{0}^{\infty}, E_{0}^{\theta}\right)$ are various instantiations o

$$
\begin{aligned}
& \varepsilon\left[\varepsilon_{0_{1} e_{0 j}}\right]=0, \\
& \varepsilon\left[e_{h i} e_{j k}\right]=0 \text { unless either one of }\langle h, i\rangle \text { is the same as one of }\langle\mathfrak{j}, \underline{k}\rangle \text {, } \\
& \text { or } \mathrm{h}=1 \text { and } \mathrm{j}=\mathrm{k} \text {. In those cases: } \\
& \varepsilon\left[\varepsilon_{h i} \varepsilon_{h j}\right]=\varepsilon\left[\underline{t}_{i} \underline{t}_{j}\right] \varepsilon\left[\varepsilon_{h}^{2}\right]=\varepsilon_{i j \psi_{h}} \text { if } h, i, i \text { are all distinct, } \\
& \varepsilon\left[\varepsilon_{h 1} \varepsilon_{11}\right]=2 \varepsilon\left[t_{h} \underline{t}_{1}\right] \varepsilon\left[\varepsilon_{1}^{2}\right]+\varepsilon\left[t_{h}\right] \varepsilon\left[\varepsilon_{1}^{3}\right]=2 \underline{\varepsilon}_{h 1} \underline{q}_{1}+\underline{m}_{y_{h}} \underline{u}_{1}^{[3]} \\
& =\left\{\begin{array}{ll}
2{\underset{c}{h i}}^{u_{i}} & \text { if } 0<h \neq i \\
u_{i}[3] & \text { if } 0=h \neq i
\end{array}\right\}(\text { centered } I), \\
& \left.\begin{array}{rl}
\varepsilon\left[\varepsilon_{h 1} \varepsilon_{h 1}\right] & =\varepsilon\left[t_{h}^{2}\right] \varepsilon\left[\varepsilon_{1}^{2}\right]+\varepsilon\left[\varepsilon_{h}^{2}\right] \varepsilon\left[t_{1}^{2}\right]+\varepsilon\left[\varepsilon_{h}^{2}\right] \varepsilon\left[\varepsilon_{1}^{2}\right] \\
& =\left(\varepsilon_{h h}-u_{h}\right) u_{1}+\left(\varepsilon_{11}-u_{1}\right) \underline{u}_{h}+u_{h} u_{1}
\end{array}\right\} \text { if } \boldsymbol{h} \neq 1, \\
& \varepsilon\left[\varepsilon_{i 1} \varepsilon_{j j}\right]=\varepsilon\left[\varepsilon_{1}^{2}\right] \varepsilon\left[\varepsilon_{j}^{2}\right]=u_{i} u_{j} \text { if } i \neq 1 \text {, } \\
& \varepsilon\left[e_{1 i} e_{11}\right]=4 \varepsilon\left[t_{1}^{2}\right] \varepsilon\left[e_{1}^{2}\right]+\varepsilon\left[e_{1}^{4}\right]=4\left(\underline{c}_{i i}-\underline{u}_{1}\right) u_{1}+\underline{u}_{1}^{[4]} \text {. }
\end{aligned}
$$

Substitution of these results into (Al) then yields the values of $q_{h i, j k}$ reported in (6), p. 9 above.

Note.

Fiven without arixillary assumptions about skew and kurtosis, the quad-factoring error model is aporeciably stronger than the "local independence" of errors of ten Dostulated by nonlinear item-response theory. (See Anderson, 1959; also McDonald, 1982.) To clarify the difference, define the true-part t_{i} of each data variable \underline{y}_{i} to be the unrestricted cirvilinear regression of \underline{Z}_{i} upon this item-domain's common factors $E=\left\langle\underline{f}_{1}, \ldots, f_{r}\right\rangle$, i.e., each subject's value of error variable $\underline{e}_{i}={ }_{\text {def }}$ $\underline{I}_{i}-\underline{t}_{1}$ is his value of \underline{Y}_{i} less the conditional mean of y_{i} among subjects with this same conflguration of scores on $\underset{F}{ }$. Then the "local independence" presumption is merely that $£_{1}, \ldots, \Theta_{n}$ (equivalently, $I_{1}, \ldots, \Sigma_{n}$) are distributed independently of one another conditionally at each F-setting; whereas the basic quad-factoring premise is that e_{1}, \ldots, e_{n} are unconditionally independent of each other and of T, which pretty well requires--not rigorously, but close enough--not merely local constancy indenendence but also h of the conditional distributions of each ${\underset{f}{1}}^{g}$ given F. This is not unreasonable for a data variable Z_{i} that is continuous and open-ended; but it cannot strictly hold for any discrete Z_{i} (albeit that shouldn't matter much if y has decently many scale steps) and may be severely violated if Z_{i} has a floor or ceiling aporoacheal by aporeciably many observations in the data set analyzed.

Even so, none of the expectations $\varepsilon\left[\underline{z}_{h} \underline{z}_{i} \underline{z}_{j} \underline{z}_{k}\right]$ (\underline{z} either t or \underline{e}) developed above under the basic quad-factoring error premise requires full unconditional indenendencies, and many should be robust under violations of this. We venture that appreciable departires from quad-factoring error model (6) are likely to arise in practice, given a decent approximation to conditional independence, only when floor/ ceiling effects are pronounced. In that case, we would anticipate that the terms deviating most from their quad-factoring theoretical values should be the ones of form $\varepsilon\left[\underline{t}_{i} e_{i}^{3}\right], \varepsilon\left[\underline{t}_{i}^{2} 2_{1}^{2}\right]$, and probably $\varepsilon\left[t_{0} \underline{t}_{i} e_{1}^{2}\right]$ if the \underline{Z}_{i}-scale is cramped only at one end. If so, the major violations of operational error model (6) should occur in the $g_{11, i 1}$ terms, about which all model assumptions are easily waived. Be
that as it may, if error-model violations are concentrated in a comparatively small number of error terms $\left\{\underline{q}_{h i}, j k\right\}$, these can be picked out by fine-grained assessment of model fit and compensated for by the same solution methodology (Appendix E) that accomodates nonNormal orror skew and kurtosis.

Anoendix B. QradFac programmine details.

Starting from an initial estimate \hat{u}_{0}^{+}of ${\underset{m}{u}}_{+}^{(i . e . ~ o f ~} u_{m}$ together with none, one, or both of ${\underset{m}{u}}_{[4]}^{[4]}{\underset{u}{u}}_{[3]}$ depending on the strength of error-rodel assumed) and guess \underline{x} at the number of lst-level common factors F , QTADFAC iteratively alternates between an improved estimate \hat{M}_{m} of true-part quad-moments $M\left(T_{0}^{*}, T_{0}^{*}\right)$ given \hat{u}_{i-1}^{+}and an improved estimate \hat{u}_{i}^{+}of ${\underset{u}{u}}^{+}$given $\hat{M}_{m i l}$, generally accomoaniod by revised estimate \hat{A}_{1} of factor pattern $\underset{m}{A}$ and $\hat{M}_{F i}$ of factor quad-moments $M_{m}^{M}\left(F_{0}^{*}, F_{0}^{*}\right)$. (Fast QJADFAC does not iterate beyond $i=1$.) Our main computational tool is classic nrincioal factoring (Eckhard-Young aporoximation) with certain modifications ensuing from the quad-factor model's soecial structure. Details follow after a prefatory word about the number of 2nd-level factors.

Quadratic factor dimensionality.

The number $1+\underline{r}$ of complete lst-level common factors F_{0} in (11) is of course one of our maior unknowns. But whatever r may be, it fixes the number $1+\underline{r}^{*}$ of factors in $\underline{E}_{0}^{\prime}$'s bare quadratic development \underline{F}_{0}^{*} as $1+\underline{\underline{r}}^{*}=(\underline{r}+1)(\underline{r}+2) / 2$, or $\underline{r}^{*}=\underline{r}(\underline{r}+3) / 2$. On first thought, it might seem that \underline{r} should be the rank of $\mathrm{C}_{\mathrm{m}}\left(\mathrm{I}_{0}, \mathrm{~T}_{0}\right)$ (equivalently, of $\underset{m}{C}(\underline{T}, \underline{T})$) identifiable by lst-level factoring of $\underset{m}{C}(\underline{Y}, \underline{Y})$, while \underline{I}^{*} is the rank of $\left.\mathrm{Cm}_{-1}^{T_{0}^{*}}, T_{-}^{*}\right)$. But not only does rank-minimizing lst-level factoring prevailingly underfactor, we have already noted that one benefit of quadratic analysis may well be recovery of factors too weak for detection just in lst-level data. So we want to encorrage solutions of $(16 / 16 a)$ in which r is larger than what would be orthodoxly found by factoring $\underset{\sim}{C}(\underline{Y}, \underline{Y})$ with rark-minimizing communalities. And althoigh the number $1+\underline{r}^{*}$ of colums in quadratic pattern A_{m} is rigidly specified by r, the number of aprreciably nonzero roots of $\underset{\sim}{C}\left(T_{0}^{*}, T_{0}^{*}\right)$ may be considerably less than I^{*} due to multicollinearities among the 2nd-level factors. This 2nd-level-dependancy prospect is not displeasing, for quadratic results are far more interpretively interesting with multicollinearities in F_{0}^{*} than without them. In any case, it is
important to be clear that the effective rank of $\underset{m}{C}\left(T_{0}^{*}, T_{0}^{*}\right)$ is just a lower bound on \underline{r}^{\sharp}. The only good way to select factor number is to develop solutions cver a range of r -choices, including ones larger than what lst-level factoring would orthodoxly aprrove, and see how nice is the resultant model fit.

An outline of QJADFAC iterations.
Let $\theta_{E Y}()$ be the function defined by equations (6) that maps uniqueness terms $\mathrm{u}_{\mathrm{m}}^{+}$into the corresoonding array $Q\left(\mathrm{E}_{0}^{+}\right)$of 2nd-level errors that our model exnects in $^{+}$to induce in data quad-moments $M_{M}^{M}\left(Y_{0}^{*}, Y_{0}^{*}\right)$. (The "Y" in this notation serves as rominder that fimction $\theta_{E Y}$ includes the lst-level data covariances as narameters.) That is,

$$
Q\left(\underline{E}_{0}^{+}\right)=\theta_{E Y}\left(\underline{u}^{+}\right)
$$

is error-model (6) writ small. For any fixed \underline{E}, given an estimate \hat{u}_{1-1}^{+}of \underline{u}^{+}, we enter the ith cJcle of QTADFAC iteration, or more generally a subcycle thereof, by taking $\theta_{E Y}\left(\hat{u}_{i-1}^{+}\right)$for our running estimate of $Q_{M}\left(\underline{E}_{0}^{+}\right)$, and hence $M_{M}\left(Y_{0}^{*}, Y_{0}^{*}\right)-\theta_{E Y}\left(\hat{u}_{i-1}^{+}\right)$ as our corresnonding cycle-initiating approximation to true-part quad-moment matrix
 such that the righthand side of
is fitted to its lefthand side under closer oroximity to the model's ideal structure than achieved on the left. Solution for $\hat{\mathrm{M}}_{\mathrm{II}}$ may or may not be accompanied by estimates \hat{A}_{1} and $\hat{M}_{F i}$ of ist-level factor pattern $\underset{m}{A}$ and factor quad-moments $M_{m}^{M}\left(F_{0}^{*}, F_{0}^{*}\right)$. When it is, as occurs just at completion of a full cycle, $\hat{A}_{i}, \hat{M}_{\mathrm{M}_{1}}$, and a sparce matrix ${\underset{\sim}{i}}^{R}$ whose nonzero terms, if any, are corrections of $q_{h} i^{\prime}, j k$-terms whose model-(6) specifications bave been suspended, are obtained by fitting the righthand side of

$$
\begin{equation*}
\underset{m}{M}\left(Y_{0}^{*}, \underline{Y}_{0}^{*}\right)-\Theta_{E Y}\left(\hat{u}_{1-1}^{+}\right) \simeq \hat{A}_{* 1} \hat{M}_{F i} \hat{A}_{* 1}^{\prime}+{\underset{\sim}{1}}_{1} \tag{B2}
\end{equation*}
$$

with $\hat{A}_{n i}$ having the \hat{A}_{1}-based structure described by (15), and the triple product on the right giving $\hat{M}_{\mathrm{M}}^{\mathrm{Ti}}$. That is, when (B2) is fitted we put

$$
\hat{M}_{T 1}=\hat{A}_{m} \hat{\mathbb{M}}_{F 1} \hat{A}_{* 1}^{\prime} .
$$

The nonzero (tc-be-fitted) elements of model-relaxation matrix ${\underset{\sim}{m}}^{R_{1}}$ are selected (a) by stimulating one of the three grades of error-model strength, and (b) at controlparameter option, by a subroutine which oicks out the <hi,jks-indices at which previous model fit has most poorly reproduced the data quad-moments. This amounts to waiving the model -(6) constraints on these $g_{h 1, j k}$.

Finally, this cycle (or subcycle) derives a new uniqueness estimate u_{1} by fitting some selection of the component equations in

$$
\begin{equation*}
\hat{M}_{E 1} \simeq \theta_{E Y}\left(\hat{u}_{1}^{+}\right) \tag{BL}
\end{equation*}
$$

where

$$
\hat{M}_{E i}={ }_{\operatorname{def}}{\underset{M}{M}\left(\underline{I}_{0}^{*}, \underline{Y}_{0}^{*}\right)-\hat{M}_{T i} .}_{\hat{M}_{T i}} .
$$

This cycle's reproduction of the data quad-moments is then

$$
\hat{M}_{M 1}=\operatorname{def} \hat{M_{T 1}}+\theta_{E T}\left(u_{M}^{+}\right) ;
$$

and if the fit of approximation $M_{m}^{M}\left(\underline{Y}_{0}^{*}, Y_{0}^{*}\right) \simeq \hat{M}_{\hat{\sim}}$ Ti appreciably improves upon that of the preceding cycle, the iteration continues.

Solution for $M_{T 1}$. Hypothesizing that the I-variables have x lst-level factors entails that the rank of $\hat{M}_{T 1}$ in ($\left.B 1\right)-(B 3)$ should not exceed $1+\underline{F}^{*}$. An obvious way to achieve this 2nd-level rank constraint is through the Eckhard-Young approximation that replaces by zero all eigenvalues after the ($1+\underline{x}^{*}$) th in the eigenstructure decomposition of (B1)'s lefthand side; and with two minor modifications, this is QTADFAC's "coarsen solution of (BI) for $\hat{\mathrm{M}}_{\mathrm{T} I \mathrm{I}}$.

The modifications: (I) We first partial f_{0} out of (Bl)'s left side before solving the resultant estimate of $\underset{m}{C}\left(T_{0}^{*}, T_{0}^{*}\right)$ for its first \underline{I}^{*} principal axes. (2) M_{II} is quad-symetrized by averaging across elements that quad-symuretry requires to be equal.

This coarse solution for $\hat{M}_{T i}$ does not, however, have explicit decomposition (33). Ideally, equations (Bl) $-(\mathrm{B} 3$) should be solved by simultaneously fittirg all unknowns on the right in (B2) by some modern structural-modeling algorithm. But pending an effective subroutine for that, QTADFAC's repertoire of "fine" solutions of (B1)-(E3) for $\left\langle\hat{A}_{1}, \hat{M}_{F 1}, R_{m}\right\rangle$ and thence $M_{T i}$ proceed as follows: Each variant begins with a solution \hat{A}_{1} for the lst-level factor oattern. Fast QTADFAC takes \hat{A}_{i} to be simply the nattern foumd by orthodox lst-level iterated principal factoring of $\underset{\sim}{C}(\underline{Y}, \underline{Y})$ expanded to include a row for y_{0} and colum for $f_{0} .1$ But under the control settings for iterated 2nd-level solutions, each cycle of fine solution Cor \hat{A}_{1} first computes a coarse true-quad-moment estimate $\hat{M}_{T 1}$ (generally iterated through a small number of coarse subcycles) and solves the estimate of lst-level true-cart covariances $C(T, T)$ embedded therein for the pattern on its first \underline{I} variancenormalized orincinal axes. After expansion to include I_{0} and f_{0}, this pattern is then taken for \hat{A}_{1}. However \hat{A}_{1} is obtained, $\hat{A}_{n i}$ is derived from it by (15), after which $\hat{M}_{m i}$ and $R_{i i}$ are simultaneously computed to fit (B2) with this fixed \hat{A}_{n+1} by the least-squares algorithm described in Appendix E. Since this procedure obtains $\hat{A}_{\boldsymbol{A} i}$ only from the lst-level part of $\hat{\mathbb{M}}_{\mathrm{T}} \mathrm{f}$, it is clearly suboptimal in principle. Yet it works decently enough with artificial data even when that contains realistic samoling noise: and although our forthcoming structural-modelling alternatives will sirely orove superior, the improvement those bring may or may not be appreciable. Solution for \hat{u}_{1}. There are enormously many ways to solve (B4) for \hat{u}_{1}, but some are far less robust than others. Of the varieties we have tested, the ones that have proved reasonably effective are all classical least-squares fits of overdetermined simultaneous linear equations. To examine details, let $\hat{u}_{\mathbf{z}}$ (sisilarly \hat{y}_{h}) be the kth element of $\hat{u}_{i}, 1 . e ., \hat{u}_{k}=\left[\hat{u}_{1}\right]_{k}$. Then from (6), writing unknowns on the left as conventional for simultaneous equations and pretending for tidiness that

[^1](B4) is not just an apnroximation but an identity, each component equation in (B4) that matters for \hat{u}_{x} has the form (up to index permutation) of one of
\[

$$
\begin{aligned}
& c_{h j} \hat{\underline{u}}_{k}=\left[M_{M}\right]_{h j, k k} \quad(\underline{h}, \underline{1}, \underline{k} \text { all distinct; } 1 \leqslant \underline{n}<\underline{1}) \\
& 3 \underline{c}_{h k} \hat{\underline{\hat{g}}}_{k}=\left[\underline{M}_{E i}\right]_{h k, k k} \quad(1 \leq \underline{h}<\underline{k}) \\
& \hat{i}_{k}=\left[M_{E 1}\right]_{00, k k} \\
& \underline{c}_{h h} \hat{\underline{\underline{n}}}_{k}+\varepsilon_{k k} \hat{\underline{\underline{u}}}_{h}-\hat{\underline{u}}_{h} \hat{\underline{u}}_{k}=\left[{ }_{m \in i}\right]_{h h, k k} \quad(1 \leq \underline{h}<\underline{k}) \\
& { }^{6} \varepsilon_{k k} \hat{\underline{y}}_{k}-3 \hat{\underline{i}}_{k}^{2}=\left[{ }_{m e i}\right]_{k k, k k} \text { (if error kurtosis is Normal) (B5.5) }
\end{aligned}
$$
\]

 these exceot (B 5.4) and (B 5.5) are linear in their unknowns; and that becomes true of the latter as well if we replace $\hat{\underline{u}}_{h} \hat{\underline{u}}_{k}$ and $3 \hat{\underline{u}}_{k}^{2}$ therein by their aporoximations computed from our last estimate of u_{u} (i.e. either $\hat{u}_{\mathbf{u}}-1$ or the most recent estimate reached by iterating (B5)'s linear-equations solution). Because the full array of equations (B5) vastly overdetermines \hat{u}_{i}, it is feasible to solve only selected subarrays in hore of avoiding quad-moments oarticularly susceptable to poor fit. At rresent, QJADFAC provides alternative solutions for \hat{u}_{i} from four nested selections from (B5). In order of increasing inclusion, these are:

Selection 1. Just the equations of form (B5.3). This is a traditional lst-level uniqueness solution, and the one used by fast QJADFAC.

Selection 2. All the equations of form (B5.1,2,3). This subarray has a direct least-squares solution for each $\hat{\mathbf{u}}_{\mathbf{k}}$ separately.

Selection 2. All of equations (B5) except those of form (B5.5). This subset ignores the kirtosis estimates in M_{mi}, which are usually much larger than other terms in $\mathrm{MEI}_{\mathrm{m}}$ and suffer the greatest sampling variance.

Selection 4. All equations (B5), including subarray (B5.5). This is aporopriate only when Normal error kurtosis is presumed.

Our artificial-data studies of QTADFAC verformance (see Appendix D) have not yet discerned any clear superiority order on these options, albeit Selection 4 is clearly inadvisable for data susoected to be aooreciably contaminated by floor/ceiling effects. Although any one $Z^{2} A D F A C r \cdot n$ iterates just one of these solution options, it orints ort the u-estimates from all four Selections on each iteration cycle.

Aprendix C . Frapments of the theory of quadratic scaces.

In a broad sense, the quarratic functions of variables $\underline{X}=\left\langle\underline{x}_{1}, \ldots, \underline{x}_{n}\right\rangle$ are all those of form $\phi(\underline{X})=a_{0}+\sum_{i=1}^{M} a_{1} \underline{X}_{i}+\sum_{j=1}^{n} \sum_{k=j}^{\sum_{j}} \underline{a}_{j k} \underline{x}_{j} \underline{x}_{k}$. But here we shall adoot the narrower usage wherein the quadratic functions of variables X are just the ones of homogeneous form $\phi(\underline{X})=\sum_{j=1}^{n} \sum_{i=j}^{m} \underline{a}_{j k} \underline{x}_{j} \underline{x}_{k}$. (As will be noted, the broad sense is recoverable as a seecial case under the narrow one.) By the linear space, \mathcal{L}_{X}, spanned by a timle $\underline{X}=\left\langle\underline{x}_{1}, \ldots, \underline{x}_{n}\right\rangle$ of variables we shall mean, as usual, the sat of all homogeneous linear combinations of the \underline{X}-variables, i.e., all functions of form $\phi(\underline{X})=$ $\sum_{i=1}^{M} \underline{a}_{i} \underline{X}_{i}$. Let us say that tuple \underline{X} of variables is (implicitly) complete iff the unit variable is in \mathcal{L}_{X}, and that X is \underline{m} (anifestiy)-complete iff the unit variable is one of those in tuple \underline{X}. Whenever we write $\underline{X}=\left\langle\underline{x}_{0}, \underline{x}_{1}, \ldots, \underline{x}_{n}\right\rangle$ for a tuple of non-error variables, i.e., with the tuple's indexing starting with 0 rather than 1 , we oresume \underline{X} to be m-complete with \underline{x}_{0} the unit variable. (Error tuples $\underline{E}_{0}, E_{0}^{+}$, and \mathbb{D}_{-1}^{2} remain exceptions to this rule, but will not be mentioned in this Appendix.) The space $\mathscr{L}_{X_{0}}$ linearly spanned by the m-completion $\underline{X}_{0}=\left\langle\underline{x}_{0}, \underline{x}_{1}, \ldots, \underline{x}_{n}\right\rangle$ of \underline{X} comorises all linear combinations of $\left\langle\underline{x}_{1}, \ldots, x_{n}\right\rangle$ that include additive constants. And since $\underline{x}_{0} \underline{x}_{i}=\underline{x}_{i}(\underline{1}=0,1, \ldots, n)$, the quadratic functions of \underline{x}_{0} in the narrow (homogeneous) sense include all quadratic functions of \underline{X} in the broad sense that admits linear terms and additive constants. Hence in particular, $\mathscr{L} x_{0} \subset Q x_{0}{ }^{\circ}$

It is often insightful to express quadratic functions $\phi\left(\underline{x}_{1}, \ldots, \underline{x}_{n}\right)=$
 a column vector and Q_{m} is the $n \times n$ symmetric matrix whose ifth element is $a_{i 1}$ if $\underline{1}=1, \underline{a}_{i j} / 2$ if $\underline{1}<1$, and $\underline{a}_{j i} / 2$ if $\underline{1}>1$. Then the quadratic space, Q_{X}, generated
 matrix $\}$. Q_{X} is also a space in the standard linear sense, since all homogeneous linear combinations of functions in Q_{X} are themselves in Q_{X}. Indeed, Q_{X} is the space $\mathscr{L}_{X *}$ linearly spanned by the bare quadratic development \underline{X}^{*} of \underline{X}, and is hence
linearly soanned also by X^{-}. And if X is a basis for its linear space \mathcal{L}_{X}, X^{*} fails to be a basis for Q_{X} just in case, for some tuple \underline{Z} of variables in \mathcal{L}_{X}, all Z-points lie on a hyoerbolic sirface.

Proof. Variables X^{*} contain a homogeneous linear dependency (relative to a Given population in which X is distributed) iff $X^{\prime} Q X=0$ for some nonzero symmetric Q_{n}. By virtue of its symmetry, Q can always be decomposed as $Q=T_{n} \operatorname{mT}_{m}$ where T is orthonormal and $\underset{m}{D}$ is diagonal though perhaps not oositive definite.

 have the same sign, it follows for each $i=1, \ldots, I$ that $\underline{z}_{i}^{2}=0$ and hence $\underline{z}_{1}=0$-which is to say that linear \underline{X}-space is at most ($\underline{n}-\underline{r}$)-dimensional contrary to assmotion that X is a basis for $\mathcal{L} X$. Alternatively, if some of the $r \leq m$ nonzero D-roots are onposed in sign, $\underline{Z}^{\prime} \underline{m} Z=0$ is the equation for a hyperbolic sirface in the subspace of Q_{X} spanned by the first r variables in $\underline{2}$. And the bi-directionality of this argument is plain. \square

Finally, it is of fundamental importance for quadratic factoring that if \underline{X} and \underline{Z} linearly span the same space $\mathcal{L}_{X}=\mathcal{L}_{Z}$, then, regardless of any Iinear dependencies in X or Z, X^{*} and Z^{*} both span the same quadratic space $Q_{X}=\mathcal{L}_{X^{*}}=\mathcal{L}_{Z^{*}}=Q_{Z}$.

Proof. Sirpoose that Z and X span the same linear space even though the number m of variables in Z may differ from the number Z in X. Then there exist not-necessarily-unique coefficient matrices A and B of order $\underline{m} \times \underline{n}$ and $n x m$, respectively, such that $Z=A X$ and $\underline{X}=\underset{m}{B Z}$. So if A_{m} and Q_{n} are respectively any $m x$ man $n x \underline{n}$ symmetric quadratic-coefficient matrices, $\underline{Z}^{\prime} Q_{m} Z=X^{\prime}\left(A^{\prime} Q_{m} A\right) X$ and $\underline{X}^{\prime} \underline{m}^{X} \underline{X}=Z^{\prime}\left(\underline{B}^{\prime} \underline{Q}_{n} B\right) \underline{Z}$.

It is not generally the case, however, that if variables X are orthogonal to variables Z, then Q_{X} is orthogonal to Q_{Z}. (In this paper, we understand "orthogonality" in its generic sense of zero 2nd-order moments or zero vector products, not in its special
sense of zero lst-level covariances.) In particular, if means have been partiallad out of X, i.e. if X is orthogonal to X_{0}, most variables in λ_{X} still retain nonzero means. (Recall that any variable's mean equals its mean product with the unit varisble.) For this reason, quad-factoring cannot partisl out lst-level means and thereaftor work exclusively with covariances as does traditional lst-level factoring.

The ridiments of quadratic-function theory needed for present purposes can be expressed with powerful elegance in the language of tensor algebra. Central to this is the Kronecker oroduct, $B \underset{m}{\mathrm{a}} \mathrm{m}$, of any two matrices A and B . If $\underset{\mathrm{m}}{\mathrm{m}}$ is $\mathrm{m} \times \mathrm{n}$
 pondence with the elements $\left\{\underline{b}_{i j}\right\}$ of $\frac{g}{m}$ that for each $i=1, \ldots$, and $\mathcal{L}=1, \ldots, \underline{n}$, the ifth block (i.e. submatrix) in BSA is $b_{i j} A$. We also need the vec operator that transforms any matrix $\underset{m}{A}$ into a super-col'mn of $A^{\prime} s$ columns. Specifically, when $\underline{E} \mathrm{~g}$ matrix A is partitioned by columns as $A=\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{s}\end{array}\right]$, vec (A) is the order-rs colymn vector

$$
\underline{\operatorname{vec}}\left(\left[\begin{array}{llll}
a_{n} & \cdots & a_{n g}
\end{array}\right]\right)=\left[\begin{array}{c}
a_{n} \\
\dot{1} \\
\cdot \\
\cdot \\
a_{s}
\end{array}\right]
$$

For inclusion of this operator in formulas, however, we prefer Pcllock's (1979, 0. 68) more compact rotation

$$
A_{m}^{c}=\operatorname{def} \quad \operatorname{Zec}(A),
$$

wherein the superscript is an obvious heurism for "column."
Some basic consequences of these definitions that hold whenever the matrices at issue conform are
(シ)

$$
\left(\operatorname{AXB}_{m}\right)^{C}=\left(B A_{m}\right) X^{C}
$$

(ii)
$\left(a b^{\prime}\right)^{c}=b 0 a \quad$ (a and $\underset{m}{b}$ any column vectors) .
(1i1)

$$
(A+B) Q C=\underset{m}{A} O C+B C C, A(\underset{m}{B}+\underset{m}{C})=A Q \underset{m}{B}+A Q C
$$

(iv)

$$
(\underset{m}{B} A)^{\prime}=B^{\prime} A^{\prime} .
$$

(v)

$$
(\underset{m}{B} A)(D \dot{D} \dot{C})=\underset{m}{C}) \underset{m}{A C} .
$$

(vi)

$$
\begin{aligned}
& I_{m}(\mathbb{D}) I_{m}(n)=I_{m}(m n) \quad(\underset{m}{I}(k) \text { the } \underline{k} x \underline{\underline{k}} \text { Identity matrix }) . \\
& (B A)^{L}=B_{m}^{L} A_{m}^{L} \quad\left(\text { left-invertible } A_{m}^{a} \text { and }{\underset{m}{m}}_{B}\right) \text {. }
\end{aligned}
$$

(vif)
A matrix A is left-invertible iff its rank equals its colum-order, in
which case ${ }_{m}$ has a not-nocessarily-unique left-inverse $A^{L}=\left(A_{m}^{\prime} A\right)^{-1} A_{m}^{\prime}$ by which ${\underset{m}{m}}^{L_{A}}=I_{m}$. The condition for left-inverting ${ }_{m} Q \mathrm{~B}_{\mathrm{m}}$ is immediate from ($\mathbf{v}, \underline{\mathrm{vi}}$).
(viii) If $A_{1} A_{2}=B_{1} \otimes B_{2}$ with A_{1}, A_{2} of the same order respectively as B_{1}, M_{2}, then $A_{1}=\iota_{m}{ }_{m}$ and $A_{2}=\left\llcorner\underline{B}_{2}\right.$ where either $\iota=1$ or $\iota=-1$.

Hence in particular, $A_{m} \otimes \underset{m}{A}=\frac{B}{m} \otimes$ iff either $A=B$ or $A=-B_{m}$.

Continuing to treat varisbles $\underline{X}=\left\langle\underline{x}_{1}, \ldots, \underline{x}_{n}\right\rangle$ as a column vector, we can now write the full quadratic develodment \underline{X}^{0} of \underline{X} as the order- n^{2} column vector of oairwise nroduct-variables

$$
\underline{x}^{\underline{0}}={ }_{\operatorname{def}}\left(\underline{x} \underline{X}^{\prime}\right)^{c}=\underline{x} \underline{x} .
$$

Fach variable $\underline{x}_{i j}(\underline{i}, i=1, \ldots, n)$ in tuple \underline{x}^{2} has composition $\underline{x}_{i j}=x_{i} x_{j}$ and is also one of the 2nd-level variables in array $\underline{X}^{*}=\left\{x_{1} x_{j}: 1,1=1, \ldots, n ; i \leq 1\right\}$. The only difference between \underline{X}^{-9} and \underline{X}^{*} is that each $\underline{X}_{1 j}$ occurs twice in \underline{X}^{2} (with permuted subscript) if $1 \neq 1$. Observe that any quadratic composites $\left\{\underline{\underline{g}}_{\mathrm{k}}=\right.$ def $\left.X^{\prime} \hat{2}_{k} \mathbb{X}\right\}$ of variables X can be organized as

$$
\underline{g}_{k}=\underline{X}^{\prime}{\underset{m}{k}}^{\underline{X}}=\left(\underline{X}^{\prime} \underline{Q}_{k} \underline{X}\right)^{c}=\left(\underline{X}^{\prime} \underline{X}^{\prime} \underline{m}_{k}^{c}=\underline{m}_{k}^{c}(\underline{X} \underline{X})=\underline{Q}_{k}^{c} \underline{X}^{\mathbb{Q}},\right.
$$

and collected into a column vector $G=\left\langle g_{1}, \Omega_{2}, \ldots\right\rangle$ of variables having classic linear multivariate form

$$
\underline{G}=W_{Q} \underline{X}^{9} \quad\left(\left[W_{m}\right]_{k}={ }_{\operatorname{def}} Q_{m}^{C}{ }_{m}, \underline{k}=1,2, \ldots\right) .
$$

As a soecial case of this format, for any tuple of variables $Z=A X$ in the linear space of \mathbb{X}, the full quadratic development of \underline{Z} is linearly determined by that of X according to

$$
\underline{Z}^{Q}=(Z \otimes Z)=\underset{M}{A} \otimes A X=(\underset{m}{A} \otimes \underset{m}{A})(X \otimes X)=(\underset{m}{A} \underset{m}{A}) X^{Q} \quad(\underline{Z}=\underline{A X})
$$

And if A is of olll column-rark and so has a left-inverse, this dependency of \underline{Z}^{2} noon \underline{x}^{8} can be inverted as

$$
\underline{X}^{2}=(A A A)^{L} z^{Q}=\left({\underset{m}{A}}^{L} A_{m}^{L}\right) \underline{Z}^{2} \quad\left(\underline{Z}=\underset{\sim}{A} \underline{X},{\underset{m}{A}}^{L}=\left(A^{\prime} A\right)^{-1} \underset{\sim}{A},\right)
$$

to reclaim \underline{X}^{2} from $\underline{2}^{2}$. A necessary condition for \underline{A}^{L} to exist is for \underline{Z} to span \mathcal{L}_{X}; ard that together with X 's being a basis for $\mathcal{L} X$ is also sufficient. Jnhappily, the situation is messier if X is not a basis for $\mathcal{L} X$; for then there are many coefficient matrices $\left\{A_{1}\right\}$ such that $\underset{\sim}{2}=A_{1} X$, and not all of these have left-inverses even when \underline{Z} soans \mathscr{L}_{X}. But some do-which is to say that so long as \underline{Z} spans $\mathcal{L} X$, there always exists at least one coefficient matrix A such that $\underset{\sim}{Z}=A X$ and $X=A_{A}^{L} Z$;
 for proof of this and other cheerful facts about left-invertible factor patterns henceforth taken for granted here.)

Not merely do these formulas concisely describe how linear relations among lst-level variables unfold into linear relations among quadratic functions thereor, they also show in principle how to analyze linear dependencies in a quadratic space into relations among axes in the underlying linear space. Let $\underline{z}=\left\langle\underline{z}_{1}, \ldots, \underline{z}_{n}\right\rangle$ be an n-tuple of variables (which may or may not be m-complete) whose 4 th-order moments we have identified either by direct computation when \underline{Z} comprises empirical measures or, when the Z-variables are true-parts, by correction for 2nd-level error described elsowhere. And suppose that study of these moments has revealed that $M\left(\underline{Z}^{\rho}, \underline{Z}^{9}\right)$, i.e. $\varepsilon\left[\underline{\underline{q}}^{\underline{2}} \underline{\underline{n}}^{1}\right]$, has a decomposition of quadratic form
 rank \underline{r}, so that A_{m}^{L} and hence $(A \rho A)^{L}$ exist, there is just one tuple of variables G

these $\underline{\underline{r}}^{2}$ 2nd-level \underline{G}-factors of \underline{Z}^{2} are immediately identifiable as the quadratic developmert of lst-level factor \underline{r}-tuple

$$
E=\operatorname{def} \quad{ }_{m}^{L^{L}} \underline{Z} \text {, }
$$

since

Insomuch as $\underline{E}^{Q}=G$, the E so identified has 4 th-order moments $M\left(F^{0}, \underline{F}^{2}\right)=M(\underline{G}, \underline{G})=M$ and renroduces the Z-information as

$$
\left.\underline{Z}=\underset{m}{A F}, \quad \underline{Z}^{Q}=(\underset{m}{A} \underset{m}{A}) \underline{F}^{2}, \quad \underset{m}{M} \underline{Z}^{Q}, \underline{Z}^{Q}\right)=(\underset{m}{A} \underset{m}{A})\left(\underline{F}^{Q}, \underline{F}^{Q}\right)\left(A_{m} A_{m}\right),
$$

Just as wanted of a simultaneous factor solution at both levels. Finally, note that exceot for reflection, this $\underset{=}{\underline{E}}$ is the only $\underline{\underline{L}}$-tuple of $\underline{\underline{Z}}$'s lst-level factors whose quadratic develoment so reproduces $M\left(\underline{2}, \underline{Z}^{(1)}\right)$ from A. Specifically, if \underline{F}_{a} is any

 of its colums. Indeed, only for a bizarre distribution can it fail that aither

Proof. Premises $\underline{Z}=B_{a} \underline{F}_{a}$ and $\underline{Z}^{?}=(A Q A) \underline{F}_{a}$ have the immediate consequence

$$
\begin{equation*}
(A \cap A){\underset{a}{\mid}}_{a}^{Q}=\left(B_{a}-B_{a}\right) F_{a}^{Q} \tag{cl}
\end{equation*}
$$

Were F_{a}^{a} a basis for Q_{Z} it would follow from (Cl) that $A A_{a}=B_{a} B_{a}$, whence the theorem would be imediate under principle (viii); however, we have already exolained why not even F_{a}^{*}, much less F_{a}, is generally a basis for Q_{Z} despite F_{a} 's being one for \mathcal{L}_{Z}. Nevertheless, if $\underset{\sim}{f}$ is any column-vector of scores on ${\underset{a}{a}}$ for some member of the population \underline{D} in which the distribution of Z is at issue, it

$$
\begin{equation*}
\mathrm{Af}_{m m}=6 \mathrm{~B}_{\mathrm{a}}^{\mathrm{f}} \quad(\quad(l=1 \text { or } \quad l=-1) \tag{C2}
\end{equation*}
$$

Now, F_{a} is by stioulation a basis for \mathcal{L}_{Z}, insuring the existence both of A^{L} and of \underline{x} linearly independent score-tuples on $\underset{a}{F}$ in \underline{P}. So there must also exist
an $\underline{r} \times \underline{r}$ nonsingular matrix S_{m} whose columns are score-tuples on F_{a} in \underline{P} and, in
 any such ${\underset{m}{p}}$ a "reflection" matrix--such that

Hence, since $D_{m}^{2}=I$,

$$
\underset{m}{A S}=B_{a} a_{m}^{I}\left({\underset{m}{a}}_{S_{m} D_{m}}\right) D_{q}={\underset{m}{B}}_{B_{m} A^{L} B_{m} S_{m}, ~}^{n}
$$

Which postmultiplication by S^{-1} reduces to

$$
\begin{equation*}
\underset{m}{A}=B_{a} A^{I^{-}} \underset{m}{a} \tag{C3}
\end{equation*}
$$

And premultiplication of (C3) by A_{m}^{L} shows that $\left(A_{m}^{I_{B}}\right)^{2}=I$ or, equivalently,
for some reflection matrix ${\underset{\sim}{n}}$, Finally, insertion of (C4) first into (C3) and then into the premultiolication of (Cl) by $A^{L} A^{L}$ yields

$$
\begin{equation*}
A=B a_{m} D_{v} \tag{C5}
\end{equation*}
$$

and
or, equivalently,

$$
\begin{equation*}
\underline{F}_{-a} F_{a}^{\prime}=\left(D_{\nabla} F_{a}\right)\left(D_{m} F_{a}\right)^{\prime} \tag{C6}
\end{equation*}
$$

If all roots of D_{v} have the same sign, then either $D_{v}=I$ or $D_{v}=-I$, whence by (C5) either ${\underset{m}{a}}^{B_{a}} A$ or ${\underset{m}{a}}^{B_{a}}=-A_{m}$. Otherwise, \underline{F}_{a} partitions into two non-null subarrays F_{1} and F_{2} such that, from (C6), $E_{1} E_{2}^{\prime}=-F_{1} F_{2}^{\prime}$. This occurs just under the bizarre distributional circumstance that every tuple of scores on F_{a} occurrent in P is all zero either on subarray F_{1} or on subarray F_{2}. \square

The essential point to be taken from this is that so long as we do not stray from left-invertible factor patterns, there is only one modest obstacle to achieving alignment between $1 s t-l e v e l$ and $2 n d-l e v e l$ factor solutions. Quad-factoring's alignment problem is this: When we set out to interpret some decomposition $\mathrm{m}_{\mathrm{m}}\left(\underline{\underline{\rho}}, \underline{\underline{q}^{9}}\right)$
$=B_{i=m}^{B \prime} B_{-1}^{\prime}$ of the 4 th-order Z-moments, we know that if B is left-invertable then there exist variables \underline{G} in Q_{Z} such that $\underline{Z}^{0}=B G$ and $\underset{m}{M}(\underline{G}, \underline{G})=M$. But we also know that these G-variables are in turn quadratic functions of whatever ist-level factor array F we may choose as axes for linear Z-space. Insomuch as the lst-level Z-moments
 how can we extract some F, A, and the specific quadratic determination of G by E from our 2nd-level analysis and reconcile these with whatever might emerge just from the lst-level analysis of $M(\underline{Z}, \underline{Z})$? Although we have no operational answer to this question for an arbitrary 2nd-level factor pattern, all falls nicely into olace if we can only manage to structure the pattern matrix in $M\left(\mathcal{Z}^{9}, \underline{\underline{0}}\right)=\mathrm{BM}_{\mathrm{m}}^{\mathrm{B}^{\prime}}$ as $B=A A_{m}^{A}$ for some left-invertable A. For then, as just shown, $E=d_{d e f} A_{m}^{L} \underset{m}{Z}$ is a lst-level factor solution that also analyzes the $2 n d-l e v e l$ factors in $Z^{\rho}=B G=$ $(A \cap A) \underline{G}$ as $\underline{G}=\underline{F}^{\Omega}$, and the \underline{G}-moments $M(\underline{G}, \underline{G})=M_{b}$ as the 4 th-order moments $\underset{m}{M}\left(\underline{F}^{9}, \underline{F}^{9}\right)$ $=M(\underline{G}, \underline{G})$ of \underline{F}. In theory, this \underline{F} can then be rotated into any lst-level factor solution we mipht develop just from $\underset{M}{M}(\underline{Z}, \underline{Z})$; in practice, failure of such rotations to achieve perfect matches tells us something about differences in what can be recovered from noisy data by lst-level vs. 2nd-level factoring.

When Z is m-complete, notably when in practice Z is true-part ($p+1$)-tuple $T_{0}=\left\langle t_{0}, T\right\rangle$, we have no need for separate factor solutions on both levels insomuch as the 2nd-level analysis embeds a lst-level one. But there is still an alignment problem in this case. For when 2nd-level true-moment decomposition $M\left(\frac{1}{m}, \frac{T_{0}^{0}}{0}\right)=B_{0} \mathrm{BM}_{\mathrm{m}} \mathrm{B}^{\prime}$
 variables in \underline{f}_{0} are lst-level array T_{0}, the G factors to which the first $n+1$ rows of $\underset{m}{B}$ give nonzero weight are not necessarily in $\mathcal{L}_{T_{0}}$-especially not if $\underset{m}{ }$ is developed by something like orthodox orincipal factoring. Nevertheleas, if we require $\underset{m}{B}$ to have structure $\underset{m}{B}=A A_{m}^{A}$ with $\langle 1,0, \ldots, 0\rangle$ for A_{m} 's lst row, we insurn that $G=$ $F_{0} E_{0}$ for some $(F+1)$-tuple $\underline{F}_{0} h^{a x e s}$ in \mathcal{L}_{0} commencing with the unit variable. And the leading $(\underline{n}+1) \times(n+1)$ submatrix $\ln \underset{m}{B}(=\underset{m}{A C} \underset{m}{A})$ is then also the lst-level pattern of T_{0} on ${ }_{-}$.

Anoendix E. Least-squares Solition for Special Terms in Factor-moment Estimation.

In structural modelling, when we conjecture that tuples \underline{Y}_{a} and \underline{Y}_{b} of manifest variarles are structurally dependent on source variables F_{a} and F_{b}, respectively, according to structural equations

$$
\underline{Y}_{a}=\frac{A F}{m}+\underline{E}_{a}, \quad \underline{Y}_{b}={\underset{M F}{ }}_{B}+\underline{E}_{b},
$$

wherein $\left\langle\underline{E}_{a}, \vec{F}_{b}\right\rangle$ are residuals, need sometimes arises to estimate $\underset{m}{M}\left(\underline{F}_{a}, \underline{F}_{b}\right)$ given prior estimates of $\langle A, B\rangle$ and a more-or-less complex structure on the otherwise
 $A_{m}=B=A_{m} A_{m}, E_{a}=\underline{E}_{b}=F_{-}^{*}$, and $E_{a}=E_{b}=E_{0}^{+}$) To keep notation simple, let M_{m} be
 our model for ${ }_{m}{ }^{\circ}$ is

$$
M_{0}=A M_{-m} \Psi_{m}^{B^{\prime}}+Q_{m}^{Q},
$$

where ${\underset{m}{2}}\left(=A M\left(F_{a}, E_{b}\right)+M_{m}^{M}\left(E_{a}, F_{b}\right) B_{m}^{\prime}+M_{m}^{M}\left(E_{a}, E_{b}\right)\right)$ is a matrix of residuals. (In QTADFAC aoolications, $Q_{m}=Q_{2}^{+}$.)

Sumose that when we seek to extract $M_{m}{ }_{m}$ from ${ }_{m}^{M}$, pattern matrices $\underset{m}{A}$ and B have already been estimated while residual matrix Q_{0} is analyzable as $Q_{0}=Q_{1}+Q_{m}$ where Q_{1} is numerically fixed and Q_{m} is a sparce matrix whose nonzero elements are open Darameters. (In ZTADFAC applications, m_{m} is specified by the strong version of error model (6) from the latest estimate of lst-level uniquenesses u, while Q contains to-be-estimated correction terms at quadratio-index positions \{<í,if>; $i=$ 1,..., n\} for waiving presumotion of Normal error kurtosis, as well as at quadraticindex positions $\{\langle 01, i i\rangle ; 1=1, \ldots, n\}$ if zero error skew is to be waived.) Our task is to find M_{m} and the nonzero elements of Q that optimize the fit of

$$
\begin{equation*}
M_{0} \simeq \underset{M}{A M_{m}} B^{\prime}+\left(Q_{1}+Q\right) \tag{E1}
\end{equation*}
$$

Although this nroblem can be routinely solved by modern structural-modelling when A and B have loft-inverses methods, it also has an exolicit least-squares solutiongas follows: Let $\sigma=\{\underline{\text { hi }}\}$ be the set of index-nairs that nick out the nonzero elements of Q, i.e., $[Q]_{\mathrm{hi}}$ is a free Darameter in 2 fust in case $h i$ is in set σ. Also, write

$$
\begin{aligned}
& M=\operatorname{def} \quad M_{0}-{ }_{m}^{2} 0 \quad, \\
& A_{m}^{L}=\operatorname{def}\left(\underset{m}{A^{\prime} A}\right)^{-1} A_{m}^{\prime}, \quad \underset{m}{P} A=\operatorname{def} \underset{m m}{A A^{L}} \text {, }
\end{aligned}
$$

Then outting $\underset{m}{E}=M_{m}-\left(A M_{m} B^{\prime}+Q_{m}+Q\right)=M_{m}-\left(A M_{m} F_{m}^{\prime}+2\right)$ for the matrix of aporoximation errors in (E1), differentiating traditional loss-function $\operatorname{Tr}\left[E E_{m}\right]$ wrt the unknows in M if and $\underset{m}{Q}$, and solving for its minimum shows that the least-squares optimization of (El) is the solution for $\langle\mathrm{MF}, Q\rangle$ in simultaneous equations

$$
\begin{align*}
M_{F} & =A_{m}^{L}\left(M_{m}-\underset{m}{Q}\right) B_{m}^{L} i \tag{E2}\\
{\left[Q-P_{m} A Q P_{m}^{1}\right]_{h i} } & =\left[M_{m}-P_{m} A_{1}^{M} P_{1}^{\prime}\right]_{h i} \quad(\text { hi } \in \sigma) \tag{E3}
\end{align*}
$$

(It sefms conceotually helvful to leave the transoose marker on P_{m} here even though ${ }_{m}{ }_{A}$ and ${\underset{m}{B}}$ are symetric. Proof of this solution is available on request.) (E3) comprises a set of simultaneous linear equations just for the o-indexed unkowns in Q without involvement of M; and once Q is found from (E3), its insertion into (E2) yields an explicit solution for M_{m}.

To solve (E3), let $\underset{m}{ }$ be the column vector of the uniknown q-elements arbitrarily ordered as <..., (hi), ...>, where (hi) is the single-index position in q of doubly indexed Q_{m} element $[Q]_{h i}$. For each of these q-indices (hi), the lefthand side of
 i.e. $\left[P_{A}\right]_{h}, Q_{m}\left[P_{B}^{\prime}\right]_{.1}$, is a homogeneous linear combination of the nonzero Q-terms such that the cnefficient of each $g_{(j k)}$ in $\left[P_{A} Q_{m} P_{B}^{\prime}\right]_{h i}$ is simply $\left[{ }_{a n} P_{h j}\left[P_{B}^{\prime}\right]_{k i}\right.$. So equations (E3) can be written as a single matrix equation

$$
\begin{equation*}
(I-S)_{q}=\underset{m}{v} \tag{E5}
\end{equation*}
$$

where $\underset{\mathrm{m}}{\mathrm{S}}$ is a matrix whose eloment in row (hi) and column (ik) is

$$
\left.\left[S_{m}\right]_{(h i}\right)(j k) \quad \operatorname{def}^{\left[P_{A}\right]_{h j}\left[P_{m}^{\prime}\right]_{i k}}
$$

and v is a vector whose (hi)th element is

$$
\left[\nabla_{m i}\right](h i)=\operatorname{def}\left[M_{1}\right]_{h i}-\left[P_{m A}\right]_{h .} M_{1}\left[P_{B}^{\prime}\right] .1
$$

Thlesa $\underset{m}{ }$ is singular, solution of (E4) for the least-squares-optimal estimate of the nonzero Q-elements is then $\underset{m}{q}=(I-S)^{-1} v$.

However, this simple solution for q is likely to be complicated by equality constraints imposed on some of its free elements. For example, symmetry may be required of Q even when some of its free elements are off-diagonal. Let the indices of q_{m} be partitioned into blocks $\beta_{1}, \ldots, \beta_{r}$ such that the q-elements with indices in the same β_{1} are constrained to be equal. Then by Lagrange-multiplier inclusion of these side conditions in the least-squares optimization it can easily be shown that the rows of (E5) with indices in the same block are replaced by the sum of these rows while of course in each row the previously distinct q-elements in each block are replaced by just one unknown. Specifically, (E5) reduces under equality-constraint blocks $\beta, \ldots, \frac{\beta}{1}$ to

$$
\left(\underline{m}-S_{1}\right) q_{1}=z_{1}
$$

wherein the mith element of F_{1} and the min element of S_{m} are respectively

$$
\left[\nabla_{l}\right]_{m}=\sum_{\left(\sum_{1}\right.}^{\beta}\left[\nabla_{m}\right]_{(h 1)}, \quad\left[S_{1}\right]_{m n}=\sum_{\left(\sum_{m}\right.}^{\beta_{i n}} \sum_{(N)}^{\beta}\left[S_{m}\right](h 1)(j k) \quad(\underline{m}, \underline{n}=1, \ldots, r),
$$

while $\left[q_{1}\right]_{m}$ is the free $q_{m} e l e m e n t$ comion to block β_{m}. ($\sum_{(m)}^{\beta}$ here abbreviates sumimation nver all the indicea (hil in block $\beta_{\text {n }}$)

Note.

$$
\left(Q-P_{m} Q P_{B}^{\prime}\right)^{c}=Q^{c}-\left(P_{A} Q P_{B}^{\prime}\right)^{c}=\left(I-P_{m} P_{m}\right)_{m}^{c}
$$

Each element of Q^{c}, and each row and each column of $I-P_{m} P_{m} P^{\prime}$, corresponds to one pair of Q^{\prime} 's row/column indices; and it is easily seen that the left-hand side of (E5) can be obtained by letting $\underset{m}{ }$ be what remains of Q^{c} after deletion of terms not indexed in σ while S is the principal minor of $I-P_{m} Q P_{m}$ whose rows/columns are similarly picked out by σ. This construction makes clear the maximum number of free Q-elements for which (E5) has a unique solution: By definition, a symmetric matrix is a "projector" just in case all its nonzero eigenvalues are unity, one consequence of which is that if $\underset{m}{P}$ is any $q \times \underline{n}$ projector of rank $P, I_{m}-\underset{m}{P}$ is an
 and has the left-inverse $A_{m}^{L}\left({\underset{m}{B}}_{L}^{L}\right)$ defined above, $\underset{A}{P}(\underset{m}{P})$ is an $n_{A} \times \underline{n}_{A}\left(n_{B} \times n_{B}\right)$ projector whose rank is $\underline{r}_{A}\left(\underline{r}_{B}\right)$; whence $P_{B}{\underset{m}{A}}^{P}$ is an $n_{B} n_{A} x \underline{n}_{B} n_{A}$ projector of rank $\underline{r}_{B} \underline{r}_{A}$, making $I-P_{B}{\underset{m}{m}}^{P_{A}}$ one of rank $n_{B} \underline{n}_{A}-\underline{r}_{B} \underline{r}_{A}$. So long as the number of free Q-elements does not exceed $n_{B} \underline{n}_{A}-\underline{r}_{B} \underline{r}_{A}$, it is thus always possible for a to soDosition them in Q that S in (E5) is nonsingular. Even so, because $I-P_{m} P_{m} P_{m}$ does contain $\underline{r}_{B} \underline{r}_{A}$ linear dependencies, even a small priscipal minor S_{m} thereof can in somereases be-singular if it is chosen infelicitously. What o-selections are assured of avoiding this indeterminacy, we do not know.

[^0]: This research has been supported by the National Sciences and Engineering Research Council of Canada through grant No. A1054 to the senior author.

 Requests for reorints may be sent either to Wu. W. Rozeboom, Dept. of Psychology, Tiniv. of Alberta, Alberta, Canada T6G 2E9, or to J. Jack McArdle, Dept. of Psychology, Gilmore Hall, Pniv. of Virginia, Charlottesville, VA, TSA 22901.

[^1]: ${ }^{1}$ The main motivation for fast QUADFAC, namely, bypassing the considerable expense of MSL's solution for large-matrix eigenstructure, has been largely obviated by the recent release of IMSL:MATHLIB. The new sibroutines for eigenstructure therein are faster than before by--incredibly--over an order of magnitude. And they appear more accurate as well.

