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Although linear factor analysis traditionally operates upon only the
2nd-order central moments (i.e. covariances) of multivariate data arrays, it has
long been known that higher data moments also contain potentially useful infor-
mation atout the data's common sources. Yet apart from Latent Structure Aralysis
(se~ Lazersfeld, 1959; Lazersfeld & Herry, 1968), which has been developed primarily
for treatment of binary variables and is severely limited in the complexity it can
assimilate, few efforts have yet been made to interpret data moments higher than
. covariances--possibly because one might expect their analysis to requir¥ a mathe-~
matics far less tractable than the linear algebra which has proved so effective
for aralysis of covariance structures,

It turns out, however, that just as linear algebra can nicely handle cwrvi-
linear functions whose varameterizations are linear, so can the algorithms developed
by linear factor analysis and more recently linear causal medelling informatively
decompose data moments of all orders. (See Kenny & Jnudd, 1984, for solution of a
restricted special case; Mooijaart;, 1985, on positioning of factor axes by appeal
to 3rd-order moments; and Bentler, 1983, p. 496f., for an overview of the generic
momert model which does not, however, deﬁelop any solution practicalities.) We
shall here set out the theory and computational praxis for inclusion of 3rd- and
4th-order data moments in the analysis. (Extension to even higher moments is clearly
oremature at this time.) It seems natural to call this procedure Quadratic Fagtor
Apalysig, or "quad-factoring" for short.

In brief, quad-factoring of data on an array ¥ = {xi} of metrical scales

suoplements the vartables in Y by their pairwise products {_yij = gizjg, and observes
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that any orthodox linear common-facter model for the lst-level array Y entails a
corresoonding linear model for the exvanded (2nd-level) array as well. Just as
traditional factoring extracts model parameters from the lst-level data covariances,
so does guad-factoring solve the quad-mcments counterpart of covariances--namely,
the lst-level variables' moments through the 4th order--for parameters in the factor
model's quadratic extension. In orincinle, quadratic factoring should disclose

the same common-factor loadings and uniquenesses for the data varisbles as does
traditional 1st-level factoring. But when the quad-factoring model premises are
not violated too outrageously, it should identify comrunalities and weak common
factors with greater precision than does 1st-level analysis. In particular, it
resolves uniqueness ambiguities in lst-level factoring such as arise from doublet
factors. Even more importantly, quag-factoripg recovers pot merely commop~factor
covariances but all factor momepts through the 4th order. Theories of what we can
gain from this higher-moment information still remain largely underdevelcped. But
one major prospect is detection of nonlinearities in the functions by which our

data variables arise from their real underlying sources (see p. 12, below). And

it can strongly ajudicate conjectures (e.g., Gangestad & Snyder, 1985) that the

factors diagnosed by certain test items are dichotomous.

Terminology apd medel presumptions.
The presumptions of quadratic factoring are stronger than traditional in
factor analysis, but only modestly so. We begin with any standard metrical data
array, that is, the joint distribution in some samvle population P on an p-tuple
Y= “YyreeesLy> of metrical output variables, (When relevant, read Y and other
tuples of variatles as column vectors of their components.) We shall not here
address sampling issues, so for simplicity we’equate the arithmetic mean, Bys of -
any measure x distributed in P with x's expectation €(x] in the population sampled.
It is convenient to scale all the Y-variables--call these our lst-level data variables—

to have zero means in P; but variance normalization is optional, and eventually we




allow 1lst-level centering to be waived as well. Next, define (proper) 2pd-level
data variables Y* = {213‘ £=1,...,03 1= &,...,n} to be the plg+1)/2 pairwise
product variatles Iy “def zixj (15;1) such that each subject's score on xij is
the oroduct of his scores on I, and xj. Each 1lst-level variable I too, can be
viewed as a special 2nd-level variable ¥ = o4 = Iy where yo is the ypit variable
on which, by definition, all scores are unity. (We shall designate the unit var-
iable by a variety of letters, but always with a subseript of 0.) When Y-scores
are known for members cf P, the same is evidently true for all product-variables
in ¥*. It will be important to leave each Y*-variable L5 in the metric defined
for it by its constituents I and xj. That 1s, neither the mean nor variance of
zij is adjusted beyond what is imposed by choice of scales for I, and zj.

Since we shall have repeated need, with variatiens, for the notation just
introduced, we had best take pains to set this out in full generality, Let X =
<ZS’Is+1""’Zn> be any (g-s+1)-tuple of variables indexed consecutively from a
starting index s. (We shall use only 3§ =0 and 8 = 1.) Then the (full) guadratic

development g? of X is the (n-g-kl)z-tuple of pairwise product-variables

xa - { . = . i - .

& = Eij' ]-‘:lj = Ziljt i, =g...50F
while the (bare) guadratic development X* of X is the (p-8+1)(g-g+ 2)/2-tuple
that remains of 59 when all X j in which 1 >4 are deleted from it, namely,

™ = {zij: Iij Zizj; 1=38,..0503 1= 1----,n1 .

= = = -g+t -
(Since Xy = XX, XX = Xy Zﬂ contains (p- s+1)(p-3)/2 duplications which are
eliminated in X*. Our practical work will be with X*: but 19 yields the tidier
algebraic theory.) Secondly, for any tuple X = <;1;...,xd>°f variables with starting
index 1, we write 50 for X preceded by the unit variable X5 That is,

zo =det <!-0’£> = ‘!0311,-..,%)

wherein all scores on Xo are unity. Then the full/bare quadratic development of Ko
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includes not only the full/tare quadratic development of X but 1lst-level variables

X as well., Soecifically,

ZS = <’-(00r501"°"10n’5*) = XL, X%>
_ _ ]
where X,, = XX, = X,. And X, similarly includes X, and X along with £, 5o gtven

a tuple of variables with starting index 1, we can refer to Just their proper 2nd-level
products as X* or (with duplications) as Xs, and to their lst-and-2nd-level ensemble

2
*
combined along with X, as )_(O or X .

The matrix Cyx of covariances among lst-level output variables Y on which
linear data analysis traditionally operates comprises the 2nd-order central moments
of the Y-distribution in P. That is, depending on whether we distinguish P from
the population sampled by P, [EYY]iJ either equals £( (11-6[11])(23- 6[11])] or is
a sampling estimate thereof. Quad-factering, however, works with 2nd-order moments
(of the product-variables) that are not generally centered. So for any two tuples
of variables X = <...,x _,...> and g = <evesZpsess> (not necessarily X # Z), we shall
write My, or M(X,Z) for the matrix whose «4 th element [.b.’lea,s is the mean product
of x, and 2, in whatever population P is at issue. That is, under owr simplifying
identification of sample means with population expectationms, [szluﬁ = ¢lx 415].
This notation does pot presume that the explicit index o of Xq in X or A of 34 in

Z 1is necessarily that variable's count-position in its tuple-—cf. cases =<x

X = <
Xyseeed and X* = <...,;ij,...). Rather, [)—.‘XZ]«A is the element of Myz in the row
headed by x  and column headed by %24. In particular, for any doubly indexed array
I*, [yx*x*‘]bi,jk = éL;hi’zjk] = filhl‘.i!jik]'

Because our notation for tuples of 2nd-level variables produces visual
monstrosities and typesetters' nightmares when used as subscriots in traditional
formulas for moment arrays, we shall henceforth treat .. (denoting a vector of means),

j (denoting a covariance matrix), and }3 (denoting a matrix of uncentered 2nd-order

moments) notationally as functions of the variables whose moments are at issue.




Thus my and My, will generally be written as 3'1‘(5) and 33()_(,;), respectively.

Whenever M is a matrix whose rows and columns are doubly indexed, we shall
say that M is guad-gymmetrig iff [M]hi ik [M]h'i' ,j'x' Whenever these terms are
both well-defined elements of ’I:*I“in which <h',1',3',k'> is a permutation of <h,i,i,k>.
Clearly, M(x3,x8) and M(X2,X2) are quad-symmetric.

For any array of lat-level data variables Y = ézl,...,xn>, if ¥* is the
bare quadratic develooment of Y as defined above, and Y* is the bare quadratic

development of Y's extersion XO = <IO,Z_> to include the unit variable, the 2nd-order

3 * *
moment matrix ;‘z(ZO,IO) of I partitions as

MIzi3) = (2@ MLI) (I3 =<x,L1") ,
2(1’) L“(Z*’Z) N\(I‘,!”)J

wherein "sym" signifies symmetry. This makes clear that all moments of Y through
the 4th order are contained in M( Y') The lst-order moments are in vector 31‘(1)
(= 0 under centered scaling of Y); the 2nd-order moments are in H(I,I) (= Cyy under
centered scaling) and also, rearranged as a vector, in 5\(1‘); the 3rd-order moments
are in {4"(;!* Y); and the 4th-order moments are in L(\(Z*,I*).

The point now to be developed is that when all Y-moments through the 4th
order--call these the "quad-moments" of Y--are so treated as the 2nd-order moment
matrix of Y,'s quadratic development, we can analyze M(xo Y*) for information about
I*'s factor composition by the very same linear models that have traditionally
worked so well on lst-level covariances. We retain the classic premise that each
1st-level data varisble is the sum of a common part and unique residual which we
find convenient to construe as a psychometric "true-part" and "error," respectively.

Specifically, we posit

£1+£1 (Lzlg.--,n) ’ (1)
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with "error" characterized by one essential distributional constraint and twe aux-

illary ones that are expository conveniences easily waived in computational practice:

The basic guad-factoring error premise. First-level residuals E =<gy»

ceer2 > in (1) have zero expectations, and are distriobuted independently of

one another and of all true-parts T = <§1""’£n" (See Appendix A, Note, for/’—‘

Stropg error-model addenda [optisnal]. The marginal distribution of each

g in (1) has the same skew and kurtosis as a Normal distributionm.

Meanwhile, lst-level true-parts T are presumed to be linear combinations
of a smaller number of common factors which in turn may or may not be different
linear/nonlinear functions of a still-smaller number of substantively distinct
common sources. This lst-level factor model entails a well-behaved factor model
for the 2nd-level data variables as well, or rather for theif true-parts. The
' 2nd-level error model for quad-factoring, however, is more complicated than its

lst-level counterpart; and its theory is owr lead-off concern.

Second-level error theory.
Given psychometric model (1) for lst-level variables Y, each 2nd-level

variable y,, = vy, = (ﬁi"’g,l)(&j*gj) in I* has true-part/error composition

Ty T Ly tayy (2.1)
where
Eij “def Eiﬁj ’ gij =def Eigj +§i§j +219.j . (2.2)
For j = 0 we stipulate

O
to yield

30,1 = ‘E'j , 203 = gj , (J_=oy1p--°’n)

and hence 203 = EOJ + 203 for each § = 0,1,...,0. So if we write

1 ®AT AT \DDA-2 A0 MATE radfv et

-
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+ o = -
B0 Zger {2457 1% O%Leomi 1= 4heeon}
(1) becomes a fragment of

RN RS X G

wherein ¥§ and 26 are the bare quadratic developments of lst-level data variables

I, = <z0,_Y_> and their true-parts 20 = <§O,I>, and 3'6 comprises the corresponding

residuals. (Fote from (2.2), however, that 2'5 is pot quadratic development §6 of

Ey. Rather, g(‘; is just one of three components in ES. And g, is constant at zero
rather than at unity. So the e-variables are exceptions to the subseript conventions
we have adopted for non-error variables.) I“; and gg are respectively the true-part
and error components of 2nd-level data variables Y*; and (3)'s additivity insures

that data quad-moments M(Y*,

)44 xa) likewise decompose as a sum of true-part and error

terms.

From (2.1), 1t is evident that each 2nd-order moment [M(Y*,Y*)]. ., ., of ¥.'s
- hi, jk =0

quadratic develooment Za has composition f[xhixjk] = ¢ (§h1+9-hi)(3,1k +gjk)] =

f[ﬁhiﬁjk] + £[ghi§jk] + f[ghigjk] + f[ghigjk]. That 1is,

+ + ot
MIDID) = MILID + MIED + WUIRED * MESED . ()

Unlike error covariances in lst-level data, g(gg,gg) is not altogether diagonal
nor is ;‘g(za,gg) wholly zero. Even so, under the quad-factoring error premises these
are identifiable from the lst~level uniquenesses (error variances) and observed

lst-level covariances. For parameters, let us write

dyf] = €821 +y 1r31=

u, = 5[22] ’ =
B Tqer Cleg $4) Tdet tlyy,) = £lysy] 1ri#]

noting that 4 = o, oo = 1, and 30,1 = £[zj] for index O, That is, for {,i =0,...,n,

gy = MLy, w = MInL) - MIoIo) )y -
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For centered ¥, gij equals data covariance [gYY]ij for i, >0; and N is the tra-
ditional "uniqueness" of data variable ¥

In the strong error model, the lst-level [giE are the only unknown error
parameters., But to waive the strong error medel's Normality assumption, we also

require varameters for the raw (unstandardized) error skew and kurtosis. So for

these we shall write

(31 _ 3 (4] _ 4
] : “def E[gi] ¢ g; : “def é[gi] ’
for { = 1,...,0. In the strong error model, y£3] = 0 and g£4] =3y .

Finally, since separation of the three error matrices in (4) serves no
. purpose, we out

A(ety = » pt t(p* gt + ot

I(E) Sger MIPES + M(IZED + MELED)

whence (4) simplifies to
MU = MIID + AED - @)

Because (4') is the error/true-part decomposition of Y's bare quadratic development
' + +

1) , the elements [g\(go)]hi,jk of Q(E;) are under index constraint h<i and J<k.

To avoid this exvository nusiance, we shall speak instead of S(Eg)'s full-quadratic-

development countervart

UED) =pr M) - m(13,1D) (5)
and write ghi i for an arbitrary element thereof. That is,
14

Y1, “der [HEDNy gy
for all h,i,i,k = 0,1,...,n, with Shi,jk being also the <hi,jk>th element of
Q(gs) iff Osh<j<pand O¢j<ke«p.
In Apperdix A, we show that each element oflg(gg) is identical up to

permutation of its four lst-erder indices with some subscript instantiation in
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91,05 = 9 | (6)
vihi o 0 ( hyi1,3,k all distirct ) ’
sy

- s B
Sep, 5 - Spdy  ( Lhdok all distinet ),
= ,3]

og,13 Y

= 0 1in the strong error model ,

( centered I ),

dpg,1 = %8y (O0<h # 45 centered g, ),

= (g4 =mwlue + (e -u.)u, +tun, o
311,33 117878y T 1255 T8yl -Uf (1#1),
T %yl Toeysly - Yy
WL U CHEFRINE S

= 6Qiigi - BQi in the strong error model .

The elements of g(gg) are indifferent to all permutations of their lst-order indices,
which 1s to say not merely that ghi,jk = Sjk,hi and ghi,Jk = Sih,Jk = ahi,kj’ but
. also ghi,Jk = ghj,ik = gji,hk; dhen all Y-variables have standard scales, i.e. zero
means and unit variances, 44 T 4j = 1 in the formulas for Sii,jj and 311,11.

Given the lst-level data covariances, it is straightforward to produce
2nd-level error matrix Q$EE) from (6) either algebraically as a function of Syy
and the uniqueness parameters or as a numerical estimate derived from Cyy and a
provisional solution for the latter. And the solution algorithm can iterate esti-
mation of gjgg) just as lst-level factor analysis has traditionally iterated unique-
ness estimation when high-grade results are wanted. Whatever our provisional
solution for Q(Ez), this gives a corresponding estimate of the 2nd-level true-parts'
moment matrix }_{(:6,1’*) = Q(Q,Y*) - Q‘(EB) which embeds the lst-level true-parts'

covariances and can be searched for interpretable structure by standard methods of

matrix decomposition. But we have not yet considered what is there to be found.

Second-level factor patterps.

As already declared, we posit traditional factor model

31 = ’ji:: Q.ijgj (L= l,...,p; £<p ) (7)




-10-

for our centered lst-level data variables' true-parts, with the number r of 1st-
level factors gl,...,gr an open varameter. It is notorious that this decomposition
of T is flagrantly nonunique, not merely under factor rotation but even in its
dimensionality albeit we orthodoxly choose r as small as is compatable with good
reproductiocn of the data covariances. Even so, for any specific choice of factors
E =<fy,...,£2> in (7) there is a corresponding factor decomposition of the true-

parts T%* = <...,§ij,...> of 2nd-level data variables Y¥*. For it is an obvious

consequence of (2.2) and (7) that

Yy = (j’-hj j)(zak-k) = EEaygandih - ®

Let F* = <...,§jk,...7 be the bare quadratic development of lst-level factors F, i.e.

g’jk =def gjgk ( i = 1""’2; .1.(. = 1)---’2 ) .

Thecry will soon prefer that we extend (8) into a 2nd-level factor pattern for the
combined 26 = <§0,T T*> upon Eg = <§O,E,E*>. But for openers let us consider just
the pattern of I* upon the proper 2nd-level factors F*. Noting that fjk occurs

twice in (8) if i # k, once as fj-k and again as fkgj, Wwe can rewrite (8) as

&hi = ‘Z"E,_hi Jk-jk ( h = l,ooogn; 1 = h""’n ) (9.1)
wherein
s S ngnetandyy 1Pk
81,5k et { T . _ (9.2)
8 84y irj=k .

Most noteworthy about (9) is simply its exhibiting how 2nd-level true-part
variables T* inherit a linear factor composition from any that holds for their 1lst-
level generators I. So this 2nd-level pattern, along with factor moments ggg*,g*),
should be recoverable from QKI‘,I“) by methods already familiar in lst-level factoring,
Indeed, the factor pattern in (9) appears even more strongly structured than is the
lst-level pattern from which it derives: Whereas the number-of-factors/number-of-

data-variables ratio at the lst level is r/p, at the 2nd level this is only
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r(z+1)/p(g+1) & (r_‘/g)z_. And 2nd-level variable y , has appreciatle loading on
2nd-level factor gjk only if I has appreciable loading on one of gj or gk while I
loads appreciably on the other. So one might also anticipate that quad-factoring
should identify simple-struct:re hyperplanes more sharply than lst-lavel factoring
usually achieves. Unhappily, ocur inquiry into this prospect suggests it to be
largely illusory (cf. p. 22, below). But it still remains one Incentive to explere

qnad-factoring's potential with some care,

Why bother?

Before grubbing into solution details, some motivation stronger than hopes
for oretty hypervlanes seems called for: It is all very well to observe that lst-
level factor patterns entail 2nd-level ones. But if the latter are redundant with
the former, what point might there be in seeking solutions at both levels? Our wisdom
. in this regard is still too nascent for a confident answer. But we foresee two ways
in which this may well orove profitable,

One important prosvect lies in the lst-level/2nd-level pattern redundancy
itself. It is well known that comron-factoring seldom picks out one particular
solution as pronouncedly superior to all alternatives. Solving for lst- and 2nd-
level patterns simultaneously under constraint (9.2) in principle yields results
more strongly overdetermined, and hence more finely discriminating of what seems
ovtimal, than lst-level analysis alone can provide. In particular, enhanced overdeter-
mination should enable quad-factoring to caoture factors too weak for detection
at just the 1lst level. (How well this will work out in the teeth of sampling error
and other real-data model violations remains to be seen; but the artificial-data
studies summarized in Appendix D are mildly encouraging.)

Even more provocative is what gquad-factoring can tell us about the 3rd- and
4th-order moments of the lst-level factors. Identifying these higher factor moments
is straightforward in principle: when our factoring of the 2nd-level variables

rotates their true-parts' factor axes to positions and scalings on which the 2nd-
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level pattern is related to the lst-level cne as (9) is to (7), then each 2nd-level

factor is tagged as the oroduct of two particular lst-level factors (or as the square
of one). Ard the mean product of 2nd-level factors ghi = ghgi and gjk
which we compute along with the factor vattern, is then a 4th-crder moment

=£.5,

3=k
£[§h§igjgk] of the lst-level factor distribution. More completely, analysis of
combined-levels data variables 16 gives us the array H(ES,F*) of all F-mcments
through the 4th order. And that in turm diagnoses, inter alia, whether some of
lst-level factors F are themselves quadratic functions of the others, or nearly so.
There is nothing in the linearity of an orthodox lst-level factor decompc-
sition to preclude its being'an artifact of what in reality is a curvilinear pro=
duction of these outputs by their common causes. Specifically, (7) may well be a

linear parameterization of some nonlinear determination

t = ggﬁp’:’(gl,...,gs) (1=1,...,5)

of the data variasbles' true-parts by certain sources G = “1""’33’ of which the
more manifest factors E = <¢f,,...,f.> are various nonlinear composites {gd = Aj(g)§.
(Cf. MeDonald, 1962; Rozeboom, 1965, p. 523ff.) If so, Taylor-series expansion
allows us to hove that many--with luck, most or all--of these Aﬁ(g) are approximated
by quadratic functions of G closely enough to leave negligible residuals. (For
example, 21,...,25 might be centerings of quadratic functions Eys By gi. g%, £&,»
resvectively, of just two real sources G = <g1,32>.) If so, whatever lst-level
factors of Y are quadratic functions of the others will lie in the quadratic space

of ¥,'s true-part I,, and can be identified as such from M(E3,E3).

Fragments of the theory of guadratic spaces (préeis).
As you might expect, certain technicalities in the mathematics of quadratic
functions have considerable importance for the theory of quadratic factoring. Those

that we find especially salient are developed in Appendix C and summarized here.
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(Note: These definitions and their consequences are relative to some fixed
population over which the variables at issue have a joint frequency or probability

distribution as required to define moments and functional dependencies.)

Definitions

Let X = $XyyeeerXy> be any tuple (algebraically, a column vector) of var-

iables. Then a variable z is a guadratic functiop of X just 1h case, for some

LXp symmetric real matrix Q, z = X'3X.

The guadratic svace, Qx, generated by variables X is the set of all var-

iables that are quadratic functions of X,

The linear svace, ,(x, of variables X is the space linearly spanned by X.

That is, '{X comprises all homogeneous linear functions of X,

A tuple X of variables is (implicitly) complete iff fy contains unit var-
iable x5, and is m(apifestly)-complete iff x, is a component of X, If X is
not m-complete, its m-completjiop is <;0 X>,

Conseguences

If X is complete, the linear space fy of X is included in its quadratic
space ﬂx. That is, the quadratic functions of a complete X admit linear terms

and additive constants,

If X and Z linearly span the same space ,fx = IZ’ then X and Z also generate
the same quadratic space Hy = 4.

The quadratic space ﬂx generated by variables X is also a linear space
soanned, inter alia, by X* and by 2&‘. However, Hx is also linearly spanned
by many other tuples of quadratic functions of X which are not in general

quadratic developments of any tuples in J{y.
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Hence when we seek to fit quad-factor model (9) to the quad-moments of cur data-
variables' true-parts T = q;_l,...,gn>, although the latter can routinely be decom-
vosed in classic form g(f,gﬂ) = g:g(g,g)g' for one or another linear basis G of Gps
an arbitrary choice of 2nd-level factors G will almost certainly pot be the guadratic
development of any lst-level factor basis for ‘t'l" This raises quad-factoring's
a_ugnr_nﬂ_t_ problem: “hen decomposing the 1lst- and 2nd-level true-part moments
Joirtly as M(I,T) = AM(E,E)A" and 3‘4(_1;&,1&) = BM(G,G)B', how do we contrive further
to have G = Iﬂ or at least A&(Q,Q) = g(gﬁ,ge)? As the Uniqueress Theorem, below,

will show, the answer 1s happily straightforward.

If X is a basis for its linear space ix, X* fails to be a linear basis for
é?x Just in case, for some tuple Z of variables in IX’ all joint scores on Z

lie on a hyperbolic surface.

The significance of this theorem is, first of all, that H(X*,K*) can be singular
even when M(X,X) is not, and secondly that singular M(X*,X*) can arise in ways
other than the one that se~ms most interpretively significant when X* is m-complete
(see. p. 25¢f., below).

Tensop-algebrajc forpulations of guad-factoring relastiops.
For any tuple X of variables, the full quadratic development 5‘ of X can

be written as the Kronecker product of X with itself. That is,

X = ¢ veo(T") = Xax .

If 2 is in the linear space xx of X, so that 2 = Aé}_{ for some coefficient
matrix A, f determines g“ according to
9 . - - - x
2 = 197 = 53_ 8 X = (Aﬁé)(zﬁl) = (é\ﬂé)_ .
Moreover, if X is a basis for .fx, lst-level coefficient matrix A has a left-inverse

”&L such that gl‘_t}. = I, whence X and g‘ can be recovered from Z by




n

“vidently we have not merely
X(E:Z) = ;"‘%(Z;)E)ﬁ}\' ’ &'(Z,K) = LM(.Z.,Z);},‘L'

ir this case but also

Mz = aeanat e, MahE®) = (Lealnuz,®) (ala il .
Zhe guad-factoring uniguepess theorem. Suopose that the quad-moments of

variables X have a decomposition of form

HE®E) = (asay (aea)
for some identified matrix A having a left-inverse AL. Then there exists a
tuple of lst-level factors F of X, namely F Zdef AIZ, such that

L=, ¥ o= e, MED = M.

Morecver, for any tuple of variables G in 4X that reproduces the quad-moments
of ¥ by this same 2nd-level pattern ARA, 1.e. for which :‘f.‘()_cﬁ,lﬁ) =
(A94)M(C,c)(484)', we have G = ¥ for some lst-level factar tuple E, only if F,

differs from F by at most a reflection of axes.

Hence wé solve the alignment problem by imposing the constraint that the pattern
matrix in our decomposition of true-part quad-moments }3(2‘ ,Iﬂ ) have structure ARA
for a left-invertible lst-level pattern matrix A. Choice of A 1s non-unique in

the very same way that lst-level factor patterns are nonunique. But whatever side
conditions suffice to select a specific A in M(I,I) = AM(E,E)A' (notably, accounted-
for-varisnce maximization for initial extraction, eventually followed by rotation

to simple structure) also suffice to identify a fgctor tuple satisfying the quad-
factoring model that is essentially unique relative to I and A.




"
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- Inductive solutions for 2pd-level factor patterns.

To embed lst-level factoring of data variables Y in 2nd-level factoring of
lﬂ (or rather, in practice, of ¥*), we must include the unit variable among the
l1st-level factors as well as, for conceotual convenience, among the variables
factored. Accordingly, we exvard the orthodox lst-level arrays of data variables
I= <xl,...,zn>, their true-varts T = <§1,...,§n>, and their comron factors F =
<§1,...,§r> into their respective m-completions Xb = <xo,g>, 10 = <30,2>, and
Ey = <fpeE>. (Reminder: Ygs Ygs and £ are all constant at unity.) Then aug-
menting (1) by the trivial X, = 3+ g (go constant at zero) extends our lst-level

data variables' true-part/error decomposition to

XO=IO+§O , (10)

while lst-level factor model (7) becomes

P
Y07 Leghy (1=01,....0)

or equivalently
Ty = AF, (11)

wherein A 1s of course the (L+p)x (1+r) matrix of pattern coefficients {3113'
Compared to orthodox lst-level factor models, vattern matrix‘étin (11) has
an extra row and an extra column., Its extra row, the pattern for 30, is inflexibly
all zero except 850 = 1l. In contrast, the added first column of‘é, 1.e. the lst-
level pattern coefficients giog on unit factor go, is open to a variety of numer-
ical svecifications. Whether these make (11) differ more than trivially from
conventional factoring devends on whether F is constrained by orthogonality to
go. (We nse "orthogonality" here in its generic sense of zero expected pairwise
prodncts rather than its svecial sense of zero covariances.) If gl,...,gr are
required as usual to have zero means, i.e. to be orthogonal to go, then 450 ==£[§1]
= gyi for each { = 1,...,p-~whence under centered scaling for Y the first column

of é‘becomes all zero save ajp = 1. But allowing lst-level variables Y to retain
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natural means has no effect in this case on the rest of A. That is, so long as F
is orthogonal to £y the vart of A that remains after deletion of its first row
and column is some more-or-less orthodox nattern obtainable by factorirg the
Y-covariances withcut regard for how the Y-means are scaled.

On the other hand, if factors £150009fp in (11) are pot all orthogonal to
£os each 840 continues to be the additive constant in xi's regression upon F but
almost certainly differs from gyi. Allowing the F-means to be nonzero is not only
unconventional but would usually be unmotivated as well, especially for lst-level
factorirg of centered data. Yet there do exist circumstances of quad-factoring,
and even occasionally of ordinary lst-level factoring, in which it makes interpretive
sense to allow factor rotations in which F becomes oblique to go. Quadratic
factors are best initially extracted under orthogonality of F to 20; but eventually
we may find reasons to relax this constraint.

(Once we consider rotation of (11), still another possibility for the ex-
tended 1st-level vattern 1s to let this comprise the coefficients for IO on somé
basis 21 for Eo-space in which rotated axis tuple 21 =;H§O is not m-complete. But
we can think of no meaningful intervretation for the pattern gﬂ:l on factors so
vositioned. )

Because IO = <10,1> = <!b,11,...,zn> is m-complete, its full quadratic

develooment
2 _ -
L Taer reallgly) = L2 Y
comprises not merely the proper 2nd-level product variables {xisz i,i= 1,...,07

but all 1st-level data variables {zi (= oni)= i-= 1,...,3} and unit variable ¥,
(= xozo) as vell, The true-part/error decomposition of 18 is of course

¥ =

1 +

)8 (I*+Ey) = (I581)) + (ToREy) + (Eg81,) + (E,9E,)

Aﬁ-!
da &

-
-

Y

+

wherein T’ =1 8T, is the true-part of ¥ 's full quadratie development ¥ while
0 =070 =0 =0




Do Taer I~ Lo = (To®E) + (Egery) +Ef .

So the 2rd-order moment matrix for !g--which by virtue of Zo's m-completeness

actually comorises all Y-moments through the 4th order--has composition

1)
p—
[

) 8 -8 &
E(ZO’Ig + E(Ingo) + N(govg) + E(Eg,ﬁg)

= MI3,I0) + 3E] (12)

where tctal-error matrix Sﬁgg) (see definition (5)) is specified by M(I,X) and
the uniqueness parameters--namely u= ‘Uyrevesl > and, if not presumed Normal,

EFB] = (g£3],...,g£3]> and EFA] =‘(g£4],...,g£‘1>-.according to (6). Conditional

on our choice of error-model strength, let us say

® if Normality of both 3[3] and 2[1.] is presumed
1 Shee 4 <wnt4D> i Yormality just of ul3) is presumea

(233[4],9}3]> if no error Normalities are presumed .

(These are the only a priori error-model alternatives that we have vrogramred. But
additicnal variants would be routine to include were not need for them obviated by -
our new technique, described in Appendix B, for ad hoc relaxation of (6) at points
of greatest model misfit,) It is straightforward to program specifications (6) into
an algorithm that mSDSAE(EO'Xo) and any numerical estimate of 2+ into a corresponding
numerical estimate of 9(@8) and from there oflg(zg,lg). And starting from any initial
estimate of 2* (as provided, say, by orthodox lst-level factoring of C(Y,Y) along
with the strong error model), we are able to iterate improvements on this as the
analysis progresses. So estimatingvg(!g;zg) is essentially routine. Our main problem
is how to éonvort the latter, in turn, into richer information about factors F and
their determination of Y than can be extracted just from g(!,!).

According to model (11), the full guadratic development of our data variables'

true-parts has composition
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Q.—. = = = \

To = Lo%Ip = ME @R, = (ARA)E,SE) = (Asm)Ed (13)
So the quad-moments of I, decompose as

M(I3,18) = (a®4) MER,F®) (asa) (14)

-

and the task of quadratic factor analysis is to find estimates of :‘}\ and y’(g,zg)

which, together with our estimates of the error terms in Q(Eg), t1d4ily reproduce
~ry

data quad-moment matrix M(Xg,zg). Or rather, this is quad-factoring's theoretically

n

versoicuous descrivtion. In vractice, since (13) relates the full quadratic develop-

ment of IO to that of EO’ there are massive redundancies in (14) that make direct

2 o0
I Lo

parts of (13/14) for the bare quadratic developments of 2‘_0 and EO’ namely,

analysis of g( ) inexvedient. Far easier is to work instead with the counter-

3= AE  (13a)
5(289%) = ,,A‘Q E(ES’F‘) ,&; ’ (14a)

in which the elements of __Q* are derived from those of A according to formula (9)
exnanded to include index O. That is, for h = 0,1,...,p, 1 = hy...on, 1 =0,1,...,r,
k=1,...,z
) [ﬁ]hj[&hk + [g]hk[g]ij if J<k (1iri=0

Balng, e = (Agy = - (15)

” ' [ﬁ]hj[ﬁ]ik 1=k 0if £ >0
Since ,5‘ is the upver-left (1+p)x (1+r) submatrix of both A4 and :&;, any one of
A, Aey AR A} 1dentifies the other two. And gg(gg,_rg) strips down to M(I%,13) by
deleting from the former all rows hi and columns Jk for which >4 or §{ >k. Oper-
ationally, we disregard 21\(_‘1‘8,18) altogether and instead estimate 35‘(:1'_*,::') directly

from M(Y*,I*) and our running estimate of the error terms in (12)'s counterpart
w

M(E*, 1)
~

H

M(I8,18) + M(13,E8) + M(ES,T8) + M(ES,ED) (120)
= M(13,18) + Q(E7) .

(We have vreviously written (12a) as equations (4) and (4').) Combining our two
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moment models--the one for errors and the one for factors--into a single equation,
we can then say that quad-factoring is a decomposition of the data variables' quad-

moment matrix having form

M(I3,X9) = (A®A) M(EQ,EB) (ama)' + Q(ED) (16)
or less redundantly
MELIS) = A MESEN) AL+ QED) (16a)

wherein A, has structure (15) while gjgg) and its less redundant subarray SSES) are
soecified from M(Y,Y) and uniqueness parameters Ef by model (6).

In princivle, it should be routine to solve the quad-factoring model by any
medern structural-modelling logic such as LISREL or RAM (McArdle & McDonald, 1984).
The composition of equations (6,15) into equation (16a) defines a coﬁputable function
Q from guesses <§+’3’«&F> at <2+,A,§(zs,§6)) into reproductions of data array
2“16,Y*). So relative to any chosen loss function, the best estimate of our empirical
quad-moments' source varameters is the <§+,§,§f> for which the loss of approximating
,1‘1(_'{6,!6) by é(gg‘,g,&) is minimal., In practice, however, the problem size for
quad-factoring even modestly many data variables is so large that we have not yet
managed to set up the subroutines required for a complete structural-modelling
solution. We have, however, operationalized solutions using more classical routines
that allow quad-factoring to be tested in practice even as we seek more powerfnl
algorithms that lessen certain admitted suboptimalities in owr present vrocedure.

In fact, we have devised a spectrum of quad-factoring alternatives, selected
by control-parameter specification in our generic QUADFAC orogram and differing
inter alia in how strong an error-model is oresumed crossed with what portion of
comolete residual array (6) is used to estimate u. (QUADFAC 's FORTRAN-77 source
code, together with a vackage of supporting programs, is available., Ask and ye Qhall
receive.) At one extreme--call this "fast QTADFAC"-~the routine is computationally

quite frugal, albeit by deriving the factor pattern Just from the lst-level data




-21-

covariances and thus losing the higher-moment pattern information whose exploitation
is one of quad-factoring's hoved-for benefits. In contrast, JUADFAC's other versions
use all the data gquad-moments for identifving the factor patterm, though at computer
costs several times that of fast QATFAC and still not as thoroughly as we hope
nltimately to attain. Details of QTADFAC's solution logic are develoved in Apven-
dix B, while Aovendix D compares JTADFAC's accuracy at varameter recovery from

artificial data under all its main procedural variants erossed with variation in

factor structure and sampling noise,

Interoretation of resnults.

Once QUADFAC iteration has converged upon estimates of 2+ and the 5§t§(!6!!*)>
defined by vrincipsl-axes positioning of EO with‘g(ZS,Y')-reproduction loss small
- enough to warrant taking the results seriously, we turn to final adjustments that
enhance meaningfulness of results. (We shall not here distinguish notationally
between model varameters and our computed estimates thereof.) First comes rotation
of lst-level factor axes to vositions that seemingly make the greatest interoretive
sense. Quadratic factor theory is entirely oven to any criterion for this; but

we shall oresmme that you share our preference for oblique simple structure.

Rotation of axes.

If 1st-level factor axes EO in 10 = AEO are rotated to go ={E§b, the effect

thereof on factor vatterm at both lst and 2nd levels is
- - - 1 — . -1
o= (g, 1§ = (g, 1= (e Arg = (Aea) (e el

where ( ), is the function defined by equation (15). And the rotated factor quad-

moments are
- . 2 8y - gy
M(G3,G8) = WMESLEAL »  M(c3,68) = (Wauw) MER,E) (Waw)' .

It is evident here that when positioning factor axes, quad-factoring is not limited

to selection of 4 just in light of what this does to rotated lst-level pattern ﬁﬂrl
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but can examine its effect on the much larger coefficient array (é&i&)(‘dﬂ:@)']’.

Ye might hove, therefore, that simole-structure hyperplares can be discerned more
sharply in a quadratic factor pattern than are clear in Jr1st the embedded 1lst-level
rattern. And to our surprise we find that solving for A ir (A 2A)(W 91)-1 to max-
irize 2nd-level hyvervlane strergth is indeed operationally feasible. Disaproint-
ingly, however, the theory of this shows also that 2nd-level retation of the vattern

in Zg = (pg)gg is virtually equivalent to rotating the lst-lsvel pattern in

I
85%0 = |24t Do
R . ] N .d

for the aggregate of all different rescalings {(gijzo) = (gﬁA)Eoé of Iy = AF by
the various elements a, 3 of f.‘ And there is no evident reason why any such aggre-
gated multicooying of lst-level pattern ;“\‘ should demark hypervlanes more clearly
than dces A by ﬁself. (If you look at the multicopied pattern vlot for one pair
of factor axes, you'll see what we mean.)

Accordingly, with one important exception (namely, cases where we susvect
that some dimensions of ‘fFO are quad-fimctions of others--see below), we recommend
that factor axes be terminally positioned by rotating Just the lst-level part ;\1 of
iritial 2nd-level vattern é‘, to simple structure by whatever algorithm for this
yvou prefer, with subsequent use of the }'I\ so found to compute the rotated factor
quad-moments (and, if you want it, the rotated 2nd-level pattern) as shown above.
(If you feed your QTADFAC output into the HYBALL orogram for 1lst-level factor rotation
described in Rozeboom, 198 , your rotated vattern printout will be automatically
accompanied by the rotated factor quad-moments,) And we also recommend constraining

this rotation to form

]

go - 9 =0
g |9 v |E
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1 0
with retation of initial nattern’i = [;Y XF correspondingly restricted to form
~ -t

1 Q

arl o= 2l -
- ApWn
Ty Ar! F |
This keevs the rotaticn just within the suhSpace of EO orthogonal to gO. As observed
earlier (pb. 17), the main alternative to this constraint is to fix £ (= g,) but

allow G tc become obligne to £y A minor reprogramming of HYBALL can easily accom-
plish this, but it serves no purpose unless data variables Y I have non-arbitrary
means. For allowing obliquity of G to £ affects the pattern attainable on G only
in the column scalings that normalize factor variances; and although it can simplify
the pattern on go when this initially contains natural means, the first column of

‘& is already ideal by artifice when the data variables are centered.

#hat to do with factor quad-moments.

Let us revert to notation "E" for the 1lst-level factors we hore to interpret,
however these may have been repositioned after initial extraction. Now that our
solution for gggg,F*) has given us the F-distribution's moments through the 4th
order, what good 1s this information?

Having raised this question, we must confess that our ability to answer it
is still rather limited, But the obvions first intervretive steo is to check Qut
M(_o,_o)'s comoatability with our sample F-distribution's being viewed as approxi-
mately Normal. Were F = <fyse.05£,> to be Normally distributed, with the lst-level
moment matrix for its m-completion Gram-factorable as fgzb,zo) = WW', the bare

quad-moment matrix for EO = <§o,§> would be
MESED = W4
wherein 5\13 the bare guad-moment matrix for the m-completion of any r-tuple of _
Normal variables that are also centered and orthonormal., Svecifically,
By = Wy = Wy = 1 (1<)

1 1fL1=0
[x]

11,1 3 if1>0
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[§]h1,jk = 0 otherwise .

So cemputing 4 from the lst-level vart of g(gg,F?) (or simply taking W = E if is

EO
our initial orthorormal solution) and comparing y;ly(zg,ES)y;l' (or simply‘ﬂ(ﬁs,ES)
for orthonormal EO) to ﬁ\anoraises the degree of Normality in F's quad-moments.

If this comparison discredits the hyvothesis of factor Formality (a judgment which
by rights should include some statistical te<ting whose analytic development lies
beyond our competence), whatever features of the rotated factor quad-~-moments avpear
most saliently nonMNormal stand as empirical disclosures awaiting explaination by
snbstantive theories of these data,

Ceneric interovretation of nonNormality in factor quad-moments is still
largely terra incognita for us. Even so, we direct your attention to two special
orosvects, one minor but the other major. The first is diagnosis whether any of
- the F-factors are dichotomous. Despite the optimism of Gangestad & Snydér (198s5),
however, we donbt that many dichotomous sonrce variables are out there awaiting
detection. More vrovocative is the vrospect that arises when near-zero roots in
y(zs,za) reveal multicollinearities among factors Ea = <£o,E,§*>. Whether this has
any generic significance deever than the hyperbolic-surface theorem reported on
o. 14, above, we do not know. But one outstandingly important way for F* to contain

-0

linear dependencies is for some of lst-level factors EO = 420,21,...,§r> to be

quadratic functions of the others. For gi is in the quadratic space of, say, 50 =
<§0,§1,...,£s> (s<r) just in case it is in the linear space of za's subtuple 36.
And if £s+1""’£r are all quadratic functions of go, then the lst-level data var-
iables' true parts that we have found to be lin~arly decomposable as IO =‘A§0 are
really quad-functions just of KO‘ So quad-factoring is in effect also a version
of nonlinear factor analysis (see MeDonald, 1967; Etezadi-Amoli % McDonald, 1983)

--not however by coersion but by permissive discovery.

Diagnosis of dichotomies. For any variable X with mean W, and variance Oi,

the skew sky and kurtesis kt_in a given distribution of x may be defined
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e Tgor Elx-m Ve, o= o El(x - m)blh .

(We devart here from the tradition of defiring kurtosis as kt minus 3., The subtrac-
~tion makes a comparison to Normality that analytically is a useless comolication, )
ind for the 1st-level factors F = <§1,...,§r> whose quad-moments are found by

QTADFAC under assignment‘of standard scaling, this becomes simoly

ke = [M(F*,E* = [M(E*,E2
e, = DMESEDNoy,u Ko = DHELEDY, o, -

Fow, it is easy to show that if numerically scaled variable X is dichotomous,

with o, (g,) the population proportien in its higher (1lower) category,
= -1 _ 2
kty +3 = (pyax)™ = sky +4  ( dichotomous x ) .

So quad-factoring avpraises whether lst-level factor gi 1s dichotomous by judging
whether Lg(zs,F*)]ii,ii 1s essentially equal to 1-+Ly(£',§')]gi,ii. nhavoily, our
verformance studies show that with noisy data, QUADFAC's oresent computations often
overestimate factor kurtosis, sometimes disagreeably so. But we are confident that
reliability of the factor quad-moment solution can be substantially improved.
Diagnosis of quadratic factor dependepcies. In principle, it is entirely
straightforward to determine which dimensions of F-svace, if any, are gquadratic
functions of others. Suvvose that 2 and X are subsets of factors F= <£1,...,§r>,
or of some rotation of F, while X5 = <¢x5,X> is the m-completion of X. (X and 2
need not be disjoint; in fact, for some purnoses we want 2 =F.) Then the quadratic

regression of 2 upon X is Z = Ezza for coefficient matrix
EZ = H(.Z.oKS) H:*(Kav)_(a) ’

where gr(za,za) 1s the inverse or, when necessary, the nseudo-inverse of X's quad-

moment matrix., And the diagonal of
+
?;’(.Z...Z.;Zé’) = y‘(Z,Z) - Ez(sza) _H (55.55) &'(.Z..Xa) (17)

comorises the residual variances of factors Z after their quadratic regressicn on X
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is vartialled out. When X and Z are both subtuples of F, all terms on the right in
(17) are centained in M(E*,E¥); whence to judge which factors in Z are (nearly) quad-
functions of factor subtuple X we need only compute the diagonal elements of H(Z,;;Za)
and note which ones are (nearly) zero. Supvose that when Xy and Z jointly span‘(FO,
all factors in Z pass this zero-resiiuals test. Then all dimensions in linear EO'
space, the true-parts of Y in particular, are guad-functions Just of X.. And the

20
composition of z =‘§ZX6 into the ccmponents of Z on the right in I = ézo vields
coefficients for the putative quadratic determination of IO and hence ZO by 1lst-
level factors X,.

Practical application of this quad-iependency diagnostic, however, incurs a
complication whose management seems clear in theory but requires nonlinear-optimi-
zation orogramring that we have not yet accomplished: What dimensions of F-space
should we pick for X and Z? When rotation of lst-level axes has oroperly aligned F
“with genuine causal sources of data variables Y, it suffices to apply (17) to each

partition <X,Z> of F, with the number g3 of dimensions in X taken first tobe g =r-1,
next to be 3 = r~-2, and so on, stopoing when no s-selection from F quadratically
accounts adequately for F's remainder. But interpretively optimal factor rositioning
is a chancy attainment at best. Our only decent criterion for this is simple
structure; yet it does not take much meditation on the logic of single-plane rotation
to appreciate how unreliable we must expect this to be. And when we susvect that
some of the factors in a suitably rotated E are quad-functions of others, simple
structure is not even avprooriate in all planes: When {3 is a quad-function of,
inter alia, f,, we still wish to maximize the number of pattern points in the gi/gm
plane that 1ie close to the gi-axis; but there is no rationale for trying to achieve
the same for the gj-axia unless data variables Y all have natural means, i.e., no
scale centéring. (To appreciate this point, censider the simple structure of

Calileo's law of falling bodies before and after centering in a distribution of

distance-and-duration-of-travel observations.) And proper axis placement is crucial
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for disclosure of factor quad-devendencies by diagnostic (17), insomuch as when F
has an <¥,Z> partition for which non-null Z is quad-devendent on X, this does not
generally remain true under rotation of F,

For any g<r, one way to find g indevendent dimensions X of linear Fy-space
that best fit the hyvothesis IFOEQXO--the simplest we have been able to envision--
is as follows: Starting with E, orthonormal, let R be an arbitrary (1+s)x (1+r)
row-wise orthonormal coefficient matrix whose first row and column are all zero

except a leading 1. Then

Iy =Epl” %er B

is an m-complete orthonormal basis for some (1+g)-dimensional subspace of .fFO, while

the bare gquadratic develooment of )_(0 is

* = »
oL

with }3‘. defined from R by the form-(15) expansion. If each Fy-factor is in ony as

we hove to achieve by suitable choice of 3 and R, there exists some coefficient

matrix Bp such that Fy = EFK(‘)' = PFE’*F-S; whence

M(Eq.E) = (BgR,) M(ES,E) (BgR,)' . (18)

Although we have not yet accomplished the programring, solution of (18) for best-

fitting Bp and R is a straightforward aoplication of modern structural modelling,

Moreover, since g(zo,za (EFB‘*)E\(EG’EB)’ (18) can be simplified to

M(EyE) = (BeR,) MESE) (19)

albeit we are not sure how easily extant structural-modelling programs can be adapted
to (19)'s asymmetry in its unknowns. Once a solutiom of (18) or (19) is in hand,
1st-level pattern é‘of Ib upon initial factors EO converts immediately into coeffic-

lent matrix ABp of Y,'s quad-dependency upon X, (= RF ).

-0
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For fixed g, the solution for btest-fitting By and % in (18) or (19) 1is unique
only under side conditions defining an arbitrary placement of axes in X-svace. So
ence we have found zo's quadratic determination IO = ﬁ?FZS by the initially posit-
ioned X we want to search out a transformation matrix W in

T, = ABgd l(WK,)® (20)

that rotates X to an interrretively optimal pattern on (EXO)*. Although we are

unable to solve égFﬂzl directly for simvle structure, it is straightforward to

rewrite (20) as Iy's linear devendency on the full quadratic develooment (‘d)_(o)e
ﬂ

= 3!0 - § EXO of the rotated X-axes, namely,
T, = By ey hr,)® (21)

where EQ is the matrix, easily derived from'gF, such that EO ='§Q§" We do know
how to find the E‘that optimizes simole structure in rotated pattern ABq(_'Ll-lﬁ;v{:l),
and that converts directly to a corresponding simple-structured ﬂ?FH:I' When

solution algorithms for (18) or (19) become available, we will pass along this

rotation technique as well,

Bottom-line Practicalities.

Inless you are working with data whose latent-source theory has evident
distributional implications, you will probably see little reason to glive quad-factoring‘
a try until its orogramming includes the promised routine for identifying factor
quad-devendencies. Even so, thinking about what you might do with facter quad-
moments may tempt you to take the next step of actually harvesting this information
from whatever multivariate data arrays are your current concern. So we had best
warn you about a practical limitation on quad-factoring that will likely persist
even after QTADFAC's computational procedures have been optimized. This is simply
that quad-factoring requires orocessing of number arrays whose dimensions are roughly

orovortional to the squares of the corresponding array sizes in lst-level factoring;
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7

and these quickly become enormous as the number of lst-level varisbles becomes
aopreciable. Yot merely does this make for exvensive computing, you may well find
that the number of variables you wish to quad-factor exce~ds the cavacity of any
mainframe comonter to which you have leccal access. For example, the "niv. of Alberta's
Amdahl 5870, with 32 megabytes of memory, will allocate quad-factoring storage space
for no mere than 15 lst-level variables. The new generation of super-computers
shonld be somewhat more vermissive than this, Just how much so we are now attempting
to ascertain. But even so, the size-window for effective quad-factoring, bounded
from below by the number of lst-level variables required for an informative moment
structure and from above by computer cavacity, will orobably always remain uncom-
fortably narrow.

To orevail over this window-of-effectiveness bind, applied quad-factoring
needs to select its data with exceptional care. For it cannot count on substantial
model vioclations to be averaged out by abundant data redundancies; rather, one or
two 1st-level variables that fit vpoorly may suffice to muddy varameter recovery
beyond the limits of useful return. (We do not know this to be so, but see good
reason to fear it.) Accordingly, it seems best that empirical quad-factoring
research be conducted as a two-stage operation whose first stage is a brutal pruning
from one's original battery of data measures those that exhibit conspicuous anomalies
--large residnals and method chatter--in preliminary quad-facterings. Svecifically,
if the maximum number, Dps of 1st-level measures to which your computer can allocate
quad-factoring storage space is less than the number on which you have sample data,
you can scan your full array by fast-QTADFAC runs on assorted Dp-item subsets thereof,
The orint-out shows reproduction errors specifically associated with each variable,
as well as u-estimates from all four levels of model-(6) utilization described in
Aoperdix B; and this should tell you what pick of at most Dy of these items can be
passed on to more intensive QUADFAC apalysis with minimal manifest model misfit.

And one other admonition: Don't bother to quad-factor small-sample data,

Although our studies of QUADFAC performance are still too narrow for anthoritative




e

~30-

conclusions, we have investigated various levels of sampling noise in arrays of 8
and 12 1st-level variables. (See Appendix D for the 8-variable results.) And
whereas source-parameter recovery is near-verfect for artificial data from infinite
vorulations (i.2., no sampling error), and gratifyingly accurate from samples of

size 1000, recovery from samples of size 100 is a matter of mirth.
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sopendix A. Derivatiop of the guad-error exvectatiops.

Problem: To determire the exvected values of S(Qg)-elements

3n1, 3k E[ﬁhigjk] + éle,,t jk] + 5[§h1§dk] (21)

wherein
= + + .
solution: For all 2nd-level index vairs <hi,jk>, including index O for

%, and gy it follows from (2.2) that the expected product of Ehi and &jk has

cemposition

while the expected product of &y and gjk i

flopsand = clbyeibe ] + Eltyeiesty] + eltyeieiq] + (43)
tleptitye] + tleptyagty] + Eleptiege] +
f[ihﬁiﬁjgk] + E[ghiiﬁjik] + f[ghgisjsk] .

nder the basic error-model's presumption of error independence, tngether with stipu-
lation of centered scales, most of these terms are zero. But several subcases must
be distinguished according to how the various lst-order subscripts differ therein.
The principle of evaluation here is that any term é[ghgigjgk] in (A2,A3) (z either
t or g¢) is zero whenever it contains Just one t-component other than %y or when any
of its ¢ components is either gy OF occurs Just once therein. For example, if i # ds
E[&hgigjgk] = £[§h§k]£[gi]£[gj] = 0 by indevendence and zero error expectation. And
when either j # O or one of §,j,k is distinct from the others, efﬁ_hgigjgk] =
5[ﬁh]5[21£3£k] 0 either because f[gigjgk] =0or, wheni=3=kbdut j #0,
because centering of Y contrives ﬁ[&h] = 0.

It follows that the only nonzero terms in (A2,A3) for a particular choicé
of ¢hi,Jk> are ones wherein either two e-components each occur twice, cne oecurs

four times, or one occurs three times tcgether with t i, Accordingly,
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Eltgtome) = £lef] = w
flestiee] = elsgtylelef] = gpqm 10173,

abie) = Aglede]] = (oy-uly
tlejeiee,] = €leflelel]l = wu £ 17K ,
Hltoeieey] = fle)) = al?l

tleseieie;] = fle¥] = gg‘*].

Inserting these evpectaticns into (A2,A3) for all the distinctive subcases of

2nd-level index pairs <hi,jk> then yields
f[&higjk] = 0 uless j =k #0. In tha§ case:
= 21 =
f[ﬁhigjj] = f[&hﬁilé[ﬁjl = ghinj .1fb.i‘.1 ’
= 2 2y _
Eltyyeqy] = €lg70elel] = (gpy-w)yy

for the elements of g(g.?,gg). And the elements of g‘x(gg,gg) are various instantiations o:

fegisoy) = © »
é[ghigjk] = 0 unless either one of ¢h,i> i3 the same as one of <j,k»,
or f =1and J =k. In those cases:

tley eny] = El8,8,0¢0e8] = gyqm 1f b,4,1 are all disgx]zct ,

Elopyeyy] = 26lbytylelef] + €lty)eled] = 200u + oy u
thiyi if0<h#1

(3] ( centered ¥ ) ,
yl iro=p#g

Elepyoyy] = €l85160e2) + £lg216l83) + elelleled] } 1f‘n .
= (gpp-unly *+ (eqq-u)u, + vy

6[3119-31] = ﬂﬁi]dﬁil = Qinj irig#1 ,

tley 844] l.é[&f]&[gf] + E[gli’] = 4lgyq -uylyy + ngl‘]

reported

Substitution of these results into (Al) then yields the values of 3n1, 1k
? .

in (6), p. 9 above.




lee

-A3-

Note.

Fven without auxillary assumptions about skew and knrtosis, the quad-factering
error model is aporeciably stronger than the "local independence" of errors often
postulated by nonlirear item-response theory. (See Anderson, 1959; also McDonald,
1982.) To clarify the difference, define the true-part gi of each data variable
Y3 to be the unrestricted curvilinear regression of J4 upon this item-domain's
common factors F = 421,...,£r7, i.e., each subject's value of error variable &4 Tgef
Yi-% is his value of Y1 less the conditional mean of Y3 among subjects with this
same configuration of scores on F. Then the "local independence" presumption
is merely that @y,...,e, (equivalently, ;1,...,zn) are distributed independently
of one another conditionally at each F-gsetting; whereas the basic quad-factoring

premise is that Q)s---s2, are unconditionally independent of each other and of T,

which pretty well requires--not rigorously, but close enough--not merely local

constancy
inderendence but also 4 of the conditional distributionsof each g4 given F.

This is not unreasonable for a data variable I; that is continuous and open-ended;
but it cannot strictly hold for any discrete Iy (albeit that shouldn't matter‘much
if y has decently many scale steps) and may be severely violated if Iy has a floor
or ceiling approache® by aporeciably many observations in the data set analyzed.
Even so, none of the expectations £tghzizjzk] (z either % or g) developed
above under the basic quad-factoring error premise requires full unconditional
indevendencies, and many should be robust under violations of this. We venture that
appreciable departures from quad-factoring error model (6) are likely to arise in
practice, given a decent approximation to conditional independence, only when floor/
ceiling effects are pronounced. In that case, we would anticipate that the terms
deviating most from their quad-factoring theoretical values should be the ones of
form e[gigi], £[§fg§], and probably f[ﬁoﬁiﬁi] if the y,-scale is cramped only
at one end. If so, the major violations of operational error model (6) should oceur

in the 944,43 terms, about which all model assumptions are easily waived. Be
» »
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that as it may, if error-model violations are concentrated in a comparatively small
number of error terms [qhi jk},these can be picked out by fine-grained assessment
ht ?

of model fit and compensated for by the same solution methodology (Appendix E)

that accomodates nonNormal error skew and kurtosis.
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Appepdix B. JTADFAC programmine details.

Starting from an initial estimate 96 of gf (i.e. of u together with none,

one, or both of 2}4] and g&B] depending on the strength of error-rodel assumed)
and gness r at the number of 1st-level common factors F, JTADFAC iteratively alter-
nates between an improved estimate g&i of true-part quad-moments M(ZS,T*) given
QI—I and 3n improved estimate ﬁ; of ET given ﬁ&i’ generally accomranied by revised
estimate gi of factor pattern A and ﬁFi of factor quad-moments ¥(26’26 + (Fast
QUADFAC does not iterate beyond 1 = 1.) Our main computational tool is classic
vrincival factoring (Eckhard-Young aporoximation) with certain modifications ensuing
from the quad-factor model's spvecial structure. Details follow after a prefatory

word about the number of 2nd-level factors.

JQuadratic factor dimensionality,

The number 1+r of m-complete lst-level common factors F. in (11) is of

—0
course one of our major unknowns. But whatever r may be, it fixes the number 1+ p*

of factors in F,'s bare quadratic development F* as 1+ r* = (r+1)(r+2)/2, or
c* = r(p+3)/2. On first thought, it might seem that r should be the rank of ¢(14,1,)
(equivalently, of C(T,I)) identifiable by lst-level factering of C(Y,Y), while p* is
the rank of‘g(zg,T'). But not only does rank-minimizing 1st-level factoring pre-
vailingly underfactor, we have already noted that one benefit of quadratic analysis
may well be recovery of factors too weak for detection just in lst-level data. So

we want to enconrage solutions of (16/16a) in which r is larger than what would be
orthodoxly found by factoring Q(I,z) with rark-minimizing commumalities. And althonugh
the number 1+ r* of colums in quadratic pattern Ay 1s rigidly specified by r, the
number of aprreciably nonzero roots of E(IG,T*) may be considerably less than r*

due to muliicollinearities among the 2nd-level factors. This an-luvel-dopandluéy

orospect is not disvleasing, for quadratic results are far more interpretively

interesting with multicollinearities in za than without them. In any case, it is
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imoortant to be clear that the effective rank of C( ,T2) is just a lower bound
on r*, The only good way to select factor number is to develop solutions cver a
range of r-choices, including ones larger than what lst-level factoring weuld

orthodoxly aprrove, and see how nice is the resultant model fit.

An outline of QJUADFAC iteratiops.

Let ePY( ) be the function defined by equations (6) that mavos uniqueness
terms u into the corresnonding array Q(E ) of 2nd-level errors that our model
exvects u to induce in data quad-moments M(Y*,Y*) (The "I" in this notation
serves as reminder that f'mction 8 By includes the 1st-level data covariances as

parameters.) That is,
+y =
UEY) = ep (uh)

is error-model (6) writ small. For any fixed r, given an estimate §I_1 of gf, we
enter the ith cycle of QUADFAC iteration, or more generally a subcycle thereof, by
taking BEY(ui 1) for our running estimate of Q(E+), and hence M( ,I%) - OEY(ui 1
as our corresnonding cycle-initiating approximation to true-part quad-moment matrix

( »I5). And this cycle/subcycle's yield is a revised estimate ﬁ&i of EKQB,T‘)
such that the righthand side of

Ap o
MI5L5) - Ogyly \) = My (B1)
is fitted to its lefthand side under closer oroximity to the model's ideal structure
than achieved on the left. Solution for ﬁTi may or may not be accompanied by esti-
mates Ai and ”?i of lst-level factor pattern A and factor quad-moments M(ga,_o)
A
#hen it is, as occurs just at completion of a full cycle, A i’ ufi’ and a sparce

matrix R, whose nonzero terms, if any, are correctiocns of ghi;jk-terma whose model-(6)

specificatiens have been susvended, are obtaiﬁed by fitting the righthand side of

A

I55) - Gey(®iy) = Aadydy + R (B2)
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with g,i havirg the 1-based structure described by (15), and the triple product

> Iz

on the right giving Mpy. That is, when (B2) is fitted we put
A - A A A '
ﬁ"ri - é*iyf‘i‘f‘*i .

The nonzero (tc-be-fitted) elements of model-relaxation matrix Ri are selected

.

(a) by stionlating one of the three grades of error-medel strength, and (b) at control-
parameter option, by a subrontine which oicks out the <hi, jks~indices at which
previous model fit has most poorly reproduced the data quad-moments. This amounts

to waiving the model-(6) constraints on these nt, 31c°
. 14

Finally, this cycle (or subcycle) derives a new uniqueness estimate u; by

fitting some selection of the component equations in

oy = epyl@) (B)

where
A » » A
Ye1 Taer MIHLY) - My .

This cycle's reproduction of the data quad-moments is then

A / A
My Cger M * Spyly)

and if the fit of avproximation ﬁ(xa,!a) = ﬁn aporeciably improves upon that of
the oreceding cycle, the iteration continues.

Solution for "Ti' Hypothesizing that the Y-variables have L lst-level
factors entails that the rank of ﬁ&i in (B1)-(B3) should not exceed 1+ r*. in
obvious way to achieve this 2nd-level rank constraint is through the Eckhard-Young
avproximation that revlaces by zero all eigenvalues after the (1+r*)th in the
eigenstructure decomposition of (Bl)'s lefthand side; and with two minor modifi-
cations, this is QTADFAC's "coarse" solution of (Bl) f°’dgi1'

The medifica s: (1) de firat partial £y out of (Bl)'s left side before
solving the resultant estimate of ”9’(16,16) for its first r* orincipal axes,

(2)-§T1 is quad-symmetrized by averaging across elements that quad-symretry

requires to be equal.
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This coarse solution for I}"I‘i does not, however, have explicit decomposition (23).
Ideally, equations (Bl)-{B3) should be solved by simultanecusly fittirg all unknowns
on the right in (B2) by some modern structural-mocdelling algorithm. But pending an
effective subroutine for that, QUADFAC's repertoire of "fine" solutions of (B1)-(EB2)
for <§i’:§Fi’§i’ and thence Mpy proceed as follows: Each variant begins with a
solution Zl:i for the lst-level factor vattern. Fast QTADFAC takes ‘31 to te simply
the pattern found by orthodox lst-level iterated principal factoring of 9_‘ (1,Y)
expanded to include a row for L and column for go.l But under the control

settings for iterated 2nd-level solutions, each cycle of fine solution

for 331 first computes a coarse true-quad-moment estimate ﬁn (generally iterated
threngh a small number of coarse subcycles) and solves the estimate of 1st-level
true-cart covariances C (T,I) embedded therein for the pattern on its first r variance-
normalized orincinal axes, After exvansion to include ¥y and go, this pattern is
then taken fer 31' However 31 i3 obtained, 3,1 is derived from it by (15), after
which :‘{Ipi and 51_ are simultaneously computed to fit (B2) with this fixed 3,1 by
the least-squares algorithm described in Avpendix E., Since this orocedure obtains
E*i only from the lst-level part of :}?l‘i’ it is clearly suboptimal in principle.
Yet it works decently enough with artificial data even when that contains realistic
samoling noise: and although our forthcoming structural-modelling alternatives will
surely orove superior, the improvement those bring may or may not be appreciable.
Solution for -:‘;i’ There are enormously many ways to solve (B4) for _f_:xi, but
some are far less robust than others. Of the varieties we have tested, the ones
that have proved reascnably effective are all classical least-squares fits of over-
determined simultaneous linear equations. To examine details, let :“k (similarly ﬁl)
be the kth element of ~§1’ i.e., fit = igi]k‘ Then from (6), writing unknowns on

the left as conventional fer simultaneous equations and pretending for tidiness that

1'!‘he main motivation for fast QUADFAC, namely, bypassing the considerable expense of
IMSL's solution for large-matrix eigenstructure, has been largely obviated by the
recent release of IMSL:MATHLIB. The new subroutines for eigenstructure therein are

faster than before by--incredibly--over an order of magnitude. And they appear more
aceurate as well,




(B4) 1s not just an aonroximation but an identity, each component aquation in (B4)

that matters for ék has the form (up to index permutation) of one of

ghjgk = Moy lng,kx ( h,1,k a1l distinct; 1sh<j )  (B5,1)
Jepedc = (Me1lk,kk (1eh<k ) (B5.2)
Be = [Meyloo,ux (B5.3)
A A A A -
Shathe * Sy~ Uty = [Mpslpn, i (1lehek) (B5.4)

6gkkﬁk- Bﬁg = Lyﬁilkk,kk ( if error kurtesis is Normal ) (B5.5)

where standard scalirg in QUADFAC oractice puts Sh =Gy - 11in (B54,5). A1l of
these exceot (B5.4) and (B5.5) are linear in their unknowns; and that becomes true
of the latter as well if we replace ﬁhﬁk and 3§§ therein by their avoroximations
computed from our last estimate of u (1.e. either ﬁi-l or the most recent estimate
reached by iterating (B5)'s linear-equations solution). Because the full array

of equations (B5) vastly overdetermines Qi’ it is feasible to solve only selected
subarrays in hope of avoiding quad-moments varticularly susceptable to poor fit,

At vresent, QUADFAC orovides alternative solutions for ﬁi from four nested selections

from (B5). In order of increasing inclusion, these are:

Selection 1. Just the equations of form (B5.3)., This is a traditional
1st-level uniqueness solution, and the one used by fast QUADFAC.

Selectiopn 2. All the equations of form (BS.1,2,3). This subarray has a
direct least-squares solution for each ﬁk separately.

Selection 3. All of equations (B5) except those of form (B5.5). This
subset ignores the kurtosis estimates in 351, which are usually much larger
than other terms in ﬁki and suffer the greatest sampling variance.

Selection 4. All equations (B5), including subarray (B5.5). This is

aporopriate only when Normal error kurtosis is presumed.
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Our artificial-data studies of QTADFAC verformance (see Appendix D) have not yet
discerned any clear supericrity order on these options, albeit Selection 4 is clearly
inadvisable for data susvected to be avoreciably contaminated by floor/ceiling
effects. Althongh any one JTADFAC run iterates just one of these solution options,

it orints out the u-estimates from all four Selections on each iteration cycle.
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Aprendix C. Fragments of the theory of guadratic scaces.

In a broad sense, the quadratic functions of variables X =»<§1,...,§n> are
all those of form g(X) = EN +;§ ax; * Z Z aik X 4% - But here we shall adoot the
narrower usage wherein the gnadratic functions of variables X are just the ones of
homogeneous form g(X) = 2 i 843X y% - (As will be noted, the broad sense is recover-
able as a svecial case under the narrow one.) By the linear space, IX’ svanned by
a tunle X = ‘51""’Zh> of variables we shall mean, as usual, the st of all homo-
geneous linear combinations of the X-variables, i.e., all functions of form g(X) =
Z . 84X;. Let us say that tuple X of variables is (implicitly) complete iff the
unit variable is in £x, and that X is m(anifestly)-complete iff the unit variable
is one of those in tuple X¥. Whenever we write X = <§b,xl,...,zn> for a tuple of
non-error variables, i.e., with the tuple's indexing starting with O rather than 1,
we vresume X to be m-complete with the unit variable. (Error tuples E Eos go,
and gg remain exceptions to this rule, but will not be mentioned in this Avpendix.)
The space IXO linearly spanned by the m-completion KO —-<zo,x1,...,zn> of X com-
orises all linear combinations of €Xys+++9Xp> that include additive constants.

And since x XXy < (i = 0,1,...50), the quadratic functions of in the narrow
(homogeneous) sense include all quadratic functions of X in the broad sense that
admits linear terms and additive constants. Hence in particudar, f xoc dxo.

It is often insightful to express quadratic fumctions d(;l,...,;n) =
ZI .8y 4X4Xy in matrix form g(X) = X'QX, wherein X = 4X37++.0K,> im-algebraically
a column vector and Q‘ is the pxp symmetric matrix whose ijth element is a4 if
1=}, Qij/z if 1<3, and .a_ji/z if 1>4. Then the guadratic space, &y, generated
by variables X is the set of all functions Zr! (x) = X'QX: Q any nxp symmetric real
matrixz. ﬁx is also a space in the standard linear sense, since all homogeneous’

lirear combinations of functions in Qx are themsel\;es in Rx. Indeed, ﬁx is the

svace IX* linearly spanned by the bare quadratic development X* of X, and is hence
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lirearly sovanned also by X_ﬁ. And if X is a basis for its lirear space y X* fails
X =

to be a basis for ax just in case, for some tuple Z of variables in ,,fx, all Z-points

lie on a hyverbolic surface.

Proof. Variables X* contain a homogeneous linear dependency (relative to a
fiven ropulation in which X is distributed) iff .’S'Q}. = 0 for some nonzero sym-
metric 9,' By virtue of its symmetry, 3\ can always be decomposed as 3 =TT
where T is orthonormal and D is diagonal though perhavs not ovositive definite,
Hence 1f 2 =; ¢ JX, X'QX = 0 iff 2'DZ = 0, i.r, iff ggi_gi = 0 for the p roots

(diagonal elements) £d,f of D. If all nonzero roots of D, say g;,...,d. (r=p),
have the same sign, 1t follows for-. each i=1,...,r that gi = 0 and hence
Zy = O—which is to say that linear Z—spacé is at most (p-r)-dimensional contrary
to assumption that X i3 a basis for jx. Alternatively, if some of the r<n
nonzero D-roots are ooposed in sign, ggpg = 0 is the equation for a hyperbolic
snrface in the subspace of ‘QX spanned by the first p varisbles in Z. And the
bi-directionality of this argument is plain. 01

Finally, it is of fundamental importance for quadratic factoring that if
X and Z linearly span the same space .(X = fz, then, regardless of any linear depend-

encies in X or Z, X* and Z* both span the same quadratic space ﬂx =IX* = !Z* = é?z.

Proof. Swupvose that Z and X span the same linear space even though the
number @ of variables in Z may differ from the number B in X. Then there exist

rot-necessarily-unique coefficient matrices é‘ and B of order mxp and pxm,
respectively, such that Z = AJ_I and X = .?,Z' Se ifr 3’ end Q) are respectively
any mxm and g xp symmetric quadratic-coefficient matrices, y&g = _15'(”4"9“&)5
and X'QX = Z2'(B'Q,B)Z.

It is not generally the case, however, that if variables X are orthogonal to variables

Z, then QX is orthogonal to é?z. (In this paper, we understand "orthogonality" in its

generic sense of zero 2nd-order moments or zero vector oroducts, not in its special
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sense of zero lst-level covariances.,) In particular, if means have been partialled
out of X, i.e, if X is orthogonal to ;0, most variables in ;ﬂ.x 8t111 retain nonzero

means. (Recall that any variable's mean equals its mean product with the unit var-

isble.) For this reasen, quad-factoring cannot partial out lst-level means and

thereafter work exclusively with covariarces as does traditional 1lst-level factoring.

The rudiments of quadratic-function theory needed for present purposes can
be expressed with powerful elegance in the language of tensor algebra, Central
to t+is is the Xronecker product, gaf‘\, cf any two matrices Aand B. If 2 ismxp
and é\ ispxs, ?ﬁﬁ is defined to be the mrxps ratrix so partitionable in corres-
rondence with the elements {gijg of B that for each § =1,...,m and ] = 1,...,n,
the ijth block (i.e. submatrix) in §ﬁé is Q“é‘. We also need the vec operator that

transforms ary matrix A into a super-col'mn of A's columns. Specifically, when rxg

matrix A is partitioned by columns as A = [gl a, ... a.l, m(ﬁ’) is the order-rs

colim vector

zgg([gl o8 ) =

I ¢ o+ o i

s
For inclusion of this operator in formulas, however, we prefer Pcllock's (1979, p. 68)

rore compact rotation

c
M

“def g_e_c(i) ’
wherein the superscript is an obvious heurism for "column."

Some basic consequences of these definiticns that hold whenever the matrices

at issue conform are

() (ax3n)¢ = (BRAXC |

(11) (ab?)® = bea (a and b any column vectors ) .
(111) (A +B)@C =A®C +BRC, AR(B+C) =A@B +AaC.
(1v) (3@4)' = B'eA'.

(x) (B9A)(D2C) = BD & AC .
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(vi) I(m) 9 ;(n) = Im) ( I(x) the kxk Identity matrix ) .

(vii) Baal = Bloak  (left-invertible Aard B ) .
A matrix A is left-invertible iff its rank equals its colum-order, in
which case A has a rot-nacessarily-unique left-inverse ;Q.\L = (ﬁ'&)-lﬁ'
by which &Lé‘ = £ The cendition for left-inverting A8B is immediate
from (v,vi).

(viii) If Ay @A, = By #B, with A,4> of the same order respectively as B3,

then 3}'1 = an~1 and Ay = LB, where either

Hence in particular, ﬁﬁﬁ = EQ?\ iff either A=Bor A= -g.

Continuing to treat variables X = ‘Zl""'zn’ as a column vector, we can
now write the full quadratic develooment 1(_9 of X as the t'm:ler-n2 colum vector of

pairwise vroduct-variables

2 c
- 1) =
X = (XX)° = X8X .

Fach variable Xy (1,4 = 1,...,0) in tuple X® has composition Xyy = 24Xy and is also
one of the 2nd-level variables in array X* = fzisz i,1=1,...,0; 1=<1}. The only
difference between Kﬁ and X* is that each Xy j occurs twice in 3‘ (with permuted

subseript) if 1 # j. Observe that any quadratic composites ;§k “jef X'3 )_(f of

variables X can be organized as

B 7 ERE s el = Weaang = gr@en = gt

and collected into a column vector G = <B1s8areee? of variables having classic

linear multivariate form
- — c -
g‘ - EQK‘ ( [HG]ko -def Sk" ‘-S - 1’2’000 ) *

As a svecial case of this format, for any tuple of variables Z = AX in the linear
space of X, the full quadratic development of Z is linearly determined by that of

X according to




>
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2= 292) = MM = AeNEID = (eax® (Z=a).

-

Ang if A is of 1ll column-rark and so has a left-irverse, this devendency of Zﬂ

oon 59 can be inverted as

2 = ant® = leah?® (z-ax, b=l )

~a

to reclaim XB from _Z_a. A necessary condition for g._L to exist is for Z to span Ix;
ard that together with X's being a basis for jjx is also sufficient. Tnhaprily,
the situation is messier if X is pot a basis for £x; for then there are many coef=-
ficient matrices {3}1? such that Z = A;X, and not all of these have left-inverses
even when Z svans fy. But gome do--which is to say that so long as Z spans dx»
there always exists at least one coefficient matrix A such that g = AX and X = éL_;

whence also Z% = (A 95)&‘ is invertible as X% = (ﬁLQAL)Z'.' (See Rozeboom,

?

for proof of this and other cheerful facts about left-invertible factor pattems

henceforth taken for granted here.)

Not merely do these formulas concisely deseribe how linear relations among
lst-level variables unfold into linear relations among quadratic functions thereof,
they also spow in principle how to analyze linear dependencies in a quadratic space
into relations among axes in the underlying linear space. Let Z = <Zysee.s2Z,> be
an p-tuple of variables (which may or may not be m-complete) whose 4th-order moments
we have identified either by direct computation when Z comprises empirical measures

error
or, when the Z-variables are true-parts, by correction for 2nd-level jas described

elsevhers, And suppose that study of these moments has revealed that M(z2,2%), 1.e.

f[_z_’g“'], has a decomposition of quadratic form

Mz = aeay, (aey):

for some D xr matrix A (r =p) and some £2x£2 matrix M), If A is of full column~

rank r, so that AL and hence (éﬂ é)L exist, there is just one tuple of variables G

such that 2% = (A9 A)G, namely G = (ﬂﬁ}}‘)l‘ga, whence also M(G,G) = Eg’ Moreover,
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these 32 2nd-level G-factors of _Z_ﬁi are immediately identifiable as the gnadratic

development of 1st-level factor r-tuple

- L
N E X

since

=

¢ = (éﬂé)LZa = (ALﬁé‘L)(_Z_QZ) = ,:A_‘LZ Q;&LZ = F®

= Eﬁ .

Insomuch as I‘_‘Q = G, the F so identifisd has 4th-order moments g(gs,gg) =3:!(g,g) =M

and reoroduces the Z-information as

2 =&, 2 = @nF, M = e Muen)

Just as wanted of a simultaneous factor solution at both levels. Finally, note that
exceot for reflection, this F is the only p-tuple of Z's lst-level factors whose
quadratic develooment so revoroduces g(_z,’,g“) from A, Specifically, if Ea is any
basis for linear Z-svace that.factors Zas 2 = Eaza for some lst-level pattern Ea
while also _Z,s = (g;aé)g:, then ?,a differs from Aby at most a reflection of some
of its colums. Indeed, only for a bizarre distribution can it fail that ~ither

..?a = A and hence Fy = ALZ =F, or Ea = ‘,.‘}' and hence »F.a - ('A,L)Z = -F.,

Proof. Premises Z = B,F, and g’ = (AQA)EZ have the immediate consequence
(Aen)E = (By #B)EY . (c1)

Were Fg a basis for §; 1t would follow from (C1) that A®A = B, #3,, vhence the
theorem would be immediate under principle (viii); however, we have already ex-
vlained why not even E:, much less E:, is generally a basis for &Z despite Ea's
being one for &Z' Yevertheless, if f is any cclumn-vector of scores om Ea for
some member of the population P in which the distriimtion of Z is at issue, it
follows from (C1) under (y) that A Af = Baf, @ Bof and hence, under (yiii), that
AL = LBt (l=lor v=-o1) S (c2)
Yow, F, is by stioulation a basis for .(z, insuring the existence both of ;AﬁL and.

of r linearly independent score-tuples on Fa in P. So there must also exist
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an r xr nonsingular matrix S whose colums are score-tuples on Fo in P and, in

light of (C2), a diagonal matrix D, each root of which is either 1 or ~l--call

any such Ru a "reflection" matrix--such that

- m\an‘\u - -

Hence, since 9‘21 = ,_{,

A = BB, ., (c3)
And premultiplication of (C3) by AL shows that (,&LEQ)z = £ or, equivalently,

L ) .

ARy = D ) (c4)

for some reflection matrix Dy. Finally, insertion of (C4) first into (C3)
and then into the premultinlication of (C1) by A'® AL yields

A = B, (c5)
and
= L L = =
L,9F, = (AB0AB)E" = (D,8D,)(E,9F,) = DX, ODF,
or, equivalently,
Bl = (DE)(DE)' . (cé)

If all roots of D, have the same sign, then either pv =ZIor 27 = -}\, whence
by (C5) either Ba =Aor By = ~A. Otherwise, F, partitions into two non-null
subarrays F; and F, such that, from (C6), E)F) = -E;F}. This occurs just
under the bizarre distributional circumstance that every tuple of scores on

Fq occurrent in P is all zero either on subarray _F:l or on subarray F E. a

The essential point to be taken from this is that so long as we do not
stray from left-invertible factor patterns, there is only one modest obstacle to
achieving alignment between lst-level and 2nd-level factor solutionms. Quad-factoring's

alignment problem is this: When we set out to intervret some decomposition M(g ﬁ)
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BM,B' of the 4th-order Z-moments, we know that if B is left-invertable then there
exist varisbles G in gy such that Z% = BG and M(G,C) = M,. But we also know that
these G-variables are in turn guadratic functions of whatever lst-level factor array
F we may choose as axes for linear Z-svace. Insomuch as the lst-level Z-moments
also have a factoring M(Z,2) = AMA' for any such F, with 2 = AF and M(E,F) = Mg,
how can we extract some F, A, and the specific quadratic determination of Gby F
from our 2nd-level analysis and reconcile these with whatever might emerge just
from the 1lst-level analysis of g(g,_z_)? Although we have no operational answer to
this question for an arbitrary 2nd-level factor pattern, all falls nicely into
vlace if we can only manage to structure the pattern matrix in H‘(Zﬂ:&.) = BMB!
as B = A® A for some left-invertable }_\\. For then, as just shown, F =def 5}‘2‘ is a
lst-level factor solution that also analyzes the 2nd-level factors in ;’ =‘1,ag =
(A®A)C as G = F¥, and the G-moments M(G,G) = M  as the 4th-order moments M(E%,E9)
" = M(G,G) of F. In theory, this F can then be rotated into any lst-level factor
solution we might develop just from g(g,g); in practice, failure of such rotations
to achieve perfect matches tells us something about differences in what can be
recovered from noisy data by lst-level vs. 2nd-level factoring,

When Z is m-complete, notably when in practice % is true-part (g+l)-tuple
Ip =« %o»1>, we have no need for separate factor solutions on both levels insomuch
as the 2nd-level analysis embeds a lst-level one. But there is still an alignment
problem in this case. For when 2nd-level true-moment decomposition }.!‘(_'Ig,'l“) = P!‘b?.. !
reveals factors G (= 211‘8) in HTO such that g = BG, even though the first p+1
variables in _Tg are lst-level array To» the G-factors to which the first p+1 rows
of B give nonzero weight are not necessarily in (To-espeeially not if B is devel-
oved by something like orthodox orinecipal factoring. Nevertheless, if we require
B to have structure B = }}\ﬂAui}h <1,0,...,0> for A's 1st row, we insur~ that G =
Fy8Fy for some (r+l)-tuple . jaxes in of'l‘o commencing with the unit variable. And
the leading (p+1) x (p+1) submatrix in B (= Ag ‘e‘.) is then also the lst-level pattern

ofzoonzo.
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Apvendix E. Least-squares Solitiop for Special Terms in Factor-momept EZstimatiop.

In structural modelling, when we conjecture that turles Za and Zb of manifest
variatles are structurally dependent on source variables Fa and Fy» resvectively,

according to structural equations

Ta = M, *E, L = By th,

wherein <E_,EBy > are residuals, need sometimes arises to estimate y'(ga,zb) given

prior estimates of < é,§> and a more-or-less complex structure on the otherwise

unkrown contribution to M(Y,,¥y) of <E_,E >. (In QUADFAC aprlications, L =% =13
+

A=B=As Fg =R = Ea, and E, = E, = Ej.) To keep notation simple, let M be

manifest-moment matrix ﬂ(‘_f.a,_Y_b) while .?"F is factor-moment matrix ’P:(Ze sEy).  Then

3 £ i
our model ory\o s

Yo T RER' %,

where Qo (= AM(E,,By) + M(Ey,Fy,)B! + M(E,,E,)) 18 & matrix of residuals. (In QUADFAC
aovolications, 90 = 38.)

Subnose that when we seek to extract }3' from 35.0' pattern matrices é\ and E
have already been estimated while residual matrix 30 is analyzable as 30 =4t 9_\
where 31 is numerically fixed and & is a sparce matrix whose nonzero elements are
open varameters. (In QTADFAC applications, 9‘0 is specified by the strong version
of error model (6) from the latest estimate of 1lst-level uniquenesses u, while Q
contains to-be-estimated correction terms at quadratic-index positions {q_i,,n»; i=
l,...,n% for waiving presumotior of Normal error kurtosis, as well as at quadratic-
index positions {¢01,11>; { = 1,...,p% if zero error skew is to be waived.,) Our

task is to find Mp and the nonzero elements of 3 that optimize the fit of

M2 AR+ ( Q) . (71)
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Although this vroblem can be routinely solved by modern structural-modell ing
when A and B have left-inverses
methods, it also has an exolicit least-squares solution;as follows: Let o = {hi3
be the set of index-vairs that vick out the nonzero elements of Q, i.e., [Q]hi is
~ ™~

a free varameter in gv‘just in case hi 1is in set o. Also, write

M Cher M- o

L _ -1 - L
A7 Tger (i\'ﬁ) é' ’ EA “def A"
- -1 - L

B =g (B'B)B', Py =y BB .

Then outting B = My - (AMB' + Q) + Q) =¥ - (AMB' + Q) for the matrix of aporoxi-
mation errors in (El), differentiating traditional loss-fumcticn Tr[.giz'] wrt the
uninowns in L*!F and 3, and solving for its minimum shows that the least-squares

ovtimization of (E1) is the solution for ‘HF’Q\, in simultaneous equations

= ,L , '
¥ o= A0 - gt (E2)
(3 - PaQPRlyy = (M - PAMBH), (heo) . (E3)

(It seems cbnceotually heloful to leave the transvose marker onfB here even though
Py and Pp are symretric. Proof of this solution is available on request.) (%¥3) com-
orises a set of simultaneous linear equations Just for the o-indexed unkmowns in 3
without involvement of 3&-; and once S‘ is found from (E3), its insertion into (E2)
yields an explicit solution for ..‘MF'

To solve (E3), let &be the column vector of the unknown Q:elements arbitrarily
ordered as ¢...,(hi),...», where (hi) is the single-index position in q of doubly
indexed &element [S]hi‘ For each of these &-indices (hi), the lefthand side of
the corresponding simultaneous equation in (E3) is [B\Jhi - [_PAgg,;]M. And [3Agg§]h1.
i.e. [Pyly Q[PR] 4, 1s & homogeneous linear combination of the nonzero Q-terms such
that the coefficient of each a(4k) in [}’Agfé]hi is simoly [.EA]hJ[.?B']ki‘ So equations

(E3) can be written as a single matrix equation




(E5)

v
-

(I-8)g =
where S is a matrix whose element in row (hi) and colum (jk) is
P

ST(h1)(3x) et [Zalny(PBlyx

ard v is a vector whose (hi)th element is

(9 (ht) “ger (Mlns - (Bp)y (2Rl -
Unless S 4s singular, solution of (E4) for the least-squares-optimal estimate
of the nonzero &-e'lements is then q= (£-§)-lz.

However, this simple solution for S‘is likely to be complicated by
equality constraints imposed on some of its free elements. For example, symmetry
may be required of Q even when some of its free elements are off-diagonal. Let
the indices of g1be partitioned into blocks ﬁﬁ,...,/% such that the g:elements
with indices in the same /31 are constrained to be equal. Then by Lagrange-multi-
plier inclusion of these side conditions in the least-squares optimization it can
easily be shown that the rows of (E5) with indices in the same block are replaced
by the sum of these rows while of course in each row the previously distinet
g‘-elements in each block are replaced by just one unknown. Specifically, (ES)

reduces under equality-constraint blocks /31,...,/?_ to
(I-5, )Jay =1

wherein the mth element of 2 and the mpth element of §1 are respectively

. L Lo
[X].]m = (g [X](hi) ’ [§1]m = (B (ﬁ) [il(hi)(,ﬂ() (mp=1,...,r),

-

while [q)]y is the free Q-element comron to block A3,. (/§) here abbreviates sum-

mation over all the indices {pi) tn block /}.)

Note.
Matrix Q-QAQgé in (E3) can be reorganized by the vec transformation as
Y. L)




-EA_

Q- Pa@)° = 2 - (R@Y° = (I-PpapIE° .

Fach element of Q%, and each row and each column of z'.?B ﬁfA’ corresponds to one

pair of g's row/column indices; and it is easily seen that the left-hand side of
(E5) can be obtained by letting S‘be what remains of Sf after deletion of terms
not indexed in ¢ while §‘ is the principal minor ofMI-ﬁPB a}:A whose rows/columns
are similarly picked out by o. This construction makes clear the maximum number
of free Q-elements for which (E5) has a unique solution: By definition, a symmetric
matrix is a "projector” just in case all its nonzero eigenvalues are unity, one
consequence of which is that if P is any pxp projector of rank r, }'-E is an
nxp profector of rank p-r. Now, given that A (P‘) is of order p,xp, (annB)
and has the left-inverse A" (BL) defined above, P, (Pg) is an pyxp, (ppx pp)
projector whose rank is I, (;_B); whence .?BafA is an anAxﬁBnA projector of rank
Lprys Mmaking {’?BQ.EA one of rank ppp, -rpry. So long as the number of free
Q\-elements does not exceed Dghy = Lplys it is thus always possible for o to so-
vosition them in g‘ that E in (E5) is nonsingular, Even so, because E'«?BQEA
does contain 5 Y linear dependencies, even a small principal miner §_‘ thereof ..
can in some‘cases be-singular if it is chosen infelicitously. What o-selections

are assured of avoiding this indeterminacy, we do not know.




