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Although linear factor analysis t r a d i t i o n a l l y operates upon only the 

2nd-order central moments ( i . e . covariances) of multivariate data arrays, i t has 

long been known that higher data moments also contain potentially useful infor

mation about the data's common sources. Yet apart from Latent Structure Analysis 

(see Lazersfeld, 1959; Lazersfeld Sc Henry, 1968), which has been developed primarily 

for treatment of binary variables and i s severely limited i n the complexity i t can 

assimilate, few efforts have yet been made to interpret data moments higher than 

covariances—possibly because one might expect their analysis to require a mathe

matics far less tractable than the linear algebra which has proved so effective 

for aralysis of sovariance structures. 

It turns out, however, that just as linear algebra can nicely handle curvi

linear functions whose parameterizations are l i n e a r , so can the algorithms developed 

by linear factor analysis and more recently linear causal modelling informatively 

decompose data moments of a l l orders. (See Kenny & J'ldd, 1984,, for solution of a 

restricted special case; Mooijaartj 1985, on positioning of factor axes by appeal 

to 3rd-order moments; and Bentler, 1983, p. 496f., for an overview of the generic 

moment model which does not, however, develop any solution p r a c t i c a l i t i e s . ) We 

s h a l l here set out the theory and comoutational praxis for inclusion of 3rd- and 

4th-order data moments i n the analysis. (Extension to even higher moments i s clearly 

premature at this time.) It seems natural to c a l l this procedure Quadratic Factor 

Analysis, or "quad-factoring" for short. 

In b r i e f , quad-factoring of data on an array Y = 2̂̂ ] of metrical scales 

suoplements the variables i n I by t h e i r pairwise products / j ^ j = y i ^ j l * and observes 
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that any orthodox linear common-factor model for the I s t - l e v e l array J entails a 

corresponding linear model for the exoanded (2nd-level) array as w e l l . J'lst as 

tr a d i t i o n a l factoring extracts model parameters from the I s t - l e v e l data covariancea, 

so dops quad-factoring solve the quad-moments counterpart of covariances—namely, 

the Iv^t-level variables' moments through the 4th order—for parameters i n the factor 

model's quadratic extension. In p r i n c i p l e , quadratic factoring should disclose 

the same common-factor loadings and uniquenesses for the data variables as does 

tr a d i t i o n a l I s t - l e v p l factoring. But when the quad-factoring model premises are 

not violated too outrageously, i t should id e n t i f y comrunalities and weak common 

factors with greater precision than does I s t - l e v e l analysis. In particula r , i t 

resolves uniqueness ambiguities i n I s t - l e v e l factoring such as arise from doublet 

factors. Even more importantly, guad-factforing recovers not merely conmioiy-factor 

covariances byt a l l faptor moments through tfeg 4tfe order. Theories of what we can 

gain from this higher-moment information s t i l l remain largely underdeveloped. But 

one major prospect i s detection of nonlinearities i n the functions by which our 

data variables arise from thei r real underlying sources (see p. 12, below). And 

i t can strongly ajudicate conjectures (e.g., Gangestad St Snyder, 1985) that the 

factors diagnosed by certain test items are dichotomous, 

Termj^np^pgr Sfid npdgl presumptions. 

The presumptions of quadratic factoring are stronger than t r a d i t i o n a l i n 

factor analysis, but only modestly so. We begin with any standard metrical data 

array, that i s , the join t distribution in some sample population P on an a-tuple 

I = Zn> of metrical output variables. (When relevant, read 2 and other 

tuples of variables as column vectors of their components.) We sha l l not here 

address sampling issues, so for simplicity we equate the arithmetic mean, nj^^, of 

any measure x distributed i n P with x's expectation ^2] i n the population sampled. 

It i s convenient to scale a l l the Y - v a r i a b l e s — c a l l these our I s t - l e v e l data variables 

to have zero means i n P; but variance normalization i s optional, and eventually we 



allow Ist-lex'el centpring to be waived as w e l l . Next, define (proper) 2pd-levej. 

data variables Y* = [z^y i = l»«'-»n; 1 = i.«'«»al to be the n(a+l)/2 pairwise 

oroduct variables j,^^ "clef ^ i ^ j ^ i - l ) sxjch that each subject's score on i s 

the oroduct of his scores on 3n<3 Zy Each I s t - l e v e l variable too, can be 

viewed as a special 2nd-level variable z^ ~ Zq^ ~ ZQSII where i s the unit variable 

on which, by d e f i n i t i o n , a l l scores are unity. (We shall designate the unit var

iable by a variety of l e t t e r s , but always with a subscript of 0.) When J-scores 

are known for members of P, the same i s evidently true for a l l product-variables 

i n Y*. It w i l l be important to leave each Y*-variable jr^j i n the metric defined 

for i t by i t s constituents and ^ j . That i s , neither the mean nor variance of 

i s adjusted beyond what i s imposed by choice of scales for and j ^ . 

Since we shall have repeated need, with variations, for the notation just 

introduced, we had best take pains to set this out i n f u l l generality. Let X = 

<x^,Xg^j^,... ,2fjj> be any (a-s,+l)-tuple of variables indexed consecutively from a 

starting index s. (We s h a l l use only 2, = 0 and s = 1.) Then the ( f u l l ) quadratic 

fi 2 
development X of X i s the ( a - s + l ) -tuple of pairwise product-variables 

X® = ( S i j ! = XiSjJ i»l = a»...»a} ; 

while the (bare) quadratic development X** of X is the ( a -2 + l)(a-S"*" 2)/2-tuole 

that remains of X when a l l 2̂ ^̂  i n which X>1 are deleted froa i t , namely, 

-* " f ^ i j ' = 2i2j; i = 3,...,a; 1 = i,...,a? • 

(Since r^^ - x^x^ = x^ar^ = x^^^, X* contains ( a -2 + l ) ( a - a ) / 2 duplications which are 

eliminated i n X*. Our p r a c t i c a l work w i l l be with \*\t ^ yields the t i d i e r 

algebraic theory.) Secondly, for any tuple X = <x̂ ,...,x̂ > of variables with starting 

index 1, we write XQ for X preceded by the unit variable XQ. That l a , 

^ =def *2o.i> = ^2o,2i,...,V 

wherein a l l scores on XQ are unity. Then the fuUAare quadratic development of XQ 
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includes not only the full/bare quadratic development of X but I s t - l e v e l variables 

X as w e l l . S o e c i f i c a l l y , 

^ = ^%)»Soi»---»2cn»^*^ = ^^>l»^*> 

S a 
where 2 ^ = XQXQ " ̂ SQ* And XQ s i m i l a r l y includes aĉ  and X along with X". So given 

a tuple of variables with starting index 1, we can refer to Just their proper 2nd-level 

products as X* or (with duplications) as X , and to their lst-and-2nd-level ensemble 

combined along with 21Q as or X^. 

The matrix Cyjj of covariances among I s t - l e v e l output variables Y on which 

linear data analysis t r a d i t i o n a l l y operates comprises the 2nd-order central moments 

of the Y-distribution i n P. That i s , depending on whether we distinguish P from 

the population sampled by P, [CYY^IJ either equals £[(jCĵ  - £[l^] )(Zj - f [ i j ] ) ] or i s 

a sampling estimate thereof. Quad-factoring, however, works with 2nd-order moments 

(of the oroduct-variables) that are not generally centered. So for any two tuples 

of variables X = <...,x̂ ,...> and J = <...,̂ ,...> (not necessarily X ̂  ^ ) , we shal l 

write Mjf2 or M(X,Z) for the matrix whose th element i^gi^^ i s the mean product 

of Xj^ and i n whatever population P i s at issue. That i s , under our simplifying 

identification of sample means with population expectations, ^}^xz^ixfl ~ ^^mA^^' 

This notation does no"̂  presume that the e x p l i c i t index o( of 2^ i n X or ((I of 2^ i n 

Z i s necessarily that variable's count-position i n i t s t u p l e — c f . cases XQ = <x^, 

x^,...> and X* = <...,2j^j»...>. Rather, [Vl^2,\^ element of 

headed by x^ and column headed by i ^ . la particular, for any doubly indexed array 

[.^»X»lhi.jk = ̂ LZhitijk^ = ^C2h2i2j2jc]. 

Because our notation for tuples of 2nd-level variables produces visual 

monstrosities and typesetters' nightmares when used as subscrlots i n t r a d i t i o n a l 

formulas for moment arrays, we sh a l l henceforth treat m (denoting a vector of means), 
**** 

C (denoting a covariance matrix), and M (denoting a matrix of uncentered 2nd-order 

moments) notationally as functions of the variables whose moments are at issue. 



Thus and Mj^^ ^^^^ generally be written as m(X) and M(X,Z), respectively. 

Whenever M i s a matrix whose rows and columns are doubly indexed, we sha l l 

say that M i s quad-synmetric i f f ti!?,]hi,jk ~ ^ i j ^ h ' i ' , j'k' whenever these terms are 

both well-defined elements of M i n which <tl',1',1',k*> i s a permutation of <il»i»i.k>. 

Clearly, M(X»,X*) and M(X»,Xg) are quad-symmetric. 

For any array of I s t - l ^ v e l data variables Y = ^•Zj^,... ,Z^>, i f Y* i s the 

bare quadratic develonment of Y as defined above, and Y^ i s the bare quadratic 

development of Y's extension YQ = ^ZQ»I> *O include the unit variable, the 2nd-order 

moment matrix M(Y^,I*) of Y^ partitions as 

1 s i 3 

»(x*) M ( i M ) M(i»,r) 

( = <2Q,i,r>) , 

wherein "svm" si g n i f i e s symmetry. This makes clear that a l l moments of Y through 

the 4th order are contained i n M ( l J i Y j ) . The Ist-order moments are i n vector m(l) 

(=0^under centered scaling of J ) ; the 2nd-order moments are i n M(2,I) (=jCyY under 

centered scaling) and also, rearranged as a vector, i n m(2*); the 3rd-order moments 

are i n M(Y*,X); and the 4th-order moments are i n M(Y'»,X*). 

The point now to be developed i s that when a l l X-n»oments through the 4th 

o r d e r — c a l l these the "quad-moments" of Y—are so treated as the 2nd-order moment 

matrix of YQ'S quadratic development, we can analyze M(lJ,Y^) for information about 

Y*'s factor composition by the very same linear models that have t r a d i t i o n a l l y 

worked so well on I s t - l e v e l covariances. We retain the classic premise that each 

Is t - l e v e l data variable i s the sum of a common part and unique residual which we 

find convenient to construe as a psychometric "true-part" and "error,'• respectively. 

S p e c i f i c a l l y , we posit 

Z i = l i + fil ( i = i,...,n) » (1) 
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wlth "error" characterized by one essential d i s t r i b u t i o n a l constraint and two aux

i l i a r y ones that are expository conveniences easily waived i n computational practice: 

The basic quad-factoring error premise. F i r s t - l e v e l residuals E = <ê > 

...»Sjj> i n (1) have zero expectations, and are distributed independently of 

one another and of a l l true-parts T = <t^,• •.,tjj>. (See Appendix A, Note, for^'' 

Strong error-model addenda [o p t i o n a l l . The marginal distribution of each 

aj. i n ( l ) has the same skew and kurtosis as a Normal d i s t r i b u t i o n . 

Meanwhile, I s t - l e v e l true-parts T are presumed to be linear combinations 

of a smaller number of common factors which i n turn may or may not be different 

linear/nonlinear functions of a s t i l l - s m a l l e r number of substantively d i s t i n c t 

common sources. This I s t - l e v e l factor model entails a well-behaved factor model 

for the 2nd-level data variables as w e l l , or rather for their true-parts. The 

2nd-level error model for quad-factoring, however, i s more complicated than i t s 

I s t - l e v e l counterpart; and i t s theory i s our lead-off concern. 

Secopd-leve; error tfaeory. 

Given psychwnetric model (1) for I s t - l e v e l variables Y, each 2nd-level 

variable = z^Xj = ^ l i ^ % ) ( i j S j) in I * has true-part/error composition 

^ i j = h i ^ ^ i ^2.1) 

where 

Ki =def hh * ^ i j "def M j fiifij 

For j = 0 we stipulate 

to y i e l d 

= - J ' ^3 = ' ( 1 = 0 , 1 , . ) 

and hence = t ^ j + for each ̂  = 0,1,...,a. So i f we write 

(2.2) 
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( l ) bftcomes a fragment of 

^* = I S ^ l J (3) 

wherein YQ and TQ are the bare quadratic developments of I s t - l e v e l data variables 

2o ~ ̂ ^o*-* their true-parts TQ = <tQ,2>, and comprises the corresponding 

residuals. (Note from (2.2), however, that EQ i s flo^ qutdratio development of 

EQ. Rather, E j i s just one of three components i n g^. And constant at zero 

rather than at unity. So the e-variables are exceptions to the subscript conventions 

we have adopted for non-error variables.) I j and are respectively the true-part 

and error components of 2nd-level data variables Y^; and (3)'s a d d i t i v i t y insures 

that data quad-moments M(Y*,Y^) likewise decompose as a sum of true-part and error 

terms. 

From (2.1), i t i s evident that each 2nd-order moment [M(Y*,Y*)Iĵ ^ of YQ'S 

quadratic development Y^ has composition ^tZj^^i^jj] = ( l h i ' ' " ^ i ^ ^ - J k "''^jk^^ ~ 

nt^^t^T,] + ell^^t^^] * e\^t^^] + f t s j ^ i f i j k ^ . That i s , 

Unlike error covariancea i n I s t - l e v e l data, M(E^,E^) i s not altogether diagonal 

nor i s M(TQ,E^) wholly zero. Even so, under the quad-factoring error premises these 

are identifiable from the I s t - l e v e l uniquenesses (error variances) and observed 

I s t - l e v e l covariances. For parameters, l e t us write 

noting that UQ = 0, CQQ = 1, and SQJ = ^ t l j l index 0. That i s , for i , i = 0,...,a, 

% j = tM(Io'2o)lij ' % = CM(YQ,YO) - M ( 3 o , ^ ) ] i i . 



For centered Y, equals data covariance [Cvyjj^j for i , i >0; and i s the t r a 

d i t i o n a l "laiiqueness" of data variable z^. 

In the strong error model, the I s t - l e v e l / û 5̂ are the only unknown error 

parameters. But to waive the strong error model's Normality assumption, we also 

require oarameters for the raw (unstandardized) error skew and kurtosis. So for 

these we sha l l write 

for i = l , . . . , a . In the strong error model, = 0 and ~ ^ " i * 

F i n a l l y , since separation of the three error matrices i n (4) serves no 

purpose, we out 

H^Sj) =def M(2o^sJ) + MHT*,Ej) + M(lJ,Ej) , 

whence (4) simplifies to 

M(Y*,Y*) = M(TQM») + Q(IJ) . U ' ) 

Because (4') i s the error/true-part decomposition of Y's bar^ quadratic development 

YJ , the elements t3(sj)3^^^^of Q(EJ) are under index constraint and l i j c . 

To avoid this expository nusiance, we s h a l l speak instead of Q(E^)'s full-quadratic-

development counterpart 

Q(lJ) =^,f M(Y»,Yg) - M(Tg,Tg) (5) 

and write a for an arbitrary element thereof. That i s , 
fii»jk 

for a l l l i , i , i , l c = 0,1,...,a, with qj,i,jk ^®i"8 ^^^o the <.|i4,jk>th element of 

Q(EJ) i f f O i J i i i i a and 0 4 l i . l c 4 a . 

In Appendix A, we show that each element of Q(EQ) i s identical up to 

permutation of i t s four lat-order indices with some subscript instantiation i n 



a^i^^lc ^ ° ( l i , i , i , l c a l l d i s t i n c t ) , 

% i , j k ' - j k % ^ ' ^ ^ 2 * ^ ' ^ ° * ) » 

^ i i i ~ ^"^^ ( centered ) , 

= 0 i n the strong error model , 

% i , i i ^ ^ % i - i ^ O ^ l i ^ ' i ' centered Z i ) , 

% i , i i = 6 { C i ^ - a i ) % + a[^^ 

= 6£ĵ ĵ jjĵ  " strong error model . 

The elements of Q(EQ) are indifferent to a l l permutations of their Ist-order indices, 

which i s to say not merely that 3^^^^^ = c^^^^^^ and ^^^^^ = g^^^^^^ = ahi,kj» t)Ut 

also a^j^^jjj = 2hj,ik ~ ^ j l , h k ' '^^^^ I-variables have standard scales, i . e . zero 

means and unit variances, ŝ ^̂  = = 1 in the formulas for and 

Given the I s t - l e v e l data covariances, i t i s straightforward to produce 

2nd-level error matrix Q(£o) from (6) either algebraically as a function of Cyy 

and the uniqueness oarameters or as a numerical estimate derived from Cyy and a 

provisional solution for the l a t t e r . And the solution algorithm can iterate e s t i 

mation of Q(5^) just as I s t - l e v e l factor analysis has tr a d i t i o n a l l y iterated unique

ness estimation when high-grade results are wanted. Whatever our provisional 

solution for QCSQ), this gives a corresponding estimate of the 2nd-level true-parts' 

moment matrix Mljj,!^) = MdJjY^) - Q(EQ) which embeds the I s t - l e v e l true-parts' 

covariances and can be searched for interpretable structure by standard methods of 

matrix decomposition. But we have not yet considered what i s there to be found. 

S?qona-lgZal fagtfpr pgl^t^rns. 

As already declared, we posit t r a d i t i o n a l factor model 

i i = . | a i j l j ( i = !,...,£; r < i i ) (7) 
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for our centered I s t - l e v e l data variables' true-parts, with the number £ of l a t -

lev e l factors t\»'">tj. an open parameter. It i s notorious that this decomposition 

of T i s flagrantly nonunique, not merely under factor rotation but even i n i t s 

dimensionality albeit we orthodoxly choose r as small as i s compatable with good 

reproduction of the data covariances. Even so, for any specific choice of factors 

F = <f-^,...,fj,> i n (7) there i s a corresponding factor decomposition of the true-

parts T* = <...,t^y...> of 2nd-level data variables Y*. For i t i s an obvious 

consequence of (2.2) and (7) that 

^ i = ^ I ^ A ^ ^ I ^ i l c S k ) = |2a,jaiie£jAc (8) 

Let F* = <.. .,f j j ^ , . . .-̂  be the bare quadratic development of I s t - l e v e l factors F, i . e . 

-jk ~def - j ^ ( i = !>•••»£; Is = !».••.£ ) • 

Theory w i l l soon prefer that we extend (8) into a 2nd-level factor pattern for the 

combined T J = -'tQ,T,T*> upon E j = <fo»E»£*>. But for openers l e t us consider just 

the pattern of T* upon the proper 2nd-level factors F*. Noting that f o c c u r s 

twice i n (8) i f 1 ^ k, once as and again aa £.\^£.y we can rewrite (8) as 

% i = | ' | ^ % i i , j k % ^ ^ = i , . . . . n ; i = l i , . . . , n ) (9,i) 

wherein 

Most noteworthy about (9) i s simply i t s exhibiting how 2nd-level true-part 

variables T* inherit a linear factor composition from any that holds for their I s t -

level generators T, So this 2nd-level pattern, along with factor moments M(F*,F*), 

should be recoverable from M(T»,T*) by methods already familiar i n I s t - l e v e l factoring. 

Indeed, the factor pattern i n (9) appears even more strongly structured than i s the 

I s t - l e v e l pattern from which i t derives; Whereas the number-of-factors/number-of-

data-variables r a t i o at the 1st l e v e l i s r/xj, at the 2nd l e v e l this i s only 



£(£•*• l)/n(ll+1) — (L/S) • And 2nd-level variable has appreciable loading on 

2nd-level factor f o n l y i f has appreciable loading on one of f j or f j ^ while 

loads anoreciably on the other. So one might also anticipate that quad-factoring 

should identify simple-struct'U'e hyperplanes more sharply than I s t - l e v e l factoring 

usually achieves. Unhappily, our inquiry into this prospect suggests i t to be 

largely i l l u s o r y ( c f . p, 22, below). But i t s t i l l remains one incentive to explore 

quad-factoring's potential with some care. 

Before grubbing into solution d e t a i l s , some motivation stronger than hopes 

for oretty hyperplanes seems called f o r ; It Is a l l very well to observe that I s t -

lev e l factor patterns e n t a i l 2nd-level ones. But i f the l a t t e r are redundant with 

the former, what point might there be i n seeking solutions at both levels? Our wisdom 

i n this regard i s s t i l l too nascent for a confident answer. But we foresee two ways 

in which this may well orove pr o f i t a b l e . 

Ohe important prospect l i e s i n the lst-level/2nd-level pattern redundancy 

i t s e l f . I t i s well known that conn on-factoring seldom picks out one particular 

solution, as pronouncedly superior to a l l alternatives. Solving for 1st- and 2nd-

level patterns simultaneously under constraint (9.2) i n principle yields results 

more strongly overdetermlned, and hence more f i n e l y discriminating of what seems 

ootimal, than I s t - l e v e l analysis alone can provide. In particular, enhanced overdeter-

minatlon should enable quad-factoring to capture factors too weak for detection 

at just the 1st l e v e l . (How well this w i l l work out i n the teeth of sampling error 

and other real-data model violations remains to be seen; but the a r t i f i c i a l - d a t a 

studies summarized i n Appendix D are mildly encouraging.) 

Even more provocative i s what quad-factoring can t e l l us about the 3rd- and 

4th-ord«r moments of the I s t - l e v e l factors. Identifying these higher factor moments 

is straightforward i n p r i n c i p l e : When our factoring of the 2nd-level variables 

rotates their true-parts' factor axes to positions and scalings on which the 2nd-
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l e v e l pattern i s related to the I s t - l e v e l one as (9) i s to (7), then each 2nd-level 

factor i s tagged as the product of two particular I s t - l e v e l factors (or as the square 

of one). And the mean product of 2nd-lpvel factors f̂ ^̂ ^ = f ^ f ^ and f^^^ = 

which we conoute along with the factor pattern, i s then a 4,th-order moment 

^L l h - i - j - k ^ ° ^ I s t - l e v e l factor d i s t r i b u t i o n . More completely, analysis of 

combined-levels data variables Y j gives us the array M(|;J,FJ) of a l l F-mcments 

through the 4.th order. And that in turn diagnoses, inter a l i a , whether some of 

Is t - l e v e l factors F are themselves quadratic functions of the others, or nearly so. 

There i s nothing i n the l i n e a r i t y of an orthodox I s t - l e v e l factor decompo

s i t i o n to preclude i t s being an a r t i f a c t of what i n r e a l i t y i s a curvilinear prc-

dtjction of these outputs by their common causes. S p e c i f i c a l l y , (7) may well be a 

linear oarameterization of some nonlinear determination 

* i " J ^ i j ^ J ^ ^ l ' - ' - ' ^ s ^ ( i = l f « » I l ) 

of the data variables' true-parts by certain sources G = <g^t...,gg> of which the 

more manifest factors F = ^ f . j ^ , . . . , f a r e various nonlinear composites [ f j = ̂ j(G)?. 

(Cf. MeDonald, 1962; Rozeboom, 1965, p. 523ff.) If so, Taylor-aeries expansion 

allows us to hone that many—with luck, most or a l l — o f these /j(£) are approximated 

by quadratic functions of G closely enough to leave negligible residuals. (For 

example, ^if-ft^ might be centerings of quadratic functions g^, gg, g^, g|, g^g2* 

respectively, of just two r e a l sources G = ̂ £j^,K2>.) If so, whatever I s t - l e v e l 

factors of Y are quadratic functions of the others w i l l l i e i n the quadratic space 

of YQ'S true-part TQ, and can be ide n t i f i e d as such fi-om M(F*,F^). 

Fragment? of tlifi tlasasz at Smafr«̂ tf4<? spaces (precis). 

As you might expect, certain technicalities i n the mathematies of quadratic 

functions have considerable importance for the theory of quadratic factoring. Those 

that we find especially salient are developed i n Appendix C and summarized here. 
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(Note: These definitions and their consequences are relative to some fixed 

population over which the variables at issue have a join t frequency or probability 

distribution as required to define moments and functional dependencies.) 

Defipitiops 

Let X = <x^,... ,2fjj> be any tuple (algebraically, a column vector) of var

iables. Then a variable ̂  i s a quadratic function of X just i n case, for some 

CXji symmetric r e a l matrix Q, g = 2S'3X. 

The quadratic snac^. ̂ • j j , generated by variables X i s the set of a l l var

iables that are quadratic functions of X. 

The linear s p a c e . , of variables X i s the space l i n e a r l y spanned by X. 

That i s , i^Y. comprises a l l homogeneous linear functions of X. 

A tuple i of variables i s ( i m p l i c i t l y ) complete i f f dfx contains unit var

iable XQ, and i s m(anifestly)-complete i f f XQ i s a component of X. If X i s 

not m-complete, i t s nncompletion i s <XQ,X>. 

If X i s complete, the linear space jjjj of X i s included i n i t s quadratic 

space ̂ j. That i s , the quadratic functions of a complete X admit linear terms 

and additive constants. 

If X and Z l i n e a r l y span the same space - J^g* '''hen X and 5 also generate 

the same quadratic space = 

The quadratic space generated by variables X i s also a linear space 

spanned, inter a l i a , by J * and by X ® . However, ^jr i s also linearly spanned 

by many other tuples of quadratic functions of X which are not i n general 

quadratic developments of any tuples i n iCx» 
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Hence when ve seek to f i t quad-factor model (9) to the quad-Boments of cur data-

variables' true-parts T = <t^»•••,tjj>, although the l a t t e r can routinely be decom-

oosed i n classic form M(T^,I®) = BM(G,G)B' for one or another linear basis G of ^ . j . , 

an arbitrory choice of 2nd-level factors G w i l l almost certainly not be the quadratic 

development of any I s t - l e v e l factor basis for j f T h i s raises quad-factoring's 

alignment problem; When decomposing the 1st- and 2nd-level true-part moments 

j o i n t l y as M(T,T) = AM(F,F)A' and M(T®,T®) = BM(G,G)B', how do we contrive further 

to have G = T^ or at least M(G,G) = M(F*,F®)? As the Uniqueness Theorem, below, 

w i l l show, the answer i s happily straightforward. 

If X i s a basis for i t s linear space Jij^, X* f a i l s to be a linear basis for 

just i n case, for some tuple Z of variables i n jCy* a l l joint scores on Z 

l i e on a hyperbolic surface. 

The significance of this theorem i s , f i r s t of a l l , that M(X»,X*) can be singular 

even when M(X,X) i s not, and secondly that singular M(X»,X*) can arise i n ways 

other than the one that se»ms most interpretively significant when X* i s incomplete 

(see. p. 25ff., below). 

ISOfttt-alSS&SalS fgyatil^tflPB? aL auad-factorine r e l a t i o n s . 

For any tuple X of variables, the f u l l quadratic development X* of X can 

be written as the Kronecker product of X with i t s e l f . That i s . 

If Z i s i n the linear space jCx °^ Z.t so that Z = AX for some coefficient 

matrix A, X® determines ^ according to 

Z* = ZSZ = AX 8 AX = (AaA)(XflX) = (A«A)X* . 

Moreover, i f X i s a basis for I s t - l e v e l coefficient matrix A has a left-inverse 

A such that A A = I, whence X and X can be recovered from Z by 
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X = k^Z , X* = ( A ^ « A ^ ) Z ® 

Evidently we hâ 'e not merely 

>[(2,Z) = ii^(X,X)A' , M(X,X) = A-M(Z,Z)A^' , 

in this case but also 

MU»,2®) = ( A « A ) M ( X * , X « ) ( A « A ) ' , M(X®,X®) = ( A ^ « A L ) M ( Z ^ Z « ) ( A ^ S A^) < . 

Itia quad-factoring unioueneaa theorem. Suppose that the quad-moments of 

variables X have a decomijosition of form 

M(X»,]^) = (A8A)Mg(A«A)' 

for some i d e n t i f i e d matrix A having a left-inverse A^. Then there exists a 

tuple of I s t - l e v e l factors F of X, namely F A%, such that 

S = AF , X* = ( A « A ) F * , M(f,|:) = Mg . 

Moreover, for any tuple of variables G i n d?j that reproduces the quad-moments 

of Z by this same 2nd-level pattern A « A , i . e . for which M(X®,X®) = 

( A 8 A ) M ( G , G ) ( A S A ) ' , we have G = F ® for some I s t - l e v e l factor tuple £ only i f F 

d i f f e r s from f by at most a reflection of axes. 

Hence we solve the alignment problem by imposing the constraint that the pattern 

matrix i n our decomposition of true-part quad-momenta M(T^,^) have structure A^iA 

tor a l e f t - i n v e r t l b l e I s t - l e v e l pattern matrix A. Choice of A i s non-unique i n 

the very same way that I s t - l e v e l factor patterns are nonunique. But whatever side 

conditions suffice to select a specific A i n M(T,J) = AM(f,f)A^» (notably, aecounted-

for-variance maximization for i n i t i a l extraction, eventually followed by rotation 

to simple strticture) also suffice to identify a factor tuple satisfying the quad-? 

factoring model that i s essentially unique relative to 2 and A. 
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Indtictive solutions for 2nd-lpvel factoi* patterns. 

To embed I s t - l e v e l factoring of data variables Y i n 2nd-level factoring of 

Y® (or rather, i n practice, of Y * ) , we must include the unit variable among the 

I s t - l e v e l factors as well as, for conceptual convenience, among the variables 

factored. Accordingly, we expand the orthodox I s t - l e v e l arrays of data variables 

Y = <Z-^f"*Z^>* their true-parts T = <t^, ...,tp>, and their comron factors F = 

^tl>"'ttp> into their respective m-completions YQ = <ZQ,Y>, TQ = •<tQ,T>, and 

~ ^^»-** (^oJinder: ZQ* %Q* an'i ^ are a l l constant at unity.) Then aug

menting (1) by the t r i v i a l 2^ = tQ + (g^ constant at zero) extends our I s t - l e v e l 

data variables• true-part/error decomposition to 

while I s t - l e v e l factor model (7) becomes 

-1 ^ |»-ij-.i ^ - ^ ^ 

or equivalently 

lo = AFQ (11) 

wherein _A i s of course the ( l + 2)x ( l + r) matrix of pattern coefficients [a^^]* 

Compared to orthodox I s t - l e v e l factor models, patteni matrix A i n ( l l ) has 

an extra row and an extra column. Its extra row, the pattern for t ^ , i s i n f l e x i b l y 

a l l zero except = 1. In contrast, the added f i r s t column of A, i . e . the I s t -

level pattern coefficients [§L^QI "n unit factor f^, i s open to a variety of numer

i c a l specifications. Whether these make ( l l ) d i f f e r more than t r i v i a l l y from 

conventional factoring depends on whether F i s constrained by orthogonality to 

XQ. (We tise "orthogonality" here i n i t s generic sense of zero expected pairwise 

products rather than i t s special sense of zero covariances.) If f j ^ , . . . , f j . are 

required as usual to have zero means, i . e . to be orthogonal to f g , then t j o = / ^ l i ^ 

= ĝ .̂  for each i = l,...,ii—whence under centered acaling for J the f i r s t column 

of _A becomes a l l zero save §00 ~ ^* allowing I s t - l e v e l variables Y to retain 
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natural means has no effect i n this case on the rest of A. That i s , so long as F 

i s ortl'ogonal to f ^ , the nart of A that remains after deletion of i t s f i r s t row 

and column i s some more-or-less orthodox nattern obtainable by factoring the 

Y-covariances without regard ^or how the Y-means are scaled. 

On the other hand, i f factors f ] ^ , . . . , ! ^ i n (11) are not a l l orthogonal to 

f ^ , each a^Q continues to be the additive constant i n l^^'s regression upon F but 

almost certainly d i f f e r s from Allowing the F-means to be nonzero i s not only 

unconventional but would usually be unmotivated as w e l l , especially for I s t - l e v e l 

factoring of centered data. Yet there do exist circumstances of quad-factoring, 

and even occasionally of ordinary I s t - l e v e l factoring, i n which i t makes interpretive 

sense to allow factor rotations i n which F becomes oblique to f ^ . Quadratic 

factors are best i n i t i a l l y extracted under orthogonality of F to TQ; but eventually 

we may find reasons to relax this constraint, 

(Once we consider rotation of ( l l ) , s t i l l another p o s s i b i l i t y for the ex

tended I s t - l e v e l pattern i s to l e t this comj>rise the coefficients for TQ on some 

basis Fj^ for FQ-space i n which rotated axis tuple F̂ ^ = JJEQ m-complete. But 

we can think of no meaningful interpretation for the pattern AVT^ on factors so 

nositioned.) 

Because YQ = <ZQ»Y> = ^ZQ»ZJ^»'• • >Zjj> m-complete, i t s f u l l quadratic 

develonment 

2? =def 2ss(2oX^) = I o « 2 o 

comprises not merely the proper 2nd-level product variables ^Z±ly i»l ~ l f « » a j 

but a l l I s t - l e v e l data variables (= ZQZJ^)' i ~ and unit variable ZQ 

J^O^Q) as w e l l . The true-part/error decomposition of YQ i s of course 

Wherein TQ = T ^ « TQ i s the true-part of Y^•s f u l l quadratic development YQ while 



the residual thereof i s 

4 =def ll'^ = ^ ^ « 2 o ) + (So«2o) . 

So the 2rd-order moment matrix for ]^—which by virtue of YQ'S m-comnleteness 

actually comnrises a l l Y-moments through the i t h order—has composition 

= i:!^2o'3?) + j d ? ) ' (12) 

where tcta l - e r r o r matrix Q(S^) (see d e f i n i t i o n (5)) i s specified by J4(Y,Y) and 

the uniqueness parameters—namely u = <û ,...,!3̂ > and, i f not presimed Normal, 

u[3] = ' f u p ^ . . . , i j ^ 3 ] , and uf^^ =-^a[^l a^^^>—according to (6). Conditional 

on our choice of error-model strength, l e t us say 

i f Normality of both u^^^ and u^^^ i s presumed 

. <u,u^^^,u^3^> i f no error Normalities are presumed . 

i f Normality just of u^^^ i s presumed 

(These are the only a p r i o r i error-model alternatives that we have orogramn-ed. But 

additional variants would be routine to include were not need for them obviated by 

our new technique, described i n Appendix B, for ad hoc relaxation of (6) at points 

of greatest model misfit.) It i s straightforward to program specifications (6) into 

an algorithm that maps M(IQ,YQ) and any numerical estimate of u* into a corresponding 

numerical estimate of Q(E^) and from there of M(3^,2Q). And starting from any i n i t i a l 

estimate of u"*" (as provided, say, by orthodox I s t - l e v e l factoring of C(Y,Y) along 

with the strong error model), we are able to iterate improvements on this as the 

analysis progresses. So estimating M(TJ,IJ) 

i s easentially routine. Our main problem 

i s how to convert the l a t t e r , i n turn, into richer information about factors F and 

their determination of Y than can be extracted Just from C ( Y , Y ) , 

According to model (11), the f u l l quadratic development of our data variables' 

true-parts has composition 
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ll = lo^lo = AFQ^.^O = = ( A « A ) F g (13) 

So the quad-moments of TQ decomcose as 

M(Tg,T«) = (A 8 A) M(F»,F«) ( A * A) . (U) 

and the task of quadratic factor analysis i s to find estimates of A and M(F^,F?) 

which, together with ovir estimates of the error terms i n Q(EQ), t i d i l y reproduce 

data quad-moment matrix M ( ] ^ , I ^ ) . Or rather, this i s quad-factoring's theoretically 

oersoicuous descrintion. In practice, since (13) relates the f u l l quadratic develop

ment of TQ to that of FQ, there are massive redundancies i n (1^) that make direct 

analysis of M(TJ,T») inexpedient. Far easier i s to work instead with the counter

parts of (13/K) for the bare quadratic developments of TQ and FQ, namely, 

IS = ' (13a) 

M(IQMQ*) = A . M(P5,FQ*) A; , (Ua) 

i n which the elements of A» are derived from those of A according to formula (9) 

expanded to include index 0. That i s , f or ti = 0,1,...,xi, i = kf-fL* 1 = 0,1, 

~ i» • • • »£i 

Since A i s the upper-left {1 +•q) x {1 + ][) submatrix of both A S A and A.^, any wie of 

[A , A», A » A ^ i d e n t i f i e s the other two. And M(TJ,T*) strips down to M(T»,T») by 

deleting from the former a l l rows ̂  and columns Jjjj for which J i > i or J, >k. Oper

ationally, we disregard M(2^,2Q) altogether and instead estimate M ( l * , l * ) d i r e c t l y 

from M(Y*,T») and oinr running estimate of the error terms i n (12)'s counterpart 

M ( r , r ) = M(TQ»,^») + M(TQMJ) + M(Ej,T5) + M(Ej,Ej) ^^^^^ 

= J!(25'2ô  * î So) . 
(We have previously written (I2a) as equations (4.) and (4').) Combining our two 
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moment models—the one for errors and the one for f a c t o r s — i n t o a single equation, 

we can then say that quad-factoring i s a decomposition of the data variables' quad-

moment matrix having form 

= (A»A) M(F«,F») (ASA)' + 3(E®) (l6) 

or less redundantly 

M(YJ,YJ) = A. .M(FJ.1̂ *) A; + Q(Ej) , (l6a) 

wherein A» has structiure (15) while Q(E®) and i t s less redundant subarray Q(Et) are 
—0 *M ~0 

snecified from M(Y,Y) and uniqueness parameters u"*" by model (6), » ~ ~ 

In o r i n c i p l e , i t should be routine to solve the quad-factoring model by any 

modem structural-modelling logic such as LISREL or RAM (McArdle 4 McDonald, 198^). 

The composition of equations (6,15) into equation (l6a) defines a computable function 

^ from guesses <u'*',A,Mp> at < u'^,A,M(F^,F^)> into reproductions of data array 

^(XQJSO)* SO rela t i v e to any chosen loss function, the best estimate of our empirical 

quad-moments' source oarameters i s the <u+,A,Mr,> for wbieti the loss of approximating 

U ( I J » I Q ) ^ ^^^'i'^"^ ^s minimal. In practice, however, the problem size for 

quad-factoring even modestly many data variables i s so large that we have not yet 

managed to set up the subroutines required for a complete structural-modelling 

solution. We have, however, operationalized solutions using more c l a s s i c a l routines 

that allow quad-factoring to be tested i n practice even as we seek more powerful 

algorithms that lessen certain admitted suboptimalities i n our present procedure. 

In f a c t , we have devised a spectrum of quad-factoring alternatives, selected 

by control-parameter specification i n our generic QUADFAC program and diff e r i n g 

inter a l i a i n how strong an error-model i s presumed crossed with what portion of 

comolete residual array (6) i s used to estimate u. (QUADFAC 's FORTRAN-77 source 

code, together with a oackage of supoorting programs, i s available. Ask and ye sha l l 

receive.) At one extreme—call this "fast QUADFAC"—the routine i s computationally 

quite frugal, albeit by deriving the factor pattern just from the I s t - l e v e l data 



-21-

covariances and thus losing the higher-moment pattern information whose exploitation 

i s one of quad-factoring's hoPed-for benefits. In contrast, QUADFAC's other versions 

use a l l the data quad-moments for identifying the factor pattern, though at computer 

costs several times that of fast QUAl̂ FAC and s t i l l not as thoroughly as we hope 

ultimately to a t t a i n . Details of QUADFAC's solution logic are developed i n Appen

dix B, while Anrendix D compares QUADFAC's accuracy at parameter recovery from 

a r t i f i c i a l data ijnder a l l i t s main procedural variants crossed with variation i n 

factor structure and sampling noise. 

Interpretation of r e s u l t s . 

Once QTIADFAC ite r a t i o n has converged upon estimates of u*̂  and the <A,M(Tj,T*)> 

defined by principal-axes positioning of F ^ with M(Yj,Yj)-reproduction loss small 

enough to warrant taking the results seriously, we turn to f i n a l adjustments that 

enhance meaningfulness of results. (We sh a l l not here distinguish notationally 

between model parameters and our computed estimates thereof.) F i r s t comes rotation 

of I s t - l e v e l factor axes to positions that seemingly make the greatest interpretive 

sense. Quadratic factor theory i s entirely open to any c r i t e r i o n for t h i s ; but 

we shall presume that you share our preference for oblique simple structure. 

Rotation of axes. 

If I s t - l e v e l factor axes FQ i n TQ = MIQ are rotated to GQ = W£Q, the effect 

thereof on factor pattern at both 1st and 2nd levels i s 

l o = ( i r ' ^ S c . i ; = (AVrl),Gj , T» = (AW-la Ajrl)G* = (Afi A)(W« W)-1G« , 

where ( ) ^ i s the function defined by equation (15). And the rotated factor quad-

moments are 

M(55.GQ») = W^(FQ*,FQ*)W; , M(G«,G«) = (w«if) Mflg.Fg) (waj^)' . 

It i s evident here that when positioning factor axes, quad-factoring i s not limited 

to selection of W just i n l i g h t of what this does to rotated I s t - l e v e l pattern 
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but can examine i t s effect on the much larger coefficient array (A 4 A)(W8 W)~l. 

4-- *•> 
We might hone, therefore, that simnle-struct'jre hyrierplanes can be discerned more 

sharply In a quadratic factor pattern than are clear i n j-ist the embedded I s t - l e v e l 

r a t t e m . And to our surprise we find that solving for W i n (A a A) (W 8 W)~^ to max-

iirize 2nd-lpvel hynerplane strergth i s indeed operationally feasible. Disaproint-

ingly, however, the theory of this shows also that 2nd-level rotation of the pattern 

In T® = (A«A)F^ i s v i r t u a l l y equivalent to rotating the I s t - l e v e l pattern i n 

a. .A 
- i j - " 

for the aggregate of a l l different rescalings ^(a^jlQ) = (aijA)?^^ °^ IQ " 4 ^ 

the various elements a^j of A. And there i s no evident reason why any such aggre

gated multicooying of I s t - l e v e l pattern A should demark hyperplanes more clearly 

than does A^by i t s e l f . ( I f you look at the multicopied pattern c l o t for one pair 

of factor axes, you'll see what we mean.) 

Accordingly, with one important exception (namely, cases where we suspect 

that some dimensions o f / p ^ are quad-f'jnctlons of others—see below), we recommend 

that factor axes be terminally positioned by rotating just the Is t - l e v e l part A of 

i n i t i a l 2nd-level oattem A» to simole structure by whatever algorithm for this 

you prefer, with subsequent use of the W so found to compute the rotated factor 

quad-moments (and, i f you want i t , the rotated 2nd-level pattern) as shown above. 

(If you feed your QUADFAC output into the HYBALL orogram for I s t - l e v e l factor rotation 

described in Rozeboom, 198 , your rotated oattern printout w i l l be automatically 

accompanied by the rotated factor quad-moments.) And we also recommend constraining 

this rotation to form 

1 0 ' 

G 
.5 ifp 

F 



with rotation of i n i t i a l rattem A = 

A'/T̂  = 
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) 1 
correspondingly restricted to form 

1 Q 
5Y 

0 

This keeDS the rotation just within the S'lbspace of FQ orthogonal to fQ. As observed 

ea r l i e r (o. 17), the aiain alternative to this constraint i s to f i x f ^ (= g^) but 

allow G to become oblique to £Q. A minor reprograraming of HTBALL can easily accom-

ol i s h t h i s , but i t serves no purpose unless data variables Y have non-arbitrary 

means. For allowing obliquity of G to £Q affects the pattern attainable on G only 

in the column scalings that normalize factor variances; and although i t can simplify 

the oattern on fQ when this i n i t i a l l y contains natural means, the f i r s t column of 

A i s already ideal by a r t i f i c e when the data variables are centered. 

'<̂ at tij d£ with factor quad-monents. 

Let us revert to notation "F" for the I s t - l e v e l factors we hope to interpret, 

however these may have been repositioned after i n i t i a l extraction. Now that our 

solution for M(Fj,Fj) has given us the F-distribution's moments through the 4th 

order, what pood i s this information? 

Having raised this question, we must confess that our a b i l i t y to answer i t 

i s s t i l l rather l i m i t e d . But the obvious f i r s t interpretive step i s to check out 

^(FO,FQ)'S comoatability with o»ir sample F-distribution's being viewed as approxi

mately Normal. Were F = <f j^,... ,fj.> to be Normally distributed, with the I s t - l e v e l 

moment matrix for i t s m-completion Gram-factorable as M(FQ,FQ) = WW«, the bare 

quad-moment matrix for FQ = <:fQ,F> would be 

wherein K i s the bare quad-moment matrix for the m-completion of any r-tuple of 

Normal variables that are also centered and orthonormal. S p e c i f i c a l l y , 

^ViUii = t K ] j j , i i = [K]i3,i3 = 1 ( i < l ) 

_ f l i f i = 0 

-^^'^^ ?3 i f i > 0 
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^^^hi,3k ~ ^ otherwise . 

So ccmputirg W from the I s t - l e v e l cart of M(|;*,F*) (or simply taking W = I i f i s 

our i n i t i a l orthororraal solution) and comparing ''r:lM(F*,F*)Vrl» (or simoly M(F?,F?) 

*"or orthonormal F^) to K aonraises the degree of Formality i n F*s quad-moments. 

If this comparison discredits the hjroothesis of factor Normality (a judgment which 

by rights should include some s t a t i s t i c a l testing whose analytic development l i e s 

beyond our competence), whatever features of the rotated factor quad-moments appear 

most s a l i e n t l y nonNormal stand as empirical disclosures awaiting explaination by 

siibstantive theories of these data. 

Generic interpretation of nonNormality i n factor quad-moments i s s t i l l 

largely terra incognita for us. Even so, we direct your attention to two special 

prospects, one minor but the other major. The f i r s t i s diagnosis whether any of 

the F-factors are dichotomous. Despite the optimism of Gangestad & Snyder (1985), 

however, we doubt that many dichotomous scurce variables are out there awaiting 

detection. More provocative i s the prospect that arises when near-aero roots i n 

M(FQ,FQ) reveal m u l t i c o l l i n e a r i t i e s among factors F j = <ffQ,F,F»>. Whether this has 

any generic significance deeper than the hyperbolic-S'jrface theorem reported on 

p. 14, above, we do not know. But one outstandingly important way for FJ to contain 

linear dependencies i s for some of I s t - l e v e l factors FQ = ^fQjf^^*.•.,fj.> to be 

quadratic f a c t i o n s of the others. For f ^ i s i n the quadratic space of, say, = 

* I o ' - l ' ' " ' ^ * (s*£) 3'ist i n case i t i s i n the linear space of F^'s subtuple XJ. 

And i f fg^]^.... , f j . are a l l quadratic functions of XQ, then the I s t - l e v e l data var

iables' true parts that we have found to be l i n e a r l y decomposable as T-, = AF-« are 

really quad-f'jnctions just of 2^0' ^o quad-factoring i s i n effect also a version 

of nonlinear factor analysis (see McDonald, 1967; Etezadi-Amoli & McDonald, 1983) 

—not however by coersion but by permissive discovery. 

Diagnosis of dichotomies. For any variable x with mean and variance o^, 

the skew sk̂ ^ and kui'tosis kt,^ i n a given distribution of x may be defined 



(We depart here from the tradition of defining kurtosis as kt minus 3. The subtrac

tio n makes a comparison to Normality that a n a l y t i c a l l y i s a useless comolication.) 

And for the I s t - l e v e l ^actors F = <f^,...,£j.> whose quad-moments are found by 

QUADFAC under assignment of standard scaling, this becomes simnly 

Now, i t i s easy to show that i f numerically scaled variable x i s dichotomous, 

with (^jj) the nooulation proportion i n i t s higher (lower) category, 

kijj + 3 = (EX2X)"^ = sk^ + ^ ( dichotomous x ) . 

So quad-factoring anpraises whether I s t - l e v e l factor i s dichotomous by judging 

whether t^(|!o»£o^Ui,ii essentially equal to 1 + tM(I*.£*)loi,ii' Unhappily, our 

performance studies show that with noisy data, QUADFAC's present computations often 

overestimate factor kurtosis, sometimes disagreeably so. But we are confident that 

r e l i a b i l i t y of the factor quad-moment solution can be substantially improved. 

P̂ ?gn<??j,g St quadratic factor dependencies. In pr i n c i p l e , i t i s entirely 

straightforward to determine which dimensions of F-space, i f any, are quadratic 

functions of others. Suppose that ^ and X are subsets of factors F = <f^»... ,fj.>, 

or of some rotation of F , while XQ = <2[o,X> i s the m-completion of X. (X and Z 

need not be d i s j o i n t ; i n f a c t , for some purposes we want Z = F.) Then the quadratic 

regression of 2 upon X i s 2 = for coefficient matrix 

where ^ i ^ t Z o ^ **** inverse or, when necessary, the pseudo-inverse of X's quad-

moment matrix. And the diagonal of 

M(Z.Z;X5) = M(2,2) - M(Z,X5) "•^(^[J.^fJ) M'(Z,X») (17) 

comprises the residual variances of factors Z. after their quadratic regression on X 
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i s o a r t i a l l e d out. When X and Z are both subtuples of F , a l l terms on th° ripht i n 

( 1 7 ) are contained i n M ( F * , F * ) ; whence to judge which factors i n Z are (nearly) quad-

functions of factor subt'iple X we need only compute the diagonal elements of M(Z,Z;X*) 

and note which ones are (nearly) zero. Supnose that when XQ and Z j o i n t l y span j ^ ^ ^ , 

a l l factors i n Z pass this zero-residuals t e s t . Then a l l dimensions in linear FQ-

soace, the true-parts of Y i n particular, are qtiad-functions just of X^. And the 

composition of Z = B^XQ into the components of Z on the right i n TQ = AF^ yields 

coefficients for the putative quadratic determination of TQ and hence YQ by I s t -

lev e l factors XQ. 

Practical application of this quad-dependency diagnostic, however, incurs a 

complication whose management seems clear i n theory but requires nonlinear-optimi

zation programming that we have not yet accomplished: What dimensions of F-space 

should we nick for X and Z? When rotation of I s t - l e v e l axes has properly aligned F 

with genuine causal sources of data variables Y, i t suffices to apply (17) to each 

partition <X»Z> of F , with the number a of dimensions i n X taken f i r s t to be s = £ - 1 , 

next to be s = r - 2 , and so on, stopping when no s-selection from F quadratically 

accounts adequately for F's remainder. But interpretively optimal factor positioning 

i s a chancy attainment at best. Our only decent c r i t e r i o n for this i s simple 

structure; yet i t does not take much meditation on the logic of single-plane rotation 

to appreciate how unreliable we must expect this to be. And when we suspect that 

some of the factors i n a suitably rotated F are quad-functions of others, simple 

structure i s not even appropriate i n a l l planes: When f j i s a quad-function of, 

inter a l i a , f^^, we s t i l l wish to maximize the number of pattern points i n the f ^ / ^ 

plane that l i e close to the f^^-axis; but there i s no rationale for trying to achieve 

the same for the f j - a x l s unless data variables Y a l l have natural means, i , e , , no 

scale centering. (To appreciate this point, eanslder the simple structure of 

Galileo's law of f a l l i n g bodies before and after centering i n a distribution of 

distance-and-duratlon-of-travel observations.) And proper axis placement i s crucial 
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for disclosure of factor quad-denendencies by diagnostic (17), insomuch as when F 

has an •<X,Z> p a r t i t i o n for which non-null Z i s quad-deoendent on X, this does not 

generally remain true under rotation of F. 

For any s,^r, one way to find s indeoendent dimensions X of linear F^-soace 

that best f i t the hyoothesis JCFQ — 5XQ—*he simplest we have been able to e n v i s i o n — 

i s as follows: Starting with F_ orthonormal, l e t R be an arbitrary (l+s)x (l+r) 

row-wise orthonormal coefficient matrix whose f i r s t row and column are a l l zero 

except a leading 1. Then 

-0 -0'- def -̂ -0 

i s an m-complete orthonormal basis for some (l+s)-dimensional subspace of /r, , while 

the bare quadratic develooment of XQ i s 

-0 «.*-o 

with R# defined from R by the form-(l5) expansion. If each |V,-factor i s i n ffy * 

we hone to achieve by suitable choice of s and R, there exists some coefficient 

matrix Bp. such that FQ = BpXj = BpR,̂ !̂ ; whence 

Although we have not yet accwnpllshed the programring, solution of (18) for best-

f i t t i n g Bp and R i s a straightforward aoplioation of modem structural modelling. 

Moreover, since M(FQ,FJ) = (BpR»)M(Fj,Fj), (l8) can be simplified to 

! ; ( W = ^ M » ) ! * ^ ^ ' £ o ) » (19) 

albeit we are not sure how easily extant structural-modelling programs can be adapted 

to (19)'s asymmetry i n i t s unknowns. Once a solution of (18) or (19) i s i n hand, 

Is t - l e v e l oattera A of TQ upon I n i t i a l factors FQ converts immediately into coeffic

ient matrix ABj, of TQ'S quad-dependency upon XQ (= R£Q). 
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For fixed s, the solution ^or b e s t - f i t t i n g Bp and R i n (18) or (19) i s unique 

only under side conditions defining an arbitrary placement of axes i n X-snace. So 

once we have found T^'s quadratic determination TQ = ^ i n i t i a l l y posit

ioned X we want to search out a trinsforma*,ion matrix W in 

IQ = . ^ S F ^ ^ ^ ^ ) * (20) 

that rotates X to an interpretively optimal pattern on (WX^)*. Although we are 

unable to solve ABpii»^ d i r e c t l y for simnle structture, i t i s straightforward to 

ft 

rewrite (20) as TQ'S linear dependency on the f ' l l l quadratic develonment (WXQ) 

= WIQ ft WXQ of the rotated X-axes, namely, 

h = f£Q(ir^*r ' )(;€o)* ( 2 1 ) 

where B. i s the matrix, easily derived from Bp, such that F_ = B-X*. We do know 

how to find the W that optimizes simole structure i n rotated pattern ABr>(W~l«W"'l), 

and that converts d i r e c t l y to a corresponding simple-structured ABpW^^. When 

solution algorithms for (18) or (19) become available, we w i l l pass along this 

rotation technique as w e l l . 

Bottoft-]ina PrapticaUt^??. 

^fcless you are working with data whose latent-source theory has evident 

distributional implications, you w i l l probably see l i t t l e reason to give quad-factoring 

a try u n t i l i t s programming includes the promised routine for identifying factor 

quad-dependencies. Even so, thinking about what you might do with factor quad-

moments may tempt you to take the next step of actually harvesting this information 

from whatever multivariate data arrays are your current concern. So we had best 

warn you about a practical l i m i t a t i o n on quad-factoring that w i l l l i k e l y persist 

even after QUADFAC's computational procedures have been optimized. This i s simply 

that quad-factoring requires processing of number arrays whose dimensions are roughly 

proportional to the squares of the corresponding array sizes i n I s t - l e v e l factoring; 



and these quickly become enormous as the number of I s t - l e v e l variables becomes 

appreciable. Not merely does this make for expensive computing, you may well find 

that the number of variables you wish to quad-factor exceeds the capacity of any 

mainframe computer to which you have l o c a l access. For example, the Hniv. of Alberta's 

Amdahl 5870, with 32 megabytes of memory, w i l l allocate quad-factoring storage space 

for no more than 15 I s t - l e v e l variables. The new generation of super-computers 

should be somewhat more permissive than t h i s , just how much so we are now attempting 

to ascertain. But even so, the size-window for effective quad-factoring, bounded 

from below by the number of I s t - l e v e l variables required for an informative moment 

structure and from above by computer capacity, w i l l probably always remain uncom

fortably narrow. 

To prevail over this window-of-effectiveness bind, applied quad-factoring 

needs to select i t s data with exceptional care. For i t cannot count on substantial 

model violations to be averaged out by abundant data redundancies; rather, one or 

two I s t - l e v e l variables that f i t poorly may suffice to muddy parameter recovery 

beyond the l i m i t s of useful return. (We do not know this to be so, but see good 

reason to fear i t . ) Accordingly, i t seems best that empirical quad-factoring 

research be conducted as a two-stage operation whose f i r s t stage i s a brutal pruning 

from one's original battery of data measures those that exhibit conspicuous anomalies 

— l a r g e residuals and method c h a t t e r — i n preliminary quad-factorings. S p e c i f i c a l l y , 

i f the maximum number, Qf» of I s t - l e v e l measures to which your computer can allocate 

quad-factoring storage space i s less than the number on which you have sample data, 

you can scan your f u l l array by fast-Q7ADFAC runs on assorted Op-item subsets thereof. 

The print-out shows reproduction errors s p e c i f i c a l l y associated with each variable, 

as well as u-estimates from a l l four levels of model-(6) u t i l i z a t i o n described i n 

Appendix B; and this should t e l l you what pick of at most j j ^ of these items can be 

passed on to more intensive QUADFAC analysis with minimal manifest model m i s f i t . 

And one other admonition: Don't bother to quad-factor small-sample data. 

Although our studies of QUADFAC performance are s t i l l too narrow for authoritative 



conclusions, we have investigated various levels of sampling noise in arrays of S 

and 12 l3t-l«vel variables. (See Appendix D for the 8-variable results.) .ted 

whereas source-parameter recovery i s near-perfect for a r t i f i c i a l data from i n f i n i t e 

populations ( i . e . , no sampling e r r o r ) , and gratifyingly accurate from samples of 

size 1000, recovery from samples of size 100 i s a matter of mirth. 
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Aopendix A. Derivation of tt^g g'l^d-error expectations. 

Problem; To determine the expected values of Q(|^)-elements 

wherein 

Solution; For a l l 2nd-level index pairs <hl»ik*» including index 0 for 

tQ and SQ, i t follows from (2.2) that the expected product of t̂ ^̂ ^ and ^ j j ^ has 

composition 

^ t t ^ , a j ^ ] = ^[t,t,t^£^] + ^[ t , t , e ^ t ^ ] + . (A2) 

while the expected product of and g^j^ i s 

^^Shi2jk^ = ' ^ W j S k ^ ^ ^ ^ V i ^ j i k ^ ^ t V i a j f i k l ^ (A3) 

^ [ f i h i i i j a k l + ^ t a j j i i f l j i ^ ] + £[fihii£jSkl + 

^CshMjak^ + a a h a i f i j i k ^ + ftfthaiftjftk^ • 

Under the basic error-model's presumption of error independence, together with stipu

lation of centered scales, most of these terms are zero. But several subcases must 

be distinguished according to how the various Ist-order subscripts d i f f e r therein. 

The principle of evaluation here i s that any term i[i;^i^z^i^ i n (A2,A3) ( i either 

t or a) i s zero whenever i t contains just one i-component other than or when any 

of i t s a components i s either occurs just once therein. For example, i f i ̂  ̂ , 

£tth*i2>jik^ ~ ^ t i f j i ^ l ^ t a j ^ l ^ t a j ] = 0 by independence and zero error expectation. And 

when either ^ 0 or one of i , i , k i s d i s t i n c t from the others, £[lfjaiftjfijc] -

^t%]6t£iSjSit^ ~ ° either because f[ai£j£k] = 0 or, when i = i = k but ̂  ̂  0, 

because centering of I contrives itt^^] = 0. 

It follows that the only nonzero terms i n (A2,A3) for a particular choice 

of ^l!i#JK> are ones wherein either two a-components each occur twice, one oeettra 

four times, or one occurs three times together with t ^ . Accordingly, 
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fte^SjSj^j^] = ^[e2]£[^] = a.uj^ i f i k , 

^ [ t ^ i S i S ^ ] = f[£^] = flp^ ' 

f[£iSie^£i] = ^[e^] = 

Inserting these erpectaticns into (A2,A3) for a l l the distinctive subcases of 

2nd-level index pairs <til»iK^ then yields 

^tt^j^fijjj] = 0 unless 1 = k ^ 0. In that case: 

for the elements of M(2*,EJ). And the elements of M(EJ,EJ) are various instantiations o ^^fioifioj^ 

^^ShiSjk^ 

^ ^ i ^ h j ^ 

^t£hi%i^ 

= 0 

0 unless either one of <li,l.> i s the same as one of <i,k>, 

or ]i = i and 1 = it* ^ those cases* 

^ t l i i j l - ^ t ^ ] = i f are a l l d i s t i n c t , 

i 

2 c , i a i ifo^t^^q 
r-T > ( centered T ) , 

^^fihiShi^ = ^ t i g u t f i ^ ] + ii^mi^ + i t s ^ l ^ t a j ] 

A £li?] £[£?] + ^ [ 4 l = 4 ( £ i i - a i ) % + 

i f 

Substitution of these results into (Al) then yields the values of 3̂^̂^ reported 

i n (6), p. 9 above. 
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Ever without auxiliary assumptions about skew and kurtosis, the quad-factoring 

error model i s anoreciably stronger than the "l o c a l independence" of errors often 

Dostulated by nonlinear item-response theory. (See Anderson, 1959; also McDonald, 

1982.) To c l a r i f y the difference, define the true-part t ^ of each data variable 

jr^ to be the unJestricted curvilinear regression of upon this item-domain's 

common factors F = ^ f ^ ^ , . . . ,fj.7, i . e . , each subject's value of error variable ê ^ 'd^f 

i i ~ - i value of less the conditional mean of among subjects with this 

same configuration of scores on F. Then the "local independence" presumption 

i s merely that fl^,...,Sn (equivalently, I j ^ , ...,3[jj) are distributed independently 

of one another conditionally at each F-setting; whereas the basic quad-factoring 

premise i s that a i f - f S ^ are unconditionally independent of each other and of T, 

which pretty well requires—not rigorously, but close enough—^not merely l o c a l 
constancy 

independence but also ̂  of the conditional distributions of each e^ given F. 

This i s not unreasonable for a data variable *hat i s continuous and open-ended; 

but i t cannot s t r i c t l y hold for apy discrete (albeit that shouldn't matter much 

i f jr has decently many scale steps) and may be severely violated i f ̂ .̂  has a floor 

or c e i l i n g aporoacheff by appreciably many observations i n the data set analyzed. 

Even so, none of the expectations iii^z^i^^] iz either i or g) developed 

above under the basic quad-factoring error premise requires f u l l unconditional 

independencies, and many should be robust under violations of t h i s . We venture that 

appreciable departtnrea from quad-factoring error model (6) are l i k e l y to arise i n 

practice, given a decent approximation to conditional independence, only when f l o o r / 

c e i l i n g effects are pronoimced. In that case, we would anticipate that the terms 

deviating most from their quad-factoring theoretical values should be the ones of 

form t[t^^], €it^s^]f and probably f t i Q i i a f ] i f the -scale i s cramped only 

at one end. I f so, the major violations of operational error model (6) should occur 

i n the ̂ j^ji terms, about which a l l model assumptions are easily waived. Be 



that as i t may, i f error-model violations are concentrated i n a comparatively small 

nijnbpr of error terms fq^^j^ ^j^l,these can be picked out by fine-grained assessment 

of model f i t and compensated for by the same solution methodology (Appendix E) 

that accomodates nonNormal error skew and kurtosia. 
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Anper.dJY B. Q^ADFAC programming d e t a i l s . 

Starting from an i n i t i a l estimate UQ of u'' ( i . e . of u together with none, 

one, or both of u'̂ -̂' and u^^l depending on the strength of error-rodel assumed) 

and guess r at the number of I s t - l e v e l c oimnoT) Tsctors F, Q*TADFAC iter.'Jtively a l t e r — 

A 

nates between an improved estimate Hr-ĵ  of true-part quad-moments M(TQ,T^) given 

" l - l ^^•'^ an improved estimate u^ of u*" given }j^±f generally accompanied by revised 
A A 

estimate of factor pattern A^and Mp̂ ^ of factor quadHOOBenta M(F^,F^). (Fast 

Q7ADFAC does not iterate beyond 4=1.) Our main computational tool i s classic 

principal factoring (Eckhard-Young approximation) with certain modifications ensuing 

from the quad-factor model's special structure. Details follow after a prefatory 

word about the number of 2nd-level factors. 

^qa^jratic factfic dimensionality. 

The number 1+ r of »-eomplete I s t - l e v e l common factors FQ i n (11) i s of 

coiu-se one of our ma.lor unknowns. But whatever r may be, i t fixes the number l + r * 

of factors i n FQ'S bare quadratic development F * as l + r * = (r + 1)(r+2)/2, or 

r * = r(E+ 3)/2. Oh f i r s t thought, i t might seem that r should be the rank of C(TQ,JQ) 

(equivalently, of C(T,T)) identifiable by I s t - l e v e l factoring of C(Y,Y), while i s 

the rank of SV^IQ*^^* ^ * rank-minimizing I s t - l e v e l factoring pre

v a i l i n g l y underfactor, we have already noted that one benefit of quadratic analysis 

may well be recovery of factors too weak for detection just i n I s t - l e v e l data. So 

we want to encourage solutions of (l6/l6a) i n which r i s larger than what would be 

orthodoxly found by factoring C(Y,y) with rark-minimizing communalities. And although 

the number l + £ * of columns i n quadratic pattern A» i s r i g i d l y specified by r , the 

number of appreciably nonzero roots of G(T^,T^) may be considerably less than r * 

due to mul t i c o l l i n e a r i t i e s among the 2nd-level factors. This 2nd-level-dependi*ney 

prospect i s not displeasing, for quadratic results are far more interpretively 

interesting with m u l t i c o l l i n e a r i t i e s i n F ? than without them. In any case, i t i s 
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imoortant to be clear that the effective rank of C(TQ,TQ) i s just a lower bound 

on r * . The only pood way to select factor number i s to develop solutions over a 

range of r-ct^oices, including ones larger than what I s t - l e v e l factoring would 

orthodoxly aprrove, and see how nice i s the resultant model f i t . 

An outline of Q7ADFAC it e r a t i o n s . 

Let dgyC ) be the function defined by equations (6) that maps uniqueness 

terms u*" into the corresoonding array Q(S^) of 2nd-level errors that owe model 

exnects u*" to induce i n data quad-moments M(Y^,IQ). (The "T" i n this notation 

serves an reminder that f-jnction includes the I s t - l e v e l data covariances as 

parameters.) That i s , 

i s error-model (6) writ small. For any fixed r , given an estimate uj_j^ of u^, we 

enter the i t h cycle of QTTADFAC i t e r a t i o n , or more generally a subcycle thereof, by 

taking ©ET^Si-l) running estimate of and hence M(TQ,IQ) - ©EY^HI.I) 

as our corresponding c y c l e - i n i t i a t i n g approximation to true-part quad-moment matrix 

M(T*,T*). And this cycle/subcycle's y i e l d i s a revised estimate Mpĵ  of M(2g,T^) 

such that the righthand side of 

- « E i ( 2 t i ) - §ri (Bi) 

i s f i t t e d to i t s lefthand side under closer proximity to the model's ideal structure 

than achieved on the l e f t . Solution for Mpĵ  may or may not be accompanied by e s t i -
A A 

mates Aj^ and of I s t - l e v e l factor pattern A and factor quad-moments M(F^,Fg). 

When i t i s , as occurs just at completion of a f u l l cycle, t^, Ijp^t and a spares 

matrix whose nonzero terms, i f any, are corrections of ̂ j^j^'^ jj^-terma whose model-(6) 

specifications have been suspended, are obtained by f i t t i n g the righthand side of 



with k^^ having the Aj^-based structure described by (15), and thp t r i p l e product 

on the right giving Hpj^. That i s , when (B2) i s f i t t e d we put 

The nonzero (tc-be-fitted) elements of model-relaxation matrix are selected 

(a) by stipulating one of the three grades of error-model strength, and (b) at control-

parameter ootion, by a subroutine which oicks out the <hi,jk>-indices at which 

previotis model f i t has most ooorly reproduced the data quad-moments. This amounts 

to waiving the model-(6) constraints on these 

F i n a l l y , this cycle (or subcycle) derives a new raiiqueness estimate Uj by 

f i t t i n g some selection of the component equations i n 

i l = ^^'^V (B4) 

where 

?Ei =def IJdo'^) - B r i • 

This cycle's reprod'jction of the data quad-moments i s then 

B r i =def B r i * hr^aV ' 

and i f the f i t of anproximation M(2o»Io) ̂  appreciably improves uoon that of 

the preceding cycle, the iteration continues, 

Snliitiow £ac Mjn^, Hypothesizing that the X-'arlables have £ Is t - l e v e l 

factors entails that the rank of Mjj^ i n (Bl)-(B3) should not exceed l + r * . An 

obvious way to achieve this 2nd-level rank constraint i s through the Eckhard-Young 

approximation that replaces by zero a l l eigenvalues after the (l+£'*)th In the 

eigenstrueture decomposition of (Bl)*s lefthand side; and with two minor modlfl-

eationa, this i s QTADFAC's "coarse" solution of (Bl) for Kp^. 

The modificationst ( l ) We f i r s t p a r t i a l fg out of (Bl)'s l e f t side before 

solving the resultant estimate of Ĉ (T̂ ,2̂ ) for i t s f i r s t r» principal axes. 

(2) Kjij^ i s quad-symmetrized by averaging across elements that quad-syratetry 

requires to be equal. 



This coarse solution for jJri "°*» however, have e x p l i c i t decomposition (33). 

Ideally, equations (Bl)-(B3) should be solved by simultaneously f i t t i n g a l l unknowns 

on the right i n (82) by some modem structural-modelling algorithm. But pending an 

effective subrotitine for that, QUADFAC's repertoire of "fine" solutions of (Bl)-(B3) 

for * A ^ f a n d thence M̂ ^ proceed as follows: Each variant begins with a 

solution Aĵ  for the I s t - l e v e l factor oattem. Fast Q̂ ADFAC takes k.^ to be simply 

the nattem found by orthodox I s t - l e v e l iterated principal factoring of C(Y,Y) 

expanded to include a row for column for f g . ^ But under the control 

settings for iterated 2nd-level solutions, each cycle of fine solution 

for f i r s t computes a coarse true-quad-moment estimate (generally iterated 

through a small number of coarse subcycles) and solves the estimate of I s t - l e v e l 

true-part covariances C(T,T) embedded therein for the pattern on i t s f i r s t £ variance-

normalized principal axes. After expansion to include ZQ and f ^ , this pattern i s 

then taken for However i s obtained, A^j i s derived ffom i t by (15), after 

which V^j^ and Rj^ are simultaneously computed to f i t (B2) with this fixed A„i by 

the least-squares algorithm described i n Appendix E. Since this procedure obtains 

A A 

A„j only from the I s t - l e v e l part of VL^^, i t i s clearly suboptlmal i n pr i n c i p l e . 

Yet i t works decently enough with a r t i f i c i a l data even when that contains r e a l i s t i c 

sampling noise: and although our forthcoming structtiral-modelling alternatives w i l l 

s'irely prove superior, the improvement those bring may or may not be appreciable. 

Solution for i L , There are enormously many ways to solve (BA) for u., but 

some are far less robust than others. Of the varieties we have tested, the ones 

that have proved reasonably effective are a l l c l a s s i c a l least-squares f i t s of over-

determined simultaneous linear equations. To examine d e t a i l s , l e t Uj^ ( l i m i l a r l y ^ ) 

be the kth element o t i . e . , ^ = lUj^ljj* Then from (6), writing unknowns on 

the l e f t as conventional for simultaneous equations and pretending for tidiness that 

^The main motivation for fast QUADFAC, namely, b]rpasslng the considerable expense of 
IMSL's solution for large-matrix eigenstrueture, has been largely obviated by the 
recent release of IMSL:MATHLIB. The new stibroutinea for eigenstrueture therein are 
faster than before by—incredibly—over an order of magnitude. And they appear more 
accurate as w e l l . 



(84) i s not just an annroximation but an i d e n t i t y , each component equation i n (84) 

that matters for Uĵ  has the form (UD to index permutation) of one of 

2h5% " % i ^ h j , k k ( h,l»lS a l l d i s t i n c t ; ) (85.1) 

^Shk^k = ^:fei^hk,kk ( l£-ll-l£ ) (B5.2) 

4 = f ^ i ^ O C k k (B5.3) 

Shh^-^akk^h-ahak = tifei^hh,kk ( l ^ k ^ k ) (85.4) 

^%k5^k" " ^.Jfei^kk,kk ^ kurtosis i s Normal ) (B5.5) 

where standard scaling i n Q̂ ADFAC practice puts = C j ^ = 1 i n (35.4,5). A l l of 

these except (85.4) and (B5.5) are linear i n their unknowns; and that becomes true 

of the l a t t e r as well i f we replace and 3 ^ therein by their approximations 

computed from our l a s t estimate of u ( i . e . either or the most recent estimate 

reached by i t e r a t i n g (85)'s linear-equations solution). Because the f u l l array 

of equations (85) vastly overdetermines Uj^, i t i s feasible to solve only selected 

subarrays i n hope of avoiding quad-moments pa r t i c u l a r l y susceptable to poor f i t . 

At present, QTIADFAC provides alternative solutions for from four nested selections 

from (B5). In order of increasing inclusion, these are: 

Selection 1. Just the equations of form (B5.3). This i s a tr a d i t i o n a l 

I s t - l e v p l uniqueness solution, and the one used by fast QTTADFAC. 

Selection 2. A l l the equations of form (B5.1,2,3). This subarray has a 

direct least-squares solution for each ^ separately. 

Selection 2, A l l of equations (B5) except those of *'orm (B5.5). This 

subset ignores the kurtosis estimates i n H^^, which are usually much larger 

than other terms i n N^j^ and suffer the greatest sampling variance. 

Selection 4. A l l equations (B5), including subarray (B5.5). This i s 

appropriate only when Normal error kurtosis i s presumed. 
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Our a r t i f i c i a l - d a t a studies of Q̂ ADFAC oerformance (see Appendix D) have not yet 

discerned any clear superiority order on these options, albeit Selection U i s clearly 

inadvisable for data susoected to be aooreciably contaminated by f l o o r / c e i l i n g 

effects. Although any one Q̂ ADFAG run iterates just one of these solution options, 

i t prints out the u-estimates from a l l four Selections on each it e r a t i o n cycle. 
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AOTendix C. Frapmepts sL ihs. ttipory at quadratic sca^fis. 

In a broad sense, the quadratic functions of variables X = <• x^,... ,Xjj> are 

a l l those of form ^{X) = a^ + Z â x̂ ^ + E^.a^j^x^Xj^. But here we s h a l l adoot the 

narrower usage wherein the quadratic functions of variables X are just the ones of 

homopeneous form i6{X) = Z E^a^j^^Xj^. (As w i l l be noted, the broad sense i s recover

able as a snecial case under the narrow one.) By the linear space, jfjj, scanned by 

a timle X = <x^,... ,2fj,> of variables we s h a l l mean, as usual, the s^t of a l l homo

geneous linear combinations of the X-variables, i . e . , a l l functions of form )rf(X) = 

^e* aay that tuple X of variables i s ( i a p l l o i t l y ) eomalet^ i f f the 

unit variable i s i n 4x» and that X i s m(anife3tly)-complete i f f the unit variable 

i s one of those i n tuple X. Whenever we write X = <XQ,XJ^, ... ,2Cp> for a tuple of 

non-error variables, i . e . , with the tuple's indexing starting with 0 rather than 1, 

we nresimie X to be m-comnlete with XQ the unit variable. (Error tuples E^, E^, 

and S* remain exceptions to this r u l e , but w i l l not be mentioned i n this Appendix.) 

The space Jjy^ l i n e a r l y spanned by the m-completion XQ = «^XQ,X^, ... ,X„> of X com-

nrises a l l linear combinations of ̂ x^,...,Xjj> that include additive constants. 

And since Z^yS^ - ~ 0,1,...,n)» the quadratic functions of X^ i n the narrow 

(homogeneous) sense include a l l qoedratic functions of X i n the broad sense that 

admits linear terms and additive constants. Hence i n p a r t i c i d t e , / j j ^ c ̂ XQ* 

It i s often i n s i g h t f u l to express quadratic functions /^(x^*•••»2n) ~ 

Jj^ . a^jZlSj i n matrix form fi{t) = i*Q^, wherein X * •<I|?...,Sp> i a - a l f e b r a i c a l l y 

a column vector and Q i s the n x j j symmetric matrix whose i i t h element i s i f 

i = 1» i f i * l , and â /̂a i f 1 >1. Then the quadratic anaee. d?x. generated 

by variables X i s the set of a l l functions /i^_(X) = X'QXs Q any n x n symmetric rea l 

matrix^, i s also a space i n the standard linear sense, since a l l homogeneous 

linear combinations of functions i n Qy^ are themselves i n ^ ^ . Indeed, tfj i s the 

space Xx» l i n e a r l y spanned by the bare quadratic development X» of X, and i s hence 
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l i r e a r l y sioannecl also by X®. And i f X i s a basis for i t s linear space / j j , X* f a i l s 

to be a basis for Q,-^ just i n case, for some tuple Z of variables i n a l l ̂ p o i n t s 

l i e on a hynerbolic surface. 

Proof. Variables X* contain a homogeneous linear dependency (relative to a 

piven population i n which X i s distributed) i f f X'QJ = 0 for some nonzero sym

metric Q. By virtue of i t s symmetry, Q can always be decomposed as Q = T'DT 

where T i s orthonormal and D i s diagonal though perhaps not positive d e f i n i t e . 

Hence i f Z =^^f TX, X'^ = 0 i f f Z'D^ = 0, i . e . i f f Z ̂ ^Z^ = 0 for the n roots 

(diagonal elements) a l l nonzero roots of D, say i ^ , . . . , d j , (£i-a), 

have the same sign. I t follows for each i = 1,...,£ that 2^=0 and hence 

^ = 0—which i s to say that linear X-space i s at most (ii-r)-dimen3lonal contrary 

to assumption that X i s a basis for ^ j j . Alternatively, i f some of the £ * n 

nonzero D-roots are opposed in sign, Z'DZ = 0 i s the equation for a hyperbolic 

surface i n the subspace of ̂ -^ spanned by the f i r s t £ variables i n Z. And the 

b i - d l r e c t i o n a l i t y of this argument i s p l a i n . • 

F i n a l l y , i t i s of fundamental importance for quadratic factoring that i f 

X and Z l i n e a r l y span the same space Jfy = X^* *hen, regardless of any linear depend

encies i n X or 2, X* and 2.* both span the same quadratic space tfj = = /g* ~ ̂ Z' 

Proof. Siropose that Z and X span the same linear space even though the 

number s of variables i n Z may d i f f e r from the number n i n X. Then there exist 

not-necessarily-unique coefficient matrices A. and B̂  of order mx ji and D^S* 

respectively, such that 2 = AX and X = B2. Stf i f Jjĵ  and ^ are respectively 

any mxm and axji S3rmmetrlc quadratic-coefficient matrices, Z'Q^^ = 2['(A'Qj,A)X 

andX'Q„X=2'(B'Q„B)Z. 

It i s n£t generally the case, however, that i f variables X are orthogonal to variables 

Z, then i s orthogonal to (^ *hls paper, we understand "orthogonality" i n i t s 

generic sense of zero 2nd-order moments or zero vector products, not i n i t s special 
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sense of zero I s t - l e v e l covariarces.) In par t i c u l a r , i f means have been partiallod 

out of X, i . e . i f X i s orthogonal to x^, most variables i n SLj s t i l l retain nonzero 

means. (Recall that any variable's mean equals i t s mean product with the unit var

iable.) For this reason, quad-factoring cannot p a r t i a l out I s t - l e v e l means and 

thereafter work exclusively with covariances as does tr a d i t i o n a l I s t - l e v e l factoring. 

The rudiments of quadratic-function theory needed for present purposes can 

be expressed with powerful elegance i n the language of tensor algebra. Central 

to t*-is i s the Kronecker product. B3A, of any two matrices A and 3. I f B i s mxn 

and A i s r x s , B^fi A i s defined to be the luixaa r a t r i x so partitionable i n corres

pondence with the elements {k^^] of 3̂  that for each i = l,...,m and J. = l,...,af 

the i i t h block ( i . e . submatrix) i n BSA i s bj^jA. We also need the vec operator that 

transforms any matrix A into a super-col'imn of A's columns. S p e c i f i c a l l y , when £ x a 

matrix A i s partitioned by columns as A = [a, a , ... a„], vec(A) i s the order-ra 

column vector 

2£2([a^ ... Sg]) = 

a 
-s 

For inclusion of this operator i n formulas, however, we prefer Pollock's (1979, p. 68) 

nore corrpact rotation 

A° =def 2ec(A) , 

wherein the superscript i s an obvious heurism for "colucm." 

Some basic consequences of these definitions that hold whenever the matrices 

at issue conform are 

(i) (A73')° 

( i i ) (ab')° 

( i i i ) (A + B) 9 C 

(iv) ( B » A ) ' 

(v> (B»A)(D*C) 

b S a ( â  and b any column vectors ) 

A » C + B a C , A t (B+C) = AaB + ASC^ , 

B'»A' . 

BD » AC . 
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(vi) « = I m ( i ( k ) ^ l ' * Identity matrix ) . 

( v l i ) (B A A)!* = B^ « A^ ( l e f t - i n v e r t i b l e A and B ) . 

A matrix A i s l e f t - i n v e r t i b l e i f f i t s rank equals i t s column-order, in 
•rt 

which case A has a r.ot-necessarily-urique left-inverse = (A'A)"^A' 

by which Â A = I . The condition for l e f t - i n v e r t i n g A » B i s immediate 

from ( v , v i ) . 

( v i i i ) If A^fiAj = B^flB2 with A^.Aj of the same order respectively as B^,32, 

then X-i = t-B̂  and A2 = LB2 where either = 1 or u = - 1 . 

Hence i n ©articular, A« A = B 9 B i f f either A = B or A = -B. 

Continuing to treat variables X = <x^,...,Xjj> as a column vector, we can 

now write the f u l l quadratic development X« of X as the order-fl^ column vector of 

oairwise oroduct-variables 

'def 
(XX')° = X « X . 

Each variable x ^ j ( i , i = l , . . . , n ) i n tuple X* has composition x^^ - x^^jj and i s also 

one of the 2nd-level variables i n array X* = [S i X j * i»J = l , . . . , a ; l ^ i l . The only 

difference between X* and jC* i s that each occurs twice i n 2* (with permuted 

subscript) i f 1 # J.. Observe that any quadratic composites ^ j j ^ V'^^i^] of 

variables X can be organized as 

and collected into a column vector G = <g]^»g2»»*'> of variables having classic 

linear multivariate form 

^ = i f Q ^ ( tifG^k. =def 5k'' i£ = 1 ' 2 , . . . ) . 

As a soecial case of this format, for any tuple of variables Z = AX i n the linear 

space of X, the f u l l quadratic development of Z. i s l i n e a r l y determined by that of 

X aoeerdlng to 
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f = ( 2 » 2 ) = A l a AX = (A 9 A ) a « 2 ) = (A fl A)X* ( Z = AX ) . 

And I f A i s of ^ u l l coliimn-rark and so has a left-i n v e r s e , this dependency of Z* 

9 
uoon X can be inverted as 

X^ = ( A 9 A ) ^ 2 * = ( A ^ f l / ) Z * ( 2 = AX, A^= ( A ' A ) - I A ' ) 

to reclaim X® from Z*. A necessary condition for A^ to exist i s for Z to span jCx» 

and that together with X's being a basis for i s also s u f f i c i e n t . Vnhapnily, 

the situation i s messier i f X i s not a basis for Xx? for then there are many coef

f i c i e n t matrices (A^^ such that Z = Â X̂, and not a l l of these have left-inverses 

even when Z soans J[y. But some do—which i s to say that so long as Z, spans jfjj, 

there always exists at least one coefficient matrix A such that Z = AX and X = A^Z; 

whence also Z® = (A»A)2L* i s invertible aa ]^ = ( A ^ f l A ^ ^ . (See Rozeboom, 

for proof of this and other cheerful facts about l e f t - i n v e r t l b l e factor patterns 

henceforth taken for granted here.) 

Not merely do these formulas concisely describe how linear relations among 

Is t - l e v e l variables unfold into linear relations among quadratic functions thereof, 

they also show i n principle how to analyze linear dependencies i n a quadratic space 

into relations among axes i n the underlying linear space. Let Z = ̂ z^,...,Zjj> be 

an fi-tuple of variables (which may or may not be m-complete) whose 4th-order moments 

we have ident i f i e d either by direct computation when Z comprises empirical measures 

error 

or, when the Z^-variables are true-parts, by correction for 2nd-level^as described 

elsewhere. And suppose that study of these moments has revealed that M(2*,^), i . e . 

'1, has a decomposition of quadratic form 

M(S*,Z*) = ( A « A ) I L ( A A A ) ' 

for some fix^ matrix A (£*b) and some r x r matrix M^,. If A i s of f u l l column-

rank r , so that A^ and hence (AflA)^ e x i s t , there i s just one tuple of variables G 

such that Z* = (A»A)LG, namely G = ( A » A ) ^ Z * , whence also M(G,G) = M „ . Moreover, 
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these 2nd-Tpvel G-factors of Z* are immediately i d e n t i f i a b l e as the quadratic 

development of I s t - l e v e l factor r-tuple 

I =def . 

s ince 

G = (A9A)^S® = ( A ^ » A ^ ) ( Z S Z ) = A 4 » Â -Z = F « F = F ® . 

Insomuch as F ® = G, the F so i d e n t i f i e d has 4th-order moments M(F®,F®) = M(G,G) = H 

and renroduces the Z-information as 

Z = AF , Z® = (AflA)F® , M(Z®,Z®) = (A« A)M(F®,F®)(AS A) • , 

just as wanted of a simultaneous factor solution at both l e v e l s . F i n a l l y , note that 

exceot for r e f l e c t i o n , this F i s the only £-tuple of I s t - l e v e l factors whose 

quadratic develonment so reoroduces M(Z*,Z*) from A, S p e c i f i c a l l y , i f F_ i s any 

basis for linear ^-space that factors Z as Z = BgFg for some I s t - l e v e l pattern 

while also Z* = ( A » A ) F * , then B^ d i f f e r s from A by at most a reflection of some 

of i t s columns. Indeed, only for a bizarre distribution can i t f a i l that either 

B- = A and hence F- = A^Z = F, or B_ = -A and hence F„ = {~k^)Z = -F. 

Proof. Premises Z = B^F^ and Z* = (AaA)F* have the iamediate conseqtience 

(AaA)Fj = (B3»Bg)Fj . (Cl) 

Were F* a basis for i * would follow from (Cl) that A » A = B^ ftBg, whence the 

theorem would be immediate under principle ( v i i i ) ; however, we have already ex-

olained why not even F||, much less F^, i s generally a basis for despite F^'s 

being one for Nevertheless, i f i s any column-vector of scores on F^ for 

some member of the population P i n which the distribution of g i s at issue, i t 

follows from (Cl) imder (2) that Af »Af = B.f •B.f and hence, under ( v i i i ) . that 

Af^ = tBgf ( = 1 or I* = -1 ) (C2) 

Now, Fg la by stioulation a basis for Xz* insuring the existence both of A^ and 

of r l i n e a r l y independent score-tuples on F^ i n P. So there must also exist 
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an r x r nonsingular matrix S whose columns are score-tuoles on F„ i n P and. i n 

li g h t of (C2), a diagonal matrix D„ each root of which i s either 1 or - 1 — c a l l 

any such a "reflection" matrix—such that 

AS = B.SD,, = BaA^ASD,, . 

Hence, since = I , 
—u -1 

AS = B3AL(BaSDu)Du = B3ALB3S , 

which postmultiolication by S"l reduces to 

i = laA^la « (C3) 

And nremultiplication of (C3) by A^ shows that ( A ^ - ) ^ = I or, equivalently, 

= Pv (°^) 

for some ref l e c t i o n matrix D^. F i n a l l y , insertion of (C4) f i r s t into (03) 

and then into the premultinlication of (Cl) by A^a Â* yields 

A = BgD^ (C5) 

and 

Is^la = = (5v»Dv)(£a«i:e) = B^^.^vla 

or, equivalently, 

laU = (J5v£a)(5vi:e)' • (C6) 

If a l l roots of have the same sign, then either = or = - I , whence 

by (C5) either B3 = A or Bg = -A. Otherwise, F, partitions into two non-null 

subarrays F^ and F j such that, from (C6), F̂ Êg ~ " ^ l ^ a * occurs Just 

under the bizarre d i s t r i b u t i o n a l circumstance that every tuple of scores on 

F3 occurrent i n P i s a l l zero either on subarray Fj^ or on subarray F^. Q 

The essential point to be taken from this i s that so long aa we do not 

stray from l e f t - i n v e r t l b l e factor patterns, there i s only one modest obstacle to 

achieving alignment between I s t - l e v e l and 2nd-level factor solutions. Quad-factoring's 

alignment problem i s t h i s ; When we set out to intemret some decomposition 
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= BM̂ B̂ ' of the 4.th-order Z-moments, we know that i f ̂  i s left-invertable then there 

exist variables G i n ^7 such that Z® = BG and M(G,G) = JV. But we also know that 

these G-variables are i n turn quadratic functions of whatever I s t - l e v e l factor array 

F we may choose as axes for linear Z-space. Insomuch as the I s t - l e v e l Z-moments 

also have a factoring M(Z,Z) = m^V for any such F, with Z = AF and M(F,F) = M^, 

how can we extract some F, A, and the specific quadratic determination of G by F 

from our 2nd-level analysis and reconcile these with whatever might emerge just 

from the I s t - l e v e l analysis of M(Z,Z)? Although we have no operational answer to 

this question for an arbitrary 2nd-level factor pattern, a l l f a l l s nicely into 

nlace i f we can only manage to structure the pattern matrix i n M(2*,S*) = JMjjB| 

as B = ASA for some left-invertable A. For then, as just shown, F =, ^ A^Z i s a 

I s t - l e v e l factor solution that also analyzes the 2nd-level factors i n ~ ̂  ~ 

(A»A)G as G = i f , and the G-moments M(G,G) = H as the 4th-order moments M(F*,F*) 

= M(G,G) of F. In theory, this F can then be rotated into any I s t - l e v e l factor 

solution we might develop just from M(Z,Z); i n practice, f a i l u r e of such rotations 

to achieve perfect matches t e l l s us something about differences i n what can be 

recovered from noisy data by I s t - l e v e l vs. 2nd-level factoring, 

Vfhen Z i s m-complete, notably when i n practice 2 i s true-part (xi^l)-tuple 

TQ - <1Q,T>, we have no need for seoarate factor solutions on both levels insomuch 

as the 2nd-level analysis embeds a I s t - l e v e l one. But there i s s t i l l an alignment 

problem i n this case. For when 2nd-level true-moment decomposition M(TQ,^) = Kj^B^' 

reveals factors G (= B^^) i n /̂ .p̂  such that 3̂  = BG, even though the f i r s t j^'^l. 

variables i n ^ are I s t - l e v e l array TQ, the G-factors to which the f i r s t n+1 rows 

of B̂  give nonzero weight are not necessarily i n /ip^--e3pecially not i f B̂  i s devel

oped by something l i k e orthodox pr i n c i p a l factoring. Nevertheless, i f we require 

B to have structure B = A i A with <1,0,...,0> for A's 1st row, we insure that G = 

F Q « F Q for some (E+l)-tuple FQ^axes i n JCTQ commencing with the unit variable. And 

the leading (n+l)x(ji+l) submatrix i n B (= A» A) i s then also the I s t - l e v e l pattern 

of TQ on FQ. 
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Aopendlx E. Least-souarea SQ];t;j.pp Specjal Term? i n Fact or-moment Estimation-

In structural m.odelling, when we conjecture that tuples and of manifest 

variables are structurally dependent on scjrce variables F^ and Fj^, respectively, 

according to structural equations 

Xa = + Ea . l b = BFi, + Et, , 

wherein <Eg,Ejj> are residuals, need sometimes arises to estimate M(Ea»Fb^ given 

prior estimates of <A,B> and a more-or-less complex structure on the otherwise 

unknown contribution to {^(Yg,!^) of <Eg,Ejj>. (In Q7ADFAC applications, = ^ = Y^, 

A = B = A», Fg = = F J , and Eg = Ê j = EJ.) TO keep notation simple, l e t Vl^ be 

manifest-moment matrix M(Yg,Y^) while Mp i s factor-moment matrix M(Fg,F^). Then 

our model for MQ i s 

where QQ (= AM(Fa,|b) + M(Ba,F^j)B' + M(B3,Et,)) la a matrix of residuals. (In QTIADFAC 

applications, QQ = Q̂ .) 

Suppose that when we seek to extract Jfo ffom M^, pattern matrices A and B 

have already been estimated while residual matrix QQ i s analyzable as QQ = + Q 

where Qi i s numerically fixed and Q i s a sparce matrix whose nonzero elements are 

open parameters. (In Q̂ ADFAC applications, QQ i s specified by the strong version 

of error model (6) from the latest estimate of I s t - l e ^ e l uniquenesses u, while Q 

contains to-be-estimated correction terms at quadratic-index positions { < l i , i i > ; i = 

1»«'*»B] for waiving presumption of Normal error kurtosis, as well as at quadratic-

index positions {<Oi,ii>j i = l,...,n? i f zero error skew i s to be waived.) Our 

task i s to find % and the nonzero elements of Q that optimize the f i t of 

- ^5i + ^) . (El) 
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Although this problem can be routinely solved by modem structural-modelling 
when A and B have left-inverses 

methods, i t also has an e x p l i c i t least-squares solutionj^as follows: Let a = [ h i ] 

be the set of indpx-nairs that r i c k out the nonzero elements of Q, i . e . , [Q]m i s 

a free parameter in Q just i n case hi i s i n set a. Also, write 

i j l =def ifc - ^0 ' 

^ =def (A'A)-IA' , =^,f AAL , 

t =i^f ^5'B)''B' . PB B^L ^ 

Then putting J = MQ - (AJ^B« + Qi + Q) = - (AMpB* + 5) for the matrix of approxi

mation errors i n ( E l ) , d ifferentiating t r a d i t i o n a l loss-function Tr[EE'] wri *he 

unknowns i n % and Q, and solving for i t s minimum shows that the least-squares 

optimization of (Sl) i s the solution for <MB',Q> in simultaneous equations 

t a - l A ^ P f i l h l = ^^l'f^im\l ( i J i e a ) . (E3) 

(It seems conceptually helpful to leave the transpose marker on Pn here even though 

P^ and are symnetric. Proof of this solution i s available on request.) (E3) com

prises a set of simultaneous linear equations just for the 9-indexed unknowns i n Q 

without involvement of and once i s foimd from (E3), i t s insertion into (E2) 

yields an e x p l i c i t solution for J j ^ . 

To solve (E3), l e t q be the column vector of the unknown Q-elements a r b i t r a r i l y 
.»\^ 

ordered as . , ( l i i ) , . . . >, where (^) i s the single-index position i n q of doubly 
• » \ 

indexed Q-element [Q]UJ. For each of these q-indices ( y i ) , the lefthand side of 

the corresponding simultaneous equation i n (E3) i s [Ql^i - ^JA^B^hl* ^•*A9Si^hi» 

i . e . fPA^h.-^^B'^.i' 1̂  ^ homogeneous linear combination of the nonzero Q-terms such 

that the coefficient of each a(jk) i n [PAQP^lhi ai^nply tPAlhj^.?B^kl* ^o equations 

(E3) can be written as a single matrix equation 



(I - S)q = V (E5) 

where S Is a matrix whose element i n row (hi) and column (jk) i s 

^5,^(hi)(3k) =def f^A'hj^^B^ik 

and V i s a vector whose (hi)th element i s 

ViHi) =def ' ̂ IkWUKi ' 

thtlosa S l a singular, solution of (E^) for the least-squares-optimal estimate 

of the nonzero Q-elements i s then q = ( l - S ) ~ l v , 

However, this simple solution for q i s l i k e l y to be complicated by 

equality constraints imposed on some of i t s free elements. For example, symmetry 

may be required of Q even when some of i t s free elements are off-diagonal. Let 

the indices of q be partitioned into blocks A , . . . , A such that the q-elements 

with indices i n the same f^^ are constrained to be equal. Then by Lagrange-multi-

p l i e r inclusion of these side conditions i n the least-squares optimization i t can 

easily be shown that the rows of (E5) with indices i n the same block are replaced 

by the sum of these rows while of course i n each row the previously d i s t i n c t 

q-elements i n each block are replaced by just one unknown. S p e c i f i c a l l y , (E5) 

reduces under equality-constraint blocks to 

- = 31 

wherein the §th element of v^ and the sa*h element of Sj^ are respectively 

^^l^m = i ' f ^ l C h i ) * f^ll™ = II f S l ( h i ) ( j k ) (!S»B=1 S 

while [q^^ln i s the free Q^^lement common to block /S^. ( h e r e abbreviates sum

mation over a l l the iq41eea> -<iiii i n block ) 

Note. 

Matrix Q^-PAQP^ i n (E3) can be reorganized by the ves transformation as 



-E4-

Fach element of Q ° , and each row and each column of I - J g ft^^^, corresponds to one 

pair of Q's row/column indices; and i t i s easily seen that the left-hand aide of 

(E5) can be obtained by l e t t i n g q be what remains of Q° after deletion of terms 

not indexed i n a while i s the principal minor of I - Pg "hose rows/columns 

are s i m i l a r l y picked out by a. This construction makes clear the maximum number 

of free Q-elements for which (E5) has a unique solution: By d e f i n i t i o n , a symmetric 

matrix i s a "projector" just i n case a l l i t s nonzero eigenvalues are unity, one 

consequence of which i s that i f P i s any axn projector of rank r , I - P i s an 

jjxa projector of rank s - r . Now, given that A (B) i s of order 11^X11^ ( H B ^ B B ^ 

and has the left-inverse A^ (B^) defined above, Pj^ (Pg) i s an Jik^Lx ( B B * I^B^ 

projector whose rank i s r^^ iz^)* whence Pg^^A ̂ ' ^BDA'^J^BBA Projector of rank 

r ^ ^ , making I-PB*4'A B B B A " £ ^ A * ^O long as the number of free 

Q-elements does not exceed HBBA'-B^A* ^* always possible for a to so-

oosition them i n Q that S i n (E5) i s nonsingular. Even so, because I - P g ^ ^ j ^ 

does contain TgT^ linear dependencies, even a small priaelpal minor S^thereof^c^ 

can i n somr^csses bcr-siBgnlar i f i t i s chosen i n f e l l e i t o u s l y . What a-selections 

are assiured of avoiding this indeterminacy, we do not know. 


