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Sensitivity of a Linear Composite of Predictor

Items to Differential Item Weighting

Abstract

Many authors have demonstrated for idealized item configurations that
equal item weights are often virtually as good for a particular predictive
purpose as the item weights that are theoretically optimal. What has not been
heretofore clear, however, is what happens to the similarity between weighted
and unweighted composites of the same items when the item configuration’s
variance structure is complex.

Equal-Weight Composites

The enthusiasm with which Wainer (1976), expanding upon the sentiments of
Dawes and Corrigan (1974), has advocated the use of equal item weights for applied
multivariate prediction is not entirely unjustified. However, his “Equal Weights
Theorem” (corrected by Laughlin, 1978), which professes to show the robustness
of equal item weights for the practical efficiency of composite predictors, in fact
argues for this only under arbitrarily special assumptions whose relevance for prac-
tical prediction is demonstrably almost nil. Equal-weight predictor composites are
indeed nearly optimal under seemingly wide conditions. But those conditions are
more subtle than the extant literature has properly noted. In particular, before
enthusing over the trend of item composites’ general insensitivity to differential
item weighting, we need also to reflect upon that trend’s reliability.

That variation in the weights {wi} assigned to the items in a linear composite
x̃ = w0 + w1x1 + · · · + wmxm of predictor variables often makes little difference
for x̃ has been noted more than once in the psychometric literature (see especially
Gulliksen, 1950, Ch. 20). And while most published expressions of this effect
have been difficult to interpret save through unrealistically idealized simplifying
assumptions, it is possible to characterize the responsiveness of composite x̃ to
differential item weighting in a fashion that is surprisingly insightful considering
its generality. I shall review that characterization once the problem’s nature has
been clarified.

It is well-known that the linear composite of variablesX = 〈x1, · · · , xm〉, having
minimal standard error for predicting a criterion variable y in population P, is the
projection ẋ = b0+

∑m
i=1 bixi of y into the space spanned in P by X, i.e. b1, · · · , bm

are the coefficients in the linear regression of y upon X in P. (I write ‘b’ rather than
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‘β’ for the regression coefficients because I do not want to presuppose that y and
the xi are standardized to unit variance.) To assess the relative efficiency of some
other composite x̃ = b0 +

∑m
i=1wixi for predicting y from these same items, we

can proceed in either of two ways. The one exploited by Wainer is to standardize
y to unit variance, to note that var(y − x̃) = var(y − ẋ) + var(ẋ− x̃), and to take
var(ẋ − x̃) as our measure of x̃’s inefficiency compared to ẋ. However, this has
technical disadvantages due to the numerical value of var(ẋ− x̃) being determined
in part by scaling parameters for predictor dimension x̃ that are generally irrelevant
to predictive use of x̃ (see Rozeboom, 1978). The sensitivity of this approach to
scaling artifacts has tricked Wainer into choosing premises for his Equal Weights
Theorem that can be satisfied only when there are at most three predictor items.

Proof. Wainer stipulates that x1, · · · , xm are linearly uncorrelated with unit
variances, and that their regression weights {bi} for y are “uniformly distributed
on the interval [.25, .75].” Then

∑m
i=1 b

2
i = var(

∑m
i=1 bixi) = var(ẋ) ≤ var(ẋ) +

var(y − ẋ) = σ2
y , or

∑m
i=1 b

2
i ≤ 1 since y is also assigned unit variance. Hence

σ2
b + b̄2 =

∑m
i=1 b

2
i /m ≤ m−1, where b̄ and σb are respectively the mean and

standard deviation of b1, · · · , bm. But b̄ = .5 and σb > 0 under the premised
weight distribution; whence m < b̄−2 = 4, i.e. integer m must be three or less. �

Wainer’s approach can easily be generalized to m greater than 3; but to do
so the range stipulated for {bi} must be formulated as a carefully controlled func-
tion of m, with the common weight given to each predictor in the equal-weight
composite similarly varying with m,

Alternatively, however, we can avoid scaling irrelevancies by assessing the
y-predictive efficiency of an arbitrary item composite x̃, compared to the accu-
racy of regression estimate ẋ of y, simply by the squared correlation ρ2ẋx̃ between
ẋ and x̃ in P. For since ρ2yx̃ = ρ2yXρ2ẋx̃, where ρyX(= ρyẋ) is y ’s multiple correlation
with the xi in P,

ρ2yx̃
ρ2yX

=
ρ2yXρ2ẋx̃
ρ2yX

= ρ2ẋx̃

is the measure that tells what proportion of y ’s variance accounted for by y ’s
regression on {xi} is still accounted for when y is predicted just from x̃. Since
none of these squared correlations is affected by linear transformations of y, ẋ, or
x̃, we can let constants wo and w in equal-weight composite x̃ = w0 +

∑m
i=1wixi

be arbitrary. It is conceptually useful to let w0 = 0 and w = m−1, in which case
our equal-weight composite is the centroid, x̃ =def (

∑m
i=1 xi)/m, of the predictor

items. In what follows, I will show how the correlation ρẋx̃ between the centroid
of predictor items x1, · · · , xm and criterion variable y ’s projection into X -space
is determined jointly by certain critical properties of y ’s regression coefficients
{bi} on the X -configuration and the variance structure of the items. Actually, it
will be irrelevant that the bi are regression coefficients for predicting an external
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criterion y. The main point at issue is simply the correlation between some target
composite ẋ = b0 +

∑m
i=1 bixi and the unweighted (equal-weight) composite of the

same items.

Before the virtues of centroid predictors can be meaningfully examined, some-
thing needs be said about item scales. For insomuch as each direction in X -space
is collinear with the centroid of the item configuration under some choice of item
scales (since scaling parameters can adjust an item’s orientation as well as its mean
and variance), any theorem establishing high efficiency of x̃ for predicting y would
be trivial if we are allowed to select item scales to yield x̃ = ẋ. Also, the familiar
theoretical expedient of unit-variance items is virtually never implemented in ap-
plied prediction. Accordingly, the present analysis will assume fixed but arbitrary
item scales. Still, even without estimating regression parameters, we have great
latitude in choosing item scales; and some such selection must be made in any
event, with or without an assist from statistical considerations. After we see how
the correlation between ẋ and x̃ is determined for an arbitrary choice of item scales
we will be in a better position to judge the merits of various scaling alternatives.

For any fixed scalings of predictor items X = 〈x1, · · · , xm), let vb be the co-
efficient of variation for the coefficients in target composite ẋ = b0 +

∑m
i=1 bixi.

That is, vb = σb/b̄, where b̄ and σb are respectively the mean and standard devi-
ation of b1, · · · , bm. Quantity vb, which may be thought of as the “extremity” of
weight distribution {bi}, characterizes the degree to which the item weights in ẋ
diverge from equal weighting; and it is intuitively evident that the larger is vb, the
smaller on the whole should be ρ2ẋx̃. (When vb = 0, ρ2ẋx̃ = 1 since ẋ and x̃ are then
collinear.) But it is also evident that for fixed {bi}, the more homogeneous are the
xi the larger will be ρ2ẋx̃. And in fact, we shall see that ρ2ẋx̃ is largely determined
just by vb and the predictor items’ internal consistency in a way that sustains the
classic contention (see e.g., Gulliksen, 1950) that differential weighting of a goodly
number of reasonably homogeneous items tends not to matter much. However,
the reliability of that simple trend is profoundly modulated by properties of the
predictors’ variance structure other than homogeneity. This latter effect does not
seem to have received much recognition; yet it is just as important a part of the
item-weighting story as is the general trend.

To make clear how ρ2ẋx̃ is determined by item weights {bi} and the predic-
tor configuration’s variance structure, we need some partly-unfamiliar technical
machinery. Let each predictor item xi(i = 1, · · · ,m) be analyzed as the sum,
xi = di + x̃, of two components, a “saturation” component x̃ (i.e. the items’
centroid) shared by all the items plus a “dispersion” component di =def xi − x̃.
Because

∑m
i=1 di = 0, the total X -variance Vx =def

∑m
i=1 σ

2
xi

analyzes as the
total variance mσ2

x̃ of the items’ m saturation components plus the total vari-
ance VD =def

∑m
i=1 σ

2
di

of the items’ dispersion configuration D = 〈d1, · · · , dm〉.
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(Proof:
∑m

i=1 σ
2
xi

=
∑m

i=1 var(di + x̄) =
∑m

i=1 σ
2
di
+

∑m
i=1 cov(di, x̃) + mσ2

x̃ while
∑m

i=1 cov(di, x̃) = cov(
∑m

i=1 di, x̃) = cov(0, x̃) = 0.) If satX and dispX are the pro-
portions of total item variance that are saturation variance and dispersion variance,
respectively, i.e.

satX =def
mσ2

x̄

VX
,

dispX =def
VD

VX
,

we thus have satX + dispX = 1. The variance ratio satX may be viewed as
a measure of item similarity, since it equals the average of all elements in the
item configuration’s covariance matrix CXX divided by the average item variance.
However, a purer measure of item homogeneity, homX , is the average off-diagonal
element in CXX , i.e. the average between-item covariance, divided by the average
item variance. It can easily be shown that the ratio of homX to satX is the
item configuration’s “alpha coefficient,” a quantity long familiar to modern test
theory as an internal-consistency approximation to the item-centroid’s reliability
see Rozeboom, 1966, p. 410f) and for which we shall have later use. Specifically,

(1) αX =
homX

satX
=

mhomX

(m− 1) homX + 1
.

For any fixed homX > 0, αX increases asymptotically to unity with increasing m.

The sensitivity of ρẋx̃ to a given extremity vb of item weighting is determined
importantly by the proportion of the items’ total variance given to their dispersion
configuration, but also—which is the tricky part for a theory of item weighting to
make perspicuous—by their dispersion configuration’s shape. It is not hard to
show that for any m-tuple 〈b1, · · · , bm〉 of non-identical item weights, the weighted
item composite ẋ = b0 +

∑m
i=1 bixi is collinear with m1/2x̃+ vbdb for some axis db

of an orthonormal rotation of d1, · · · , dm selected by the inequalities among the
item weights {bi}.

Proof. Put db =def
∑m

i=1 aidi, where ai =def (bi − b̄)/m1/2σb, and note that
∑m

i=1 b̄di = b
∑m

i=1 di = 0. Then ẋ− b0 =
∑m

i=1 bixi = (
∑m

i=1 bix̃) + (
∑m

i=1 bidi) =

(
∑m

i=1 b̄)x̃ +
∑m

i=1(bi − b̄)di = mb̄x̄ + m1/2σb(
∑m

i=1 aidi) = mb̄x̃ + m1/2σbdb =

m1/2b̄(m1/2x̃ + vdbd). And since
∑m

i=1 a
2
i = 1, db =

∑m
i=1 aidi is an axis in some

orthonormal rotation of d1, · · · , dm.�

Excluding vb = 0, any value of vb can be combined in {bi} with any choice of
db, so extremity and D-axis selection are independent properties of the weight set.
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From the collinearity of ẋ with m1/2x̃+ vbdb it follows that

(2) ρ2ẋx̃ = 1−
v2b qb(1− θ2bθ

2
X)

1 + v2b qb + 2vbq
1/2
b θbθx

≥ 1− v2b qb ,

where θX is the multiple correlation of x̃ with the di, θb is the correlation between
db and x̃’s projection into D-space, and qb is the variance of db in proportion to
the variance of m1/2x̃, i.e.

(3) qb =def

σ2
db

mσ2
x̃

.

Proof. For any variables x, y, and z such that x is collinear with y + z,

ρ2xy = ρ2(y+z)y = cov(y, y + z)2/[var(y) · var(y + z)] = [σ2
y + 2σy2cov(y, z) +

cov(y, z)2]/σ2
y [σ

2
y + 2cov(y, z) + σ2

z ] = 1− [σ2
yσ

2
z − cov(y, z)2]/σ2

y [σ
2
y + 2cov(y, z) +

σ2
z ] = 1 − r2(1 − ρ2yz)/(1 + 2rρyz + r2) where r =def σz/ρy. From there we ob-

tain (3) by substituting ẋ for x, m1/2x̃ for y, and vbdb for z, while noting that

var(vbdb)/var(m
1/2x̃) = v2bσdb/mσ2

x = v2b qb, that ρẋ(m1/2x̃) = ρẋx̃ and ρ(m1/2x̃)(vbdb)
=

ρx̃db , and that by partitioning x̃ into its projection into D-space plus an orthogonal

residual, ρx̃db can be analyzed as the product of θX and θb.�

Equation (2) is not very insightful as it stands. However, the product of corre-
lations θX and θb will almost always be negligible compared to the main terms in
(2).1 And if we reasonably estimate θbθx to be approximately zero, the equality
in (2) simplifies to

(4) ρ2ẋx̃ ≈ 1−
v2b qb

1 + v2b qb
= (1 + v2b qb)

−1 .

(Note that when v2b qb is on the order of 10−1, the approximate value of ρ2ẋx̃ given
by (4) is not much greater than the lower bound 1 − v2b qb on ρ2ẋx̃ given in (2).)
Ignoring minor perturbations from θbθX , then, we see that the effect of differential
item weighting can be described by just two parameters, v2b and qb. The nature of
v2b is clear, so it only remains to elucidate qb.

1For arbitrary weight selection, the expected value of θ2b is (m − 1)−1. I have found it very
difficult to develop analytic evaluations of θX ’s likely magnitude except for linearly independent
items whose centroid is collinear with one of their principal axes, in which case θX = 0. (One can
contrive items having any stipulated value of θX ; but what values are apt to arise in practice and
how θX is affected by item orientations remain unclear to me.) Even so, it seems unlikely that
in practice θ

2
X will often be greater than, say, .2 or .3, especially if the items are convergently

oriented (see below) with roughly equal variances.
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Variance ratio qb is not nearly so obscure as it may seem on first encounter;
for its denominator mσ2

x̃ is just the X -configuration’s saturation variance while
its numerator, σ2

db
is one axis’ worth of dispersion variance selected by weights

{bi}. Since not all D-axes generally have the same variance, the particular {bi}
makes some difference for σ2

db
and hence for qb; but even so, σ2

db
has upper and

lower bounds determined just by the D-configuration’s shape regardless of {bi}.
The nature of these will be readily grasped by anyone familiar with the effect of
orthonormal rotations on an item configuration’s variance structure: Total vari-
ance remains invariant, but is redistributed among the rotated axes in ways that
can best be described in terms of the configuration’s principal components and
their associated variances. Specifically, any axis db in any orthonormal rotation
of D = 〈d1, · · · , dm〉 is a linear composite db =

∑m
i=1 a

∗

i d
∗

i of the principal compo-
nents d∗1, · · · , d

∗

m of the D-configuration while the variance of db is a corresponding
weighted average σ2

db
=

∑m
i=1 a

∗2
i λDi (

∑m
i=1 a

∗2
i = 1) of λD1, · · · , λDm where each

λDi is both the variance of d∗i and the i th root of the D-configuration’s covari-
ance matrix. In the present case, moreover, λDm = 0 while the weight of d∗m in
db =

∑m
i=1 aidi =

∑m
i=1 a

∗

i d
∗

i (ai =def (bi − b̄)/m1/2σb, σb > 0) is zero.

Sketch of proof. Since
∑m

i=1 di = 0, d∗m =
∑m

i=1m
1/2di has zero variance and

is the D-configuration’s m th principal component. Moreover, since the vector of

coefficients in db =
∑m

i=1((bi− b̄)/mσb)di is orthogonal to the vector of coefficients

in d∗m =
∑m

i=1m
−1/2di, there exists an orthonormal rotation d′1, · · · , d

′

m of the di

in which d′m = d∗m while db is one of d′1, · · · , d
′

m−1. From there it is straightfor-

ward to show that d∗1, · · · , d
∗

n−1 are an orthonormal rotation of d′1, · · · , d
′

n−1 and

conversely.�

Consequently, σ2
db

is a weighted average of λD1 , · · · , λD(m−1)
and is bounded

from above by λD1 ,and from below by λD(m−1)
.

Any value for σ2
db

within this range can be selected by an appropriate choice

of {bi} given any assigned nonzero value of v2b .

What do these constraints on σ2
db

imply about qb? Since λDm = 0, λD1 , · · · , λD(m−1)

must sum to VD; but how the λDi otherwise partition that sum among themselves
is entirely up to the shape of the item configuration. If this allocates equal dis-
persion variance to all directions in D-space, then λDi = VD/(m − 1) for all
i = 1, · · · ,m− 1, and σ2

db
also equals VD/(m− 1) regardless of {bi}. On the other

hand, the D-configuration’s variance ellipsoid can come in any degrees of eccen-
tricity up to the extreme where λDi equals VD for i = 1 and 0 for i > 1. Regardless
of how Vd is distributed across λD1, · · · , λD(m−1), however, the value of db to be
expected from a random choice of item weights remains VD/(m− 1).
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These considerations urge that a predictor configuration’s sensitivity to differ-
ential item weighting can be concisely described in terms of (a) the value of ρ2ẋx̃
that arises when σ2

db
is in the vicinity of its value expected under random selection

of db, and (b) the smallest value of ρ2ẋx̃ that can occur when σ2
db

approaches its max-

imum possible value of λD1 . (The upper bound on ρ2ẋx̃ that similarly follows when
σ2
db

= λD(m−1) will usually be too close to unity for v2b on the order of 1 or less to
hold much interest.) Regarding (a), since satX = homX+(1−homX)/m and hence
dispX = 1− satX = (1−homX)(m−1)/m, while 1−αX = (satX −homX)/satX =
(1− homX)/m satX , plugging σ2

db
= VD/(m− 1) into (3) gives

(5) EX [qb] =
VD

(m− 1)mσ2
x̃

=
dispX

(m− 1)satX
= 1− αX

(random db), where E is subscripted with parameters on which the expectation
is conditional. (Subscript “X ” in this context means a given item configuration,
or more specifically fixed CXX .) Hence from (3)-(5), replacing qb in (4) by its
expectation under random selection of db

(6) EX,vb [ρ
2
ẋx̃] ≈ [1 + v2b (1− αX)]−1 ≈ 1− v2b (1− αX)

(random db), where the simpler approximation in (6) is virtually as good as the
other if v2b is no greater than the order of 10−1.

As for (b), although the upper bound λD1/mσ2
x̃ on qb that follows from σ2

db
’s

maximum λD1 is easy to compute numerically from the X -configuration’s covari-
ance matrix CXX , the algebraic character of this bound is not especially per-
spicuous. (It is mildly insightful to note that λD1/mσ2

x̃ equals dispX/satX times
the proportion of the D-configuration’s total variance accounted for by its first
principal axis. But it takes some practice to think in terms of those quantities.)
However, if λXi (i = 1, 2, · · · ) is the variance of the X -configuration’s i th principal
component, i.e. the items’ total variance accounted for by their i th principal axis,
it can be seen that λX1 ≥ mσ2

x̃ while almost always λD1 ≥ λX2 . Hence

(7) qb ≤ maxX [qb] =
λD1

mσ2
x̃

≥
λX2

λX1

The rightmost inequality in (7) is not particularly helpful when the X -items have
been oriented without regard for item convergence. But if the items have been
oriented to maximize homX , or approximately so, the X -configuration’s centroid
will usually correlate highly with its first principal component, in which case mσ2

x̃

and λD1 are well-approximated by λX1 and λX2 respectively, and the rightmost
inequality in (7) becomes an approximate identity. Hence from (7) and (4), given
well-chosen item orientations, the smallest value to which ρ2ẋx̃ can be driven by an
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unfavorable db is approximately

(8) minX,vb [ρ
2
ẋx̃] ≈

[

1 + v2b

(

λX2

λX1

)]

−1

(strictly convergent X -configuration), where the X -configuration is “strictly con-
vergent” just in case homx cannot be increased just by reflecting some of the
items. (For a more detailed discussion of item convergence, see Rozeboom (1966,
p. 344ff).) In the ideal special case where x̃ is perfectly collinear with the X -
configuration’s first principal component, (4), (8), and the left-hand approximation
in (6) are all strict identities while also λDi = λDi+1 for i = 1, · · · ,m − 1. (That
is because, in this ideal case, each di differs only by an additive constant from
the component of xi orthogonal to the first principal component of xl, · · · , xm (see
footnote on p. 372 of Rozeboom, 1966) whence θX = 0 and the remaining principal
components of the xi are then the first m− 1 principal components of the di.)

From the foregoing, we can see with easy clarity how the similarity ρ2ẋx̃ between
weighted and unweighted item composites ẋ =

∑m
i=1 bixi and x̃ = m−1

∑m
i=1 xi is

determined jointly by (a) the initial choice of item scales and orientations, (b)
the extremity vb of differential item weighting {bi} in ẋ, and (c) the axis of the
items’ dispersion configuration selected by {bi}. Regarding (a), if the item orien-
tations and scale units are chosen without heed for the global properties of the
X -configuration that so results, homX , satX , and αX should tend to be in the
vicinity of 0, m − 1, and 0, respectively. If so, the value of ρ2ẋx̃ to be anticipated
from random weighting is the same as it is when the X -configuration is orthonor-
mal, namely, given CXX = I,

(9) ρ2ẋx̃ = (1 + v2b )
−1

(which follows from what has been said above by virtue of the axes in any or-
thonormal rotation of an orthonormal item configuration being also orthonormal).
But whereas (9) is an exact equality for uncorrelated, equal-variance items regard-
less of db, when the X -configuration’s variance structure is appreciably elliptical
even though homX ≈ 0 due to uncoordinated item orientations, qb in (4) can easily
be one or more orders of magnitude larger than unity with ρẋx̃ correspondingly
near zero unless v2b is on the order of 10−2 or less. High ρẋx̃ is still possible in
this case even for appreciable v2b , but there is now no general tendency for x̃ to
well-approximate ẋ.

However, it is common practice—and rightly so—to scale predictor items to
have roughly equal variances, at least within the same order of magnitude, and
also to choose orientations that more or less minimize negative item correlations.
Together, these operations push satX close to the maximum value this can attain
just through adjustments of the items’ scale units and orientations. (This maxi-
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mum equals the proportion of the items’ total variance accounted for by their first
principal axis under equal-variance item scaling. See Rozeboom (1966, p. 592).)
In psychometric practice, satX and hence homX are then likely to be substantially
larger than .1, possibly as great as .4 or .5; whence if the predictor items are fairly
abundant, say m >> 10, 1 − αX will be little if at all greater than .1 so that v2b
can be as large as the order of 1 and still leave a high expectation in (6).

As for weighting extremity, vb, formulas (2, 4, 6, 8, 9) are entirely clear about
how this affects ρẋx̃ but say nothing about how large v2b is likely to be. So long as
the bi can be negative as easily as positive, b̄ can be arbitrarily close to zero and
v2b hence arbitrarily large. On the other hand, if virtually all the bi have the same
sign, say positive, v2b will be on the order of 1 or less unless (as, however, can readily
occur) the weight distribution has a strong positive skew. In particular, if {bi} is
uniformly distributed over an interval of width w and midpoint c, v2b = (w/c)2/12,
which is less than .34 when no weights are negative. Just the same, when {bi}
comprises the items’ regression coefficients for an outside criterion y, it does not
seem reasonable to expect v2b to be much smaller than .1 or .2, even when each
xi is oriented to have positive coefficient, unless item scales have been chosen to
align x̃ with an estimate of y ’s projection into X -space.

If ρ2ẋx̃ were always well-approximated by its expectation (6), we could conclude
that for a decently homogeneous item configuration of appreciable size, differential
item weights have little effect unless the weighting extremity is very large. Thus
if m = 20 and v2b is less than .5, the approximate expectation of ρ2ẋx̃ is over .92
if homX = .20 and over .96 if homX = .40. And for some item configurations,
(6) is indeed reliable. Specifically, this will be so if the X -configuration is strictly
convergent, or nearly so, and is strongly dominated by a single factor, i.e. if λX2

is only a minor fraction of λX1 . However, if one or more roots of CXX after its
first are nearly as large as λX1 , then it is possible for bi to select a D-axis db for
which qb ≈ 1 and hence ρ2ẋx̃ ≈ (1 + v2b )

−1. To be sure, that same configuration’s
D-space also undoubtedly contains other directions for which qb is so small that
ρ2ẋx̃ is near unity even for extreme v2b ; but for a worst-case analysis, only maximal
qb is relevant.

Let me review these results, starting with their motivation. The aim is not
to determine the correlation between weighted and unweighted item composites ẋ
and x̃ for any specific selection of item weights, since numerically that is a simple
computation from bi and CXX . Neither is it a search for lower bounds on ρ2ẋx̃; for
when the predictor items span an m′-dimensional space (where m′ may or may
not equal the number of items), item weighting can put ẋ anywhere within the
m′ − 1 dimensional item-space that is orthogonal to x̃. Rather, the intent is to
develop a generalized insight into how ρ2ẋx̃ is constituted out of {bi} and the item
configuration’s variance structure; specifically, to see whether there may not be
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a small number of abstract properties of {bi} and CXX (which jointly contain
m(m + 1)/2 independent parameters) that not only suffice to determine ρ2ẋx̃, or
approximately so, but are also conceptually meaningful. The present analysis
makes such insight available at three levels of accuracy.

At the lowest accuracy level, we find that ρ2ẋx̃ is largely determined by only two
parameters, one a property just of {bi} and interpretable as the extremity with
which these differentially weight the items, and the other a property just of CXX

that is not very intuitive in its own right but has become classic in test theory as
a measure of internal consistency. Specifically, from (6),

(6 ′) ρ2ẋx̃ ≈ [1 + v2b (1− αX)]−1,

where the X -configuration’s alpha coefficient may be viewed as the items’ homo-
geneity amplified by their numerosity as set forth in (1). The main term in (6 ′)
is vb, simply because we can make its numerical value as large as we please by
our choice of item weights. (In contrast, we have only limited control over αX ,
though it is important to appreciate how our choice of item orientations and scale
units influence αx through their effect on homX .) Thus (6 ′) may be viewed as
telling how ρ2ẋx̃ decreases as a single-parameter function of weighting extremity vb,
while that function’s parameter, 1− αX , is the item configuration’s sensitivity to
differential weighting.

Approximation (6 ′) is lucid, powerful, and often highly accurate. Even so, de-
pending on properties of CXX additional to αX and on whether bi takes advantage
of them, (6 ′) can be seriously misleading for a particular bi. If the item scales and
orientations, especially the latter, are chosen more or less to maximize homX , and
all principal axes of X after the first are approximately equal in the amount of
total X -variance each accounts for, then approximation (6 ′) is for all practical
purposes an identity over all possible choices of item weights. (Note that this is
true regardless of how weak the items’ first principal axis may be.) However, if the
item configuration also contains principal axes after the first that have secondary
prominence, analysis of ρ2ẋx̃ at a higher accuracy level must revert to approxima-
tion (4). This has the same form as (6 ′), but replaces 1 − αX in the latter by a
sensitivity parameter qb that can be viewed as a selection by bi from a range of
sensitivities (centered on 1−αX) made available by the item configuration. If the
items have arbitrary orientations even though some of their intercorrelations are
appreciable, qb can easily be one or more magnitudes greater than unity, in which
case formula (4) is not particularly useful. But if the items have been oriented to
strict convergence, or nearly so, then the items’ maximum sensitivity to weighting
is approximately equal to λX2/λX1 , i.e. the strength of the items’ second princi-
pal component compared to that of their first, and a worst-case analysis should
proceed in terms of (8). The practical difference between (6 ′) and (8) is that for a

10



factorially complex item configuration, λX2/λX1 may well be in the vicinity of .5
or more even when, due to large m, 1− αX is quite small.

Finally, at the highest accuracy level, ρ2ẋx̃ can be analyzed exactly, as in (2), for
all item configurations, by appeal to two minor parameters θb and θX additional
to vb and qo. Formula (2) is hard to interpret, however, and when the item config-
uration is close to strict convergence it seems likely that in practice the difference
between (2) and (4) will seldom if ever be appreciable.

Formulas (6) and (8) give little reason to favor equal weighting in applied
prediction, even though the two preconditions stipulated by Wainer (1976), (i)
that all predictor items have the orientations that regression weighting would give
them, and (ii) that none of the regression-oriented items are negatively correlated,
do retard the general proclivity of ρ2ẋx̃ to approach zero. (Condition (i) implies
that none of regression weights {bi} are negative, whence v2b is likely to be on
the order of 10−1 even though v2b will still approach or exceed unity if a small
proportion of the bi exceed the remainder by an order of magnitude. And (ii)
requires the item configuration to be strictly convergent, which does its best to
maximize homX but insures neither that homX is high nor that qb is much less than
unity. Also, the higher the latent item homogeneity, the less likely it is that (i) and
(ii) can be jointly satisfied in the first place for a given outside criterion.) Even
so, present results do support a more restrained version of Wainer’s thesis. This
is simply that if items xi are fairly numerous and at least modestly homogeneous
when provisionally scaled to align x̃ as best we can with our target axis of X -space
(i.e. when initial weights are temporarily absorbed into the item scales), then
moderate readjustments of the items’ provisional scale units, corresponding e.g.
to rounding the items’ raw-scale weights to a small number of alternatives such as
0,±1,±2,±3,±4 (cf. Green, 1977, p. 270), will almost always leave the modified
composite virtually indistinguishable, correlationally, from its precursor. To put
the point bluntly, second-digit precision in item weighting is generally a waste of
effort.
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