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Domain Validity—Why Care?

Abstract

A strict equivalence presupposed by Kaiser and Michael to derive the
coefficient of “domain validity” is defensible only as a biased approximation.
But then, it is far from clear what psychometric significance this coefficient
has in the first place.

In a recent issue of this journal, Kaiser and Michael (1975) derive the Tryon/Cron-
bach coefficient of “domain validity,” or “generalizability” under charmingly weak
assumptions. Their account is instructive, but not quite for the reason they pro-
pose.

Momentarily taking the received view of domain sampling at face value, con-
sider two finite sets X̂ and X of test items, where X̂ is a subset (item sample)
of X and the number n of items in X is very much larger than the number m

of items in X̂. Define a subject’s “observed score” to be the mean of his scores
on the items in X̂ i.e. his score on the centroid x̂ of item-sample X̂, while his
“domain score” is his mean score in X, i.e. his score on the domain centroid x.
(I depart slightly from Kaiser and Michael here, since they define observed scores
and domain scores as sums rather than averages. But this is merely a difference
in scale unit except when n approaches infinity, in which case the domain sum is
ill-defined.) As Kaiser and Michael point out, if Vx̂ is the mean item variance in
X̂, C

X̂
is the mean covariance between (different) items in X̂, CX is the mean

covariance between items in X (or in X − X̂, as preferred by Kaiser and Michael),
and C

X̂X
is the mean cross covariance between items in X̂ and items in X (or

in X − X̂), the squared linear correlation R2
x̂x between the sample and domain

centroids is

(1) R2
x̂x ≈

(mC
X̂X

)2

[mV
X̂
+m(m− 1)C

X̂
]CX

,

where the approximation approaches an identity, given any positive lower bound
on CX , as n goes to infinity. Then if

(2) C2
X̂X

= C
X̂
CX (Kaiser-Michael assumption),

substituting (2) into (1) and dividing out m and CX yields

lim
x→∞

R2
X̂X

=
mC

X̂

V
X̂
+ (m− 1)C

X̂

(3)

= α
X̂
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where α
X̂

is the classic Alpha coefficient for item set X̂.

Actually, this result can be established with even greater ease and generality
than given by Kaiser and Michael. For any two finite, not-necessarily-disjoint
sets X and Y of test items, let x, Vx, CX , and αX (y, Vy, CY , and αY ) be
respectively the centroid, centroid variance, mean between-item covariance, and
Alpha coefficient for setX (setY), while CXY is the mean cross covariance between
items in X and in Y. It is easily seen1 that αX = CX/Vx, whence Vx = CX/αX .
Similarly Vy = CY /αY , while the covariance Cxy between centroids x and y is
obviously equal to CXY . Hence the squared correlation between the centroids is

(4) R2
xy =

C2
xy

VxVy

= αXαY

(

C2
XY

CXCY

)

.

To get (3) from (4) and (2), we need only take Y to be a subset X̂ of X, yielding

R2
x̂x = α

X̂
αX

(

C2
X̂X

C
X̂
CX

)

(5)

= α
X̂
αX if C2

X̂X
= C

X̂
CX ,

and observe that with the item homogeneity of domain X held parametrically
constant at any positive value, αX monotonically increases to unity as the number
of items in X becomes arbitrarily large (cf. Rozeboom, 1966, Fig. 8.1).

But under that circumstances is (2) a reasonable assumption? The answer,
quite simply, is in all likelihood never, not even as a statistical expectation. If the
concept of “domain sampling” makes any sense at all, we must suppose that item
set X̂ is obtained from domain X under circumstances that justify envisioning
a probability distribution for the parameters of item samples so drawn from X,
including in particular sampling expectations Exp[C

X̂
] and Exp[C

X̂X
] for item-

sampling covariance parameters C
X̂

and [C
X̂X

], respectively, and a sampling vari-
ance Var[C

X̂X
] for [C

X̂X
]. Since CX is the population parameter to which both

C
X̂

and C
X̂X

converge as m appoaches n, both Exp[C
X̂
] and Exp[C

X̂X
] should

approximately equal CX ; but in any case we have

Exp[C
X̂
] = CX + a, Exp[C

X̂X
] = CX + b

where a and b are sampling biases that will be essentially zero in any reasonable
domain-sampling model. Then

Exp[C
X̂
CX ] = (CX + a)CX

whereas

Exp[C2
X̂X

] = Exp[C
X̂X

]2 + Var[C
X̂X

] = (CX + b)2 + Var[C
X̂X

];

1E.g. from equation (9.52) by definitions (7.75, 7.85) in Rozeboom (1966).
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so the expected difference between the sides of (2) is

Exp[C2
X̂X

− C
X̂
CX ] = CX(2b− a) + b) + V ar[C

X̂X
](6)

= V ar[C
X̂X

] if a = b = 0

The quantity V ar[C
X̂X

] in (6) is a decreasing function of the number of items in

X̂, but is greater than zero for all finite m unless all item covariances in X are
identical. Hence apart from an extraordinary fluke of sampling biases, the lefthand
side of (2) is expected to be somewhat larger than its righthand side.

I wish I could polish this point by exhibiting the sampling-expectation of R2
x̂x,

or better, its expectation conditional upon the observed value of αx̂ and perhaps
other observable parameters of X̂. Unfortunately, the righthand side of (5) is too
complex for the sampling behavior of R2

x̂x to be readily discerned even in the most
ideal sampling model for X̂. Just the same, the systematic tendency of C2

X̂X
to

exceed C
X̂
CX makes it difficult to imagine that α

X̂
αX can ever be more than an

imperfect, biased estimate of R2
x̂x.

To be sure, as an approximation to R2
x̂x, αX̂

should be more than adequate in
all applied circumstances. But do any such circumstances in fact exist? Despite the
recent test-theoretic prominence of domain sampling notions (most importantly,
in Cronbach, Gleser, Nanda, & Rajaratnam, 1972, and Lord & Novick, 1968), one
may seriously question whether these really have any practical point, at least with
their classical centroid focus.

In the first place, given an extant set X̂ of test items, in what way can we
meaningfully conceive of an item domain X sampled by X̂? Is X some part of
the finitely many stimuli which have been/will be in fact brought forth as a “test
item” in the past/present/future history of psychometric practice? This would
be an appropriate way to view X if its items were indexed e.g. by an array of
physical tokens and X̂ were constructed by drawing a subset of these; but since
item selection is virtually never remotely like that, I shall assume without argument
that this is not what domain-sampling theorists have had in mind. Surely, domain
X is envisioned not as some set of items actually constructed, but as a set which
in some subjunctive sense could be generated in a determinate fashion GX .2 But
if so, how do we characterize the parameters of X and its domain centroid?

The traditional approach, construing the domain parameters as derivative from
the joint distribution of distinct items inX, turns out under critical examination to

2That particular item domains are seldom if ever well-defined has been a frequent objection to
domain-sampling theory. Strictly speaking, however, this criticism is misdirected. What domain-
sampling theory needs to specify in any attempted practical application is not a set of items
as such but a particular method of item production. (To be sure, that is never accomplished
either; so with a little re-targeting, the standard complaint about domain indeterminacy remains
as cogent as ever.)
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be unworkable. Ontologically, it is questionable whether it makes sense to think of
a stimulus that is never actually manifested in some setting as existing at all; but
if all items that could be generated in fashion GX do literally “exist” in some way
that allows them to comprise an abstraction basis for the domain parameters, there
will be an uncountable infinity of them unless GX is defined to be so intrinsically
sequential that not only each item in fact produced by GX but also every one that
could be has a distinct order index assigned to it by GX . Now if X is uncountable,
the mean between-item covariance and the domain centroid cannot be defined by
limits at all; and this remains true even if X is a countably infinite sequence unless
we postulate convergence properties for the sequence that are unwarranted unless
inferred from a more fundamental characterization of GX (see immediately below)
and even then place no constraints on the item parameters of any finite segment
of the sequence. In any case, returning to the first point, so far as we know there
are no literally infinite sequences of GX -generated items.

Alternatively, we can forego pretending that domain X is a set or sequence
of real items by appealing, instead to an array of causal parameters that prob-
abilistically determine the test-theoretic character of items generated in fashion
GX . Such parameters cannot be identified in terms of the (fictitious) items in X;
but there is no evident reason why there may not exist—really exist, even if not
accessible to direct observation—a space of source-factors within which lie all test
items that can be generated by GX . The GX may be thought to dispose a joint
probability distribution for the factor loadings of item tuples produces in fashion
GX is a probability-theoretic “sample” from this distribution. (See Hunter, 1968,
for an elegant introduction to this approach. If one wants, the sampling theory for
the items’ factor loadings can be developed with a model of item “facets”. Also,
factor models more general than the standard linear one are entirely admissible
in principle albeit probably not useful to exploit at present.) A subject’s score
on the (m-wise) “domain centroid” may then be defined as the score statistically
expected for that subject on the centroid of an item m-tuple generated in fashion
GX .3 Given a reasonably well-behaved probability model for GX—most ideally,
with all items in X̂ drawn independently with the same marginal factor-loading
probabilities—we can investigate the sampling behavior of X̂’s parameters in con-
siderable technical depth.

Domain sampling does, then, appear to be a workable idea, even if more de-

3If GX generates item m-tuple X with the same marginal probability distribution for the
factor coefficients of each item, the domain centroid is simply the expectation for any one item
generated in fashion GX , and the domain parameters readily generalize to GX -generated item
tuples of any length. Otherwise, the m-wise domain centroid’s factor structure is a nontrivial
function of m; and generalization from an observed m-tuple of GX -generated items to a tuple of
length other than m—or even to length m ones as well, since one can argue that these are all
different segments of the same sequence—becomes much more tenuously complicated.
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manding of technical sophistication than the past lieteature would suggest.4 But
what practical point might there be in seeking to learn the domain centroid’s cor-
relation Rx̂x with the centroid of an extant GX -generated item sample X̂? There
seems to be essentially just two kinds of things that one might try to infer from
X̂-data. (Cf. the G-study/D-study distinction in Cronbach et al., 1972.) One
is the probability parameters of GX -wise item production, and from there, if one
cares, what to expect about the psychometric character of additional item tuples
so produced. And secondly, one may have the standard psychometric desire to
infer a subject’s standing on one or more criterion variables from his scores on X̂.
Regarding the first objective, if our item-sampling model is reasonably simple and
the number m of items in X̂ is appreciable, quite a bit can be learned about this
through analyzing the variance structure of X̂ in a suitably large subject-sample.
But Rx̂x, no matter how accurately estimated, tells virtually nothing about the do-
main parameters. Rx̂x is just a monotone function of m whose rate of approach to
unity is modulated by domain parameters that can be estimated from the internal
properties of X̂ without concern for Rx̂x.

On the other hand, if one wishes to make criterion predictions for particular
subjects, Rx̂x does tell how accurately a subject’s domain-centroid score can be
estimated from his sample-centroid score. But the domain centroid is just one
dimension of what is generally a multidimensional space of item factors, all of
which can be predicted from X̂ to one degree or another, so why should we care
more about this one than about the others? To be sure, the domain centroid will
almost always well-approximate the dimension that accounts for the maximum
variance in the expected structure of aGX -generated itemm-tuple; but if the latter
is what turns us on, we have more sophisticatedly accurate ways to get at that
than through concern for Rx̂x. The linear composite of an observed GX -generated
X̂ with maximum “generalizability” in X is not X̂’s centroid but its first principle
axis. In any event, our purpose in generating test items is presumably to have
something to predict from, not to. What subject attributes underlie responding to
an array of test items is naturally a matter of psychonomic concern, and analysis
of the variance structure within an extant item array can be invaluably diagnostic
of that; but it is far from obvious that the psychonomic importance of an item
factor is determined by how high a proportion of GX -generated item variance it

4Complications of sampling models are less than ideally simple (cf. footnote 3), need for
which has already surfaced in domain-sampling considerations of “stratified tests,” seem basically
amenable to standard probability-theoretic treatment. More enigmatic, however, is the not-
heretofore-appreciated problem that arises if we are unwilling to assume—and there are good
reasons for not wishing to assume this—that the factor space within which items are generated
has finite dimensionality. For then we need to cope with infinite sums under conditions to which
the traditional theory of limits does not cogently apply. (See Rozeboom, 1978, “The logic of
unboundedly reactive systems,” for a detailed study of startlingly large indeterminacies that
remain in the mathematics of infinite sums and other infinite concatenations.)
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accounts for.

I can think of just one psychometric application for which centroid-focused
domain sampling theory has some possible value, namely, cases where we wish
to interpret the score of a subject on an m-tuple of X̂ GX -generated test items
when we do not have normative data on the specific set X but do know (approx-
imately, through analysis of normative data on other GX -generated items) the
item-generative parameters of GX In this case, our subject’s score on the sample
centroid may be viewed as his observed score on the “generic” test Xg whose true-
score component is the domain centroid and whose measurement-error component
includes the discrepancy between sample centroid and domain centroid scores (cf.
Lord & Novick, 1968). If, after Cronbach, we define the (m-wise) “coefficient of
generalizability” αX(m), of domain X to be the Alpha coefficient of a perfectly rep-

resentative m-tuple X̂ of GX -generated items—i.e., an X̂ for which C
X̂

= Exp[C
X̂
]

and V
X̂

= Exp[V
X̂
], so that R2

x̂x = αX(m)—it can be shown that the reliability
coefficient rXg

of generic test Xg, assuming independent item sampling albeit not
necessarily the same marginal item probabilities, is

(7) rXg
= αX(m)

(

1

1 + e

)

, e =def

αX(m)Var[µX̂
]

mExp[C
X̂
]

,

in which Exp[C
X̂
] is the expected average covariance within a GX -generated

m-tuple of test items and Var[µ
X̂
] the average sampling variance of item means

for such tuples. (7) shows that the coefficient of generalization, or its estimate
from an observed item m-tuple, is a somewhat biased approximation to the reli-
ability of the corresponding m-wise generic test. However, the likely bias in this
approximation due to Var[µ

X̂
] is too large to be ignored—nor needs be, since all

terms in (7), not just αX(m), estimated from sample data (albeit at least two item
m-tuples are needed to estimate Var[µ

X̂
] if not all positions in the tuple have the

same marginal item probabilities).

As a protest against assumption (2), the foregoing may well seem excessive.
But my target is rather more serious than that. The history of test theory has re-
peatedly shown a proclivity to institutionalize theoretical fantasies in which some
mathematical simplicity is embellished with little concern for what relevance, if
any, it may have to the real world. I have no quarrel with such mathematical
games in their own right-they are an inexpensive, joyful sport that at times can
even be conceptually illuminating. But I do urge that this not be mistaken for se-
rious analysis of foundational issues. As demonstrated by Cronbach et al. (1972),
the notion of domain sampling can be given a breadth of vision that potentiates
it for world-class standing as a theory of scientific observation. But that potential
lies first of all in the sophisticated framework it affords for the conduct of search-
ing inquiry into the nature and interpretation of measurements. In this note, I
have tried to unstick domain-sampling presuppositional orthodoxies by arguing,
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overbriefly, (1) that the parameters of an item domain cannot cogently be defined
as limiting values of observable item-sample properties; and (2) that the domain
centroid’s psychonomic and psychometric importance is at best problematic, while
that of its correlation with the centroid of an observed item-sample is even more
so. I submit these remarks as a challenge to re-think just what are the significant
questions for domain-sampling theory to address.
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