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' It is customary in multivariate analysis to search out relational structure 
by partitioning measures of total variation or overall relatedness into com­
ponents variously attributable to different sources. Although the multivariate 
systems most familiar today— n̂otably, linear correlational analysis, analysis 
of variance, and Information theory—base their decompositions upon very 
different substantive quantities, they all embody the very same abstract 
mathematical structure which, moreover, is capable of generating potentially 
fruitful patterns of data analysis in many other substantive applications as 
well. 

Possibly the single most important achievement of modem scientific 
methodology has been the development of analytic systems for disclosure and 
dissection of relational patterning within complex multivariate data, notably, 
linear correlational analysis, Fisherian analysis of variance, and, most re­
cently, Inf^pnation theory (Uncertainty analysis). Although previous writers 
have pointed out parallels and near-equivalences between certain aspects of 
these systems (notably. Gamer & McGill, 1956; Ross, 1962), it has not as yet 
become generally recognized that in the main, they are all but different 
interpretations of the very same abstract mathematical stmcture, which, 
moreover, is also capable of potentially fruitful application to areas into which 
it has not so far penetrated. In Sections 1 and 2 of this paper I shall exhibit 
this stmcture, here called the theory of abstract partials, in disembodied 
mathematical purity. Subsequently (Section 3) we shall see how it is variously 
instanced by Information theory, analysis of variance, the analysis of con­
ditional probabihties, and the system of partial statistics comprised by 
linear correlational analysis (whence the title "abstract partials"). 

Since the abstract theory is not altogether easy to follow in places, the 
reader is urged to refer to its substantive instances in Section 3 whenever it is 
at all helpful to do so. Moreover, those portions of the abstract system which 
are most interesting mathematically have only dubious practical importance 
beyond adding depth to the concept of "interaction," and the reader noay 
skim or omit Section 2 without major handicap to his grasp of the remainder. 

1. The Fundamental System 

A system of abstract partials arises whenever we have defined a iheasure 
fimction G with the two following properties: (o) There exists a domain d of 
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entities such that for any element d'"' of any w-fold product set d" {n = 
1, 2, •••) on d— î.e., d*"' is any ordered w-tuple of not-necessarily-distinct 
elements in d—G maps d*"' into a number. (6) The value of G is imaffected 
by permutation of the d-elements in its argument— î.e., if d.-"' and d^"^ contain 
each different element the same number of times, then = G(df"')-
(Both of these conditions can be relaxed fmi;her, but with one exception to 
be described later, additional generality would needlessly comphcate the 
present discussion.) I shall call a function G which has these properties a 
generating junction over domaia d. 

If it were not for possible duplications among the elements in its argu­
ment, a generating function could be characterized as a measure over subsets 
of its domain. I shall adopt this manner of speech anyway, with the imder-
standing that a given "subset"—call it a "quasi-set" or q-set for short to 
distinguish it from an ordinary set—^may include multiple occurrances of the 
same element, q-sets from domain d wiU here be designated by upper-case 
letters X, Y, Z, etc., and individual elements of d by lower-case letters x, y, 
etc. A concatenation of symbols for q-sets and d-elements—e.g., XY, xYzW, 
X1X2Z1Z2—^wiU designate the q-set comprising all elements indicated in the 
concatenation, each taken as many times as it is mentioned. Thus if X is 
the q-set Xi • •• x„ , F is the q-set yi • • • y„ and 2 is a single element, XYz 
is the q-set (i.e., permutable ordered set) Xi • • • x„yi • • • y„z. According to 
this convention, an element of d may be thought of as a q-set of unit length. 

Using the notation just introduced, the permutabihty condition stipulated 
to hold for a generating function G may be written 

[1] G(WxyZ) = GiWyxZ), 

in which W, Z, or both may be empty. Iteration of [1] yields the required 
indifference of G to the order of elements in its argument. 

In most statistical models of the abstract-partials system, domain d is a 
set of jointly distributed scientific variables (i.e., "variates") while G is 
some scalar-valued multivariate statistic. However, there is nothing in­
herently statistical about abstract partials. For example, if d is a set of 
numbers, one generating function over d is the niunerical product of any 
n(n > 1) not-necessarily-distinct niunbers in d. For a more interesting 
example, let each element Xi t d be a particular denomination of postage 
stamp as these are classified by philatelists. Then G(X) might be the average 
market value of a set X = Xi • • • rc„ of n stamps whose denominations are 
Xi , "' , , respectively. Either of these examples should make clear the 
sense in which duphcations of d-elements are admissible in G's argument. 
Thus in the stamp instance, G(xiXiXiX2X2) would be the market value of a set 
of five stamps, three of which are of denomination Xi while the other two are 
of denomination X2 . Incidently, a system of market values for commodity 
bundles, as in the postage-stamp example, embodies the full abstract-partials 
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Structure in a fashion which can not only be comprehended with a minimum 
of effort, thus affording an excellent didactic model of the abstract theory, 
but may also have value for serious research in economics and the psychology 
of choice. 

The quantity G(X) assigned by generating function G to an argument X 
will be called the G-value of q-set X. In the postage-stamp model, the G-value 
of stamp collection X (more precisely, of a collection containing stamps with 
denomination-configuration X) is its market price. 

So far, nothing has been said about a generating function's value for an 
argument containing no elements of its domain. Under most primary inter­
pretations of G, the quantity G(X) remains undefined when X is empty and 
can be assigned an arbitrary value. Since proofs and statements of results 
are greatly expedited if the null q-set has a G-value of zero, we let "4>" des­
ignate the null set and stipulate that 

[2] (?(</.) = 0. 

Note that for any q-set X, X4> = ^X — X. 
Once a generating function G over q-sets from a domain d has been 

identified, we are in position to extract an outrageously abimdant array of 
relations among the elements of d with respect to G. We begin with the con­
ditional G-value, G(X \ oi q-set X given q-set Z, defined as 

[3] \ 1 Z) = G{XZ) - G{Z). 

(Since the conditional G-function takes two q-set arguments which enter 
asymmetrically, it differs importantly in mathematical form from generating 
function G, and it is not strictly proper to use the same function-symbol "G" 
for both. That more is gained than lost by this impropriety, however, will 
soon be evident.) The conditional G-value of X given Z is in effect the G-value 
of X as a supplement to Z, i.e., the increment in G-value which occurs when 
Z is augmented by X . (When G(X) is the market value of an assortment X 
of stamps, G(X | Z) is how much extra it would cost to buy assortment X 
on the same occasion that assortment Z is purchased.) While the adjective 
"conditional" is here applied to G(X | Z) in a generic sense which wiU recur, 
it is more insightful in most interpretations to think of G(X | Z) as the "resid­
ual" G-value of X when Z is given. For reasons to appear shortly, G(X | Z) 
wiU also be described as a "partial G-value of order r," where r is the number 
of elements in Z. From [2] and [3] we have 

[4] G(X I = G(X), 

so unconditional G-values are partial G-values of zero order. 
The configural savings, C{X), of q-set X with respect to measure G is 

now defined as the algebraic amount by which the G-value of X fails to be a 
simple sum of the G-values of its elements. More generally, the conditional 
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(partial) configural savings of q-set Xi • • • cc„ , given q-set Z, with respect 
to G is defined as 

[5] C(xi . • • x„ 1 Z) = i : G(x, \Z) - G(x^ x„\Z), 
.-1 

the zero-order case of which is 

jgj C(xi • • • x„) = C(xi x„\<f>) 

= IlG(xd - G{xr • •• x„)-

When the G-value of a q-set X is analyzed into constituent contributions, the 
configural savings of X (with respect to G) may be construed as the amount 
of G which is subtracted from the aggregate contributions to G{X) of the 
individual elements in X by the patterning which emerges when these are 
G-evaluated jointly. The quantity C{X) may also be thought of as the "nega­
tive gestalt" value of configuration X, since in a sense it represents the degree 
to which, regarding G, a whole is less than the smn of its parts. In the postage-
stamp model, C{X) would be an especially interesting measure were serious 
research to be done on the sources of philatehst values, for in this and similar 
economic situations, the monetary worth of a bmdle of commodities tends 
to be the smn of the values of its constituents, and the configm-al savings for 
various assemblages of stamps could be expected to result rather cleanly from 
a small nimiber of identifiable patterning effects, such as a tendency for 
duplications to depreciate a collection's value below what the same aggregate 
of individual values invested in all different denominations would be worth 
(i.e., positive configural savings), or for a collection's value to become en­
hanced as it nears completion with respect to one or more of the goals that 
philatelists prize (i.e., negative configm-al savings). In multivariate analysis, 
the configural-savings measure is of very recent origin, having first appeared 
as "total correlation" [Watanab ,̂ 1960] or "total constraint" [Gamer, 1962] 
in Information theory, and remaining so far imrecognized as such in the older 
multivariate systems although its analysis-of-variance interpretation, namely, 
total interaction, is also a familiar concept. 

Next we have the G-contingency, RiX; 7), of q-set X upon q-set Y. 
This is the algebraic amount by which the G-value of X ex­
ceeds its conditional G-value ̂ venFrMore generally, the conditional (partial) 
G-contingency of X upon Y, given Z, is defined as 

[7] R(X] Y\Z) = G(X\Z) - GiX\

of which R(X; Y) is the zero-order case 

[8] Y) = Ri^; Y \

= G(X) - G(X I Y)' 
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In virtually all interpretations, G-contingency is a measure of relationship, and 
has probably the greatest importance of all the abstract partials. In the 
pbstage-stamp model, the G-contingency of one assortment of stamps upon 
another is the amount by which the price of the first is reduced (or enhanced 
if B is negative) by being sold as a supplement to F in a package deal. 

Finally, in many— t̂hough not all— înterpretations of the abstract-
partials system, a q-set Xi • • • Xn containing n > 2 elements of d cannot be 
distinguished by measure G from a certain single entity 'xi • • • xj which is 
either an element of d to begin with or can be added to d without changing 
the latter's logical character. For example, in addition to treating a collection 
X of stamps as an ensemble of items whose market value is constituted in 
some perhaps complex fashion out of the values of its components, we can 
also conceive of this collection as a single commodity 'x' which can be bought 
and sold as a unit and whose market value is a datum which can be processed 
in the same way as data about the values of individual stamps. The single 
element 'x' coordinated with q-set X is governed by the axioms 

and will here be called the fusion of X . Those theorems below which pertain 
to fusion elenoŝ nts will be labeled "F." For interpretations in which the 
"fusion" concept is not defined, the F-equations are not false but simply 
meaningless. 

As immediate, or almost immediate, consequences of the above axioms 
and definitions we have the following basic theorems, in which Jf, F, etc. 
are any q-sets from d containing zero or more elements and x, y, 'X', etc. are 
d-elements. 

[lOF] 

'X' E d , 

G('X'F) = G(XF), 

[12] 

[11] G(X I YZ) = G(XF \Z) -G(Y\Z) 

G{X4> I Z) = G(X 1 <̂ Z) = G(X I Z) 

[13] G(î  1 ^ = 0 

[15] 

[14] 

[16] 

C{x\Z) = 0 

R(X] (f>\Z) = 0 

R(X; F I Z) = G(X I ̂  -I- G(F I ̂  - G(XF j Z) 

= C ( X F \Z) - C(X \Z) - C(Y \Z) 

[17] R(X; Y\Z) = R(Y; X \

[18] R(x; y\Z) = C(xy\Z) 
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[19] 

120] 

[21] 

R(XrX, ; Y^Y2\Z)+R(X^ ;X2\Z)+R(Y^ ; Y^ \

= R(X,Y^ ; X2Y2 I Z) + RiX, ; Y, \

+ R(X2 ;Y,\Z) 

RiX; Y \WZ) = R{X] YW \ - RiX; W \

CiX I YZ) = aXY I Z) 

+ (w - 1)C(F I ^ - t:Cix,Y\Z) 

= aXY \ - CiY\Z) - ^Rixi',Y\Z) 

iX = Xi • • • a;,) 

[22F] 

[23F] 

[24F] 

[25F] 

OCX' Y\Z) = aXY \Z) - CiX\Z) 

RiX; Y\Z) = C( 'X"F' | Z) 

Gi W'X Y) = GCWX'Y) = GiWXY) 

GCX^Y I = GiXY I WZ), CiX \ = C(Z 1 YZ), 

RCX'Y, ; F 2 I WZ) = RiXY, ; F 2 | TFZ). 

While we shall not discuss these equations in detail, a few remarks on their 
more saHent features are in order. [11], [20], and [21] show how higher-order 
partials are built up from lower-order partials of the same kind. In particular, 
for each measure G, C, or R, respectively, all partials of that kind higher than 
order r can be derived wholly from rth order partials of that kind. (The 
reverse is not true, however—given aU partials of orders higher than r, we 
cannot reclaim those of order r or lower.) The connection between G-con-
tingencies and configural savings is spelled out by [16], [18], and [23], which 
show that the G-contingency of one q-set upon another is in effect a special 
case of configural savings, and that RiX; Y) is also the amount by which 
the total configural savings in q-set XY exceeds a simple sum of the configural 
savings in its two parts X and F considered separately. An obvious but im­
portant consequence of these relations, made explicit in [17], is that 
RiX; F 1 Z) is synunetric in X and F, a fact not at all apparent in R's defini­
tion. A more general G-contingency invariance under interchange of elements 
in R's arguments is given in [19]. 

It also follows from the preceding results that 

[26] GiX\Z) = GiX I YZ) + RiX; Y \
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[27] R(Y;Xr • • • Z „ | Z ) = R{Y; X, \ + RiY; X, \ + 

[28] C(XY I Z) = C(X I Z) + C(r I Z) + R(X; Y \) 

[29] C(XY I Z ) = C(F I Z ) + C ( Z I 7Z) + X; R(x, ; Y \
i-l 

{X = Xl "• Xn) 

[30] C(x, x„\Z) = R(x2 ; Xl I Z ) + R(xs ; x^x^ | Z ) + • • • 

+ R{xn ; Xl • • • x„_i I Z) • 
Equations [26], [28], and [29] are merely transpositions of [7], [16], and [21], 
respectively, [27] is an iterated transposition of [20], and [30] is an iteration 
of [28] for q-sets of unit length. These may be called the "partitioning theo­
rems," since they analyze a given G-value or derivative measure as a sum of 
component quantities attributable to different sources. The basic partition 
is [26], the nature of which shows forth most visibly in its special case 

Giy) = R{y] iCi • • • x„) -i- G(i/ I Xl • • • x„). 

This says in essence that the total G-value of an element y equals a component 
attributable to the effect on y of other elements Xi , • • • , x„ , plus a residual 
G-value wmch persists for y even when Xi , • • • , x„ are given—a notion highly 
familiar to any student of multivariate analysis. The component R{y',Xi • • • x„) 
of G{y) jointly attributed to X i , • • • , x„ may be fiirther analyzed by [27] into 
a sum of effects allocated more specifically to the various individual "pre­
dictor" elements. Apart from its special case [18], the configural-savings 
measure does not appear as an additive component in any partition of G, 
and hence cannot properly be regarded as a G-partial. When of interest for 
its own sake, however, C is shown by [28]-[30] to be Ukewise susceptible to 
intriguing partitions. Further, the asynunetries in [27] and [30] can be elimi­
nated in favor of the more elaborate partitions given in [59] and [61] below. 

For interpretations in which the concept of a q-set's "fusion" is meaning­
ful, [28] and [30] are special cases, respectively, of 

[31F] G(XiX, . . . Z„ I Z) = C ( ' X ? ' ^ ' • • • ' Y : \ Z ) + J : C ( X , | Z ) 

{Z2F] C (Z iZ , • . . Z„ I Z) = C(Xi I Z) 

-H c('z;'x, I Z) CCxX^'Xa I Z) -f • . • 

+ G('Xi . • . X „ _ i X | Z ) , 

both of which follow from [22]. Actually, [31] and [32] are but two of an enor­
mous number of different ways in which a configural-savings value can be 
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iteratively partitioned by [22]. In particular, iteration of [31] yields a branch­
ing-type analysis of total configural value—e.g., 

c(x,x,x,x,) = cCx^T^^'x^,') -f- c(XiX,) + c(XsX,) 

= ccx^^^'x^j) + c('x:"x;') + c('z;"x;') 
-f C(XO 4- C(X,) + C{Xs) + C{X,), 

etc.—^whose invariance under alternative patterns of branching has been 
described by Watanab^ [1961] as "the fundamental theorem of ITCA [In­
formation-theoretical correlation analysis]." 

2. The Ramified System 

Given a generating fimction G over a domain d, it is possible to derive 
from G additional measures G' over q-sets from d which also satisfy the formal 
requirements for a generating function and which hence bud off subsidiary 
systems of abstract partials based on G', including stiU another round of fehal 
generating functions G" and so on ad infinitum. The opportunities for dis­
tinctive variations in these ramifications, if not endless, at least bulge beyond 
the confines of any systematic treatment I am able to give them—^which is 
one reason why the title of this paper bears the qualification, "an intro­
duction." How much of the ramified system of abstract partials will prove 
to have usfê ul apphcation is very much an open question, and there is prob­
ably little reason to explore its more wonderous complexities other than pure 
mathematical curiosity. To illustrate what can be done by ramification, this 
section will present a generahzed development of the hierarchy of "inter­
action" terms whose charming symmetries have previously been described 
in their Information-theoretical interpretation by McGill [1954] and Gamer 
[1962]. Since we shall now be making reference to a variety of generating 
fimctions, and their derivative measures, over the same domain, all abstract 
partials in the same system will be identified with a common subscript—i.e., 
Ca is configural savings with respect to generating function G„ , Ra is Ga-
contingency, and similarly for other measures based on Ga . 

Consider the class of all linear functions of various orders of Ga-values, 
configural savings with respect to Ga , and Ga-contingencies for various q-set 
arguments involving a given q-set X . Since aU partial G„s, G„s, and JB„S of all 
orders are themselves linear combinations of zero-order GaS, this is the class of 
all fimctions of form 

[33] L „ , . Y ( X ) I: a,G„(XF,) -f- g a,G„(7i) + a„ , 

where Oo, • • • , a „ , • • • , a„ are numerical constants and X, Fo , • • • , F„_i are 
not-necessarily-distinct q-sets from Go's domain. (The roman subscript "aY" 
will be clarified shortly.) The possibiUty that Fj = 0 is not excluded, and to 
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make systematic provision for the occurrence of G^iX) (i.e., Ga(X4>)) in [33] it 
is convenient to stipulate that Yq is the null set. This is, of course, no restric­
tion on the generality of [33] since the term G„(XFo) can always be eliminated 
by setting Uo = 0. 

If "X" in [33] is now regarded as an argument place-holder for which any 
q-set from d may be substituted, L^.^r becomes a function over q-sets from 
d which could be taken for a generating function were it not that L^.^Y gen­
erally fails to satisfy axiom [2]. This defect is easily corrected, however, by 
the adjustment 

[34] (?„, . Y ( Z ) L^, MX) - . aY(0) 

= J:adG^(XY,) - G„(F, ) ] 
1=0 

= Za^G^iX I Y,)-
i-O 

A generating function defined from G^ by an equation of form [34] may be 
called a stationary linear development of G « . Any stationary linear develop­
ment of a generating function G^ is unambiguously identified by the ordered 
subscript "a, aY", in which "a" and "Y" abbreviate the parameter-vectors 
(oo, • • • , a„> and (Fi , • • • , F„), respectively. Each G^.^Y then generates 
its own subsidiary system of abstract partials. In particular. 

135] Ga..r(X I Z) = G^.^XZ) - Ga.MZ) 

Y,Z) 

136] 

= Za^G^iX 
1-0 

Ca..r(X\Z) = ZG^.^X, 

= i : a,(7„(Z 

Z) - G^.MX\Z) 

Y,Z) {X = X, x^ 

(37] Ra, .Y{X, •,X,\Z) = Ga,.Y{X, \Z)-Ga, av(Xi ] X^Z) 

= i : a,Z2„(Xi ; 1 F.Z)-
• •=0 

(The stationary linear developments of generating function Ga con­
stitute the class of all generating functions which can be defined from Go by 
linear operations with a fixed set of numerical constants and q-sets from G„'s 
•domain as parameters. However, these by no means exhaust the possibilities 
for deriving subsidiary generating functions. For example, a nonstationary 
linear development of Ga would be a linear function such as Ca whose defining 
form is not fixed but varies with the number of elements in its argument. 
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Further, nonlinear developments of Ga after the fashion of [34] are also 
available in imlimited supply. In particular, the measure 

GaAX) 1[Ga{X)] - m 

for any numerical transformation / is also a generating fimction over GJb 
domain.) 

Now let 

[38fc] G„.„v.(Z) E a,,Ga{X I F*,) 

(fc = 1,2, .-.) 
t - O 

be a not-necessarily-finite sequence of stationary linear developments of G , 
in which 

[39/b] Fto =' ^. 

Since a is actually a parameter in [38], the series can be expanded by 
replacing Ga at different positions k by other generating functions derived 
from Ga . In particular, functions Ga,a»Y» (k = 1, 2, • • •) can be nested by 
the recursive definition 

[40fc] G a . a , Y i , - - . a i Y i ( - X ) =' G(a . a i Y t , • • • .ai-iYi-i) .aiYiC-Z) 

= 23 Ctfc.G„.a,Yi,>",ai-,Yt-t(-^ I F^j), 

which gives rise to a hierarchical sequence of derivative generating functions 
based on parent function G„ . The number k of simple functions Ga.ain, which 
are nested in Ga.g^Yi.—.atY* will be called the latter's level and represented 
in the notation by a parenthetical superscript whenever it is useful to do so. 
By induction on k, it is easily seen that 

[41̂ ] G„. . ,Y. . . . . .a .Y.(X \Z) 

(fc = 1, 2, ...) = X I : . . . I ; ai,a.i • . • a. ,G„(Z i F ^ F . i • • • F . ,Z) , 
A - O i=0 , - 0 

which shows both that the class of stationary linear developments of Ga is 
closed under nestings of form [40] ̂ nd alsa, more interestingly, that a hier­
archically nested generating function is imaffected by permutation of the 
simple functions from which it is derived. That is, the parameter-couples 
ajYi , • • • , a*Yi in Ga . a .Yx , - . .» iYt occur symmetrically. If the simple functions 
from which a sequence of hierarchically nested generating function is formed 
differ only in their q-set parameters, the sequence may be called a homogeneous 
hierarchy on Ga—^i.e., G«,a.Y..—,a*Y* {k = 1, 2, • • •) are a homogeneous 
hierarchy iff â  = a (fc = 1, 2, • • •). 

We now reflect that the q-set parameters Y i , • • • , Y i in a nested gen-
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crating function Ga.axYx.—.atY* niay just as well be construed as argument 
place-bolders for which various ordered sets of q-sets from GJs domain can 
be substituted. In particular, the function H^'ll of nk 4- 2 q-set arguments 
may be defined 

[42] J?i*i(Yi ; . . • ; Y» ; X 1 Z) i^' (?o.aT......aY»(X | Z), 

where each = (Yn , • • • , F,„) is an n-component vector of q-sets from 
Ga's domain, a = (oo , • • • , a„) is an (n 4- l)-component vector of numerical 
constants, n and k are any two nonnegative integers, and the absence of dif­
ferentiating subscripts on the numerical parameter-vectors in the right-hand 
side of [42] signifies that Ga.aYi.—.aY* (fc = 1, 2, • • •) is a homogeneous hier­
archy. Since interchanging parameter-couples aY,- and aY,- in a homogeneous 
hierarchy is the same as interchanging just Y , and Y,- , fl'j*][(Yi ; • • • ; Y^ ; 
X\ is invariant under any permutation of the q-set vectors Y j , • • • , Y j , 
though not necessarily so under permutation of the q-sets within a given Y , . 

Finally, let i be the ordered pair of numerical constants 

[43] <.'^{-l,l). 

Then with fc = 1, aio = — 1, and On = 1 in [41], we have 

-Ga,.Y(X I Z) = -[-Ga(X I Z) + G„(Z 1 YZ)] 

\

which shows that the (xa-contingency of X upon Y may be regarded as the 
negated value for X of Cr„'s first-level development with parameters i and Y. 
More generally, the negated homogeneous hierarchy developed from Gc by 
numerical parameter i is the series of "interaction" terms whose substantive 
embodiments in analysis-of-variance and, more recently, Uncertainty anal­
ysis are familiar multivariate concepts. Specifically, the fcth level interaction 
among fc 1 q-sets Z i , • • • , X^+i with respect to generating function Ga , 
conditional upon another q-set Z, is defined 

[45] 7i*'(X, ; . . . ; Z . . J Z) - f f J!!(Zi ; • • • ; Z» ; Z»,x | Z) 

= ~"G„,,x.,...,iXi(Zi,+i I Z), 

the unconditional interactions of course being 

[46] Z r C Z i ; . . . ; Z . , 0 7i*'(Zx ; • • • ; X,,, \

— ~ G a , , y , , . . . , , X i ( Z i + i ) ' 

The interaction hierarchy has many interesting properties, though 
exphcit statement of these ̂ .tends to become formidable notationally. To 
begin, 

[471 n*'(Xx ; • • • ; Zt,x \Z) = B„. .x. . . . . . .x»- .(Z»; Z » , , \Z), 
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which follows from [45] by substituting "a, iXi, • • • , iX^.i" for open param­
eter "a" in [46]. We have already seen on more general groimds (cf. comment 
about permutations following [42]) that I^^iXi ; ••• ; Xt ; X^+i \Z) is in­
different to the order of Xx, • • • , X * . Since by [47] and [17], X* and X^+i can 
also be interchanged without affecting the value of the interaction, we may 
write 

[48z] 7l*'(... ; X , ;X,,x ; . . • | Z ) 

(t = ! , • • • ,k) = 0 - - - ;X, .x ; X , ; . . . \

which by iteration says that Î *' (Xi ; • • • ; Xj+i \Z) is invariant under aU 
permutations of its primary arguments (i.e., excluding Z). Together, [47] 
and [48] show that 7̂ ** is the contingency between any two of its primary 
arguments with respect to a certain nested generating function derived from 
the parent Ga and the remainder of its primary arguments. In particular, 

[49] 71"(Xx ; X, \Z) = i2„(Xx ; X^ |Z), 

which states that the Ga-contingency between two q-sets is also their first-
level interaction with respect to Ga • Zero-level interactions likewise merit 
special mention, since they are simply negated Ga-values— î.e., 

[50] n\X I Z) = - G „ ( X I Z). 

It is further instructive to note from [47], [7], and [48] that 

[51] I'^\X, ; . . . ;X, ,x |Z) 

= 7r"(Xx ; ••• ; X , I X,,,Z) - IT'\X, ; ••• ; X , | Z) 

and from [45] that 

[52/i] c. 7i*'(Xx ; • . . ; X,,x 1 Z) 

(̂  = 0, . . . , fc) = 7i'^.-:^\......x,(X,,x ; • • • ; X*,x I Z). 

Both [51] and [52] are of course unaffected by any permutations of 
X i , • ' ' , Xt+x . 

An additional consequence of the symmetry of 7̂ *' in its primary argu­
ments is that the unconditional interactions among the elements of the 
system's domain determine still another generating function over the latter, 
i.e., 

[53] G n a ) ( x x - . - x „ ) 1 ^ ' 7 r " ( ^ x ; - - - ; a : „ ) 

where, since 7l"~" is undefined when n = 0, we are free to stipulate that 
G/(a)(<̂ ) = 0. The element-interaction function Gr(a) stands in a rather 
special relation to its parent generating function Ga , for while Gna) is a 
nonstationary Hnear development of Ga and hence opens still another dimen­
sion of the ramified theory erected upon Ga , it will be shown later that there 
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is an important sense in which Ga and G^a) are transformationally equiva­
lent* 

For the remaining interaction theorems we need an operator which com­
bines selection and summation. Let F be a fimction whose argument is any 
ordered r-tuple of entities of some kind K (here q-sets from d), and 
let "^1, • • ' , ambiguously designatean "r-selection" from a more inclusive 
ordered w-tuple (r < n) of K-entities, namely, an ordered r-tuple of indexi-
cally different terms taken from X i , • • • , X„ and arranged in the order of 
their occurrence in the latter. (Two terms X,- and X,- from n-tuple X , , • • • , X„ 
are "indexically different" iff t 5̂  3. This does not preclude the possibiUty 
that X,- = X,- .) That is, | i , • • • , is formed from X i , • • • , X„ by deleting 
n — r indexically different terms from the latter. Two r-selections from 
X l , • • • , Xn differ if and only if there is a term in one which is indexically 
different from every term in the other. From an w-tuple X i , • • • , X„ , a 
total of 

\r/ r\{n - r)\ 

different r-selections can be formed. (For example, the three different 2-
selections from 3-tuple X i , X 2 , X3 are X 1 X 2 , X 1 X 3 , and X2X3.) The quantity 

s\.....x.F(^i , • • • , U 

(n\ 
may now be defined to be the sum of values of function F for all the ^ ĵ dif­

ferent r-selections ^i , • • • , from X i , • • • , X„ . A pivotal property of the 

S-operator is that 
[54] S^......x...F(?x , ••• ,Q 

for all integers r such that 1 < r < w. [54] also holds for r = 1 and r > w if 

[55] SS:......x,F(^i , . . . ,̂ ,) = F ^ = ^, 
0 if r > w 

where for r = 0, F(^i , . . • , is a function of no arguments, i.e., is a con­
stant F. It is possible to argue that [55] follows from the S-operator's verbal 
definition, but since these limiting cases are conceptually fuzzy, [55] may 
simply be regarded as a formal definition of S when r = 0 or r > ri. 

It may now be seen that for any fc > 0, 

*It would be pleasant to supplement [53] with the theorem that Gna) (â i- • -Xf^Z) — 
I^a~^^ (xi ; . . . ; Xn\Z) for all Z, but unhappily this is not the case. 
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[56] ll'\X, ; ; z»,x I Z) 

k 

r - 0 

• ^rZ)} 

r = 0 

= i :(- l) '"'{SxT!. . . .x .G«(?x . . . |._xZ,,x I 
r - l 

= S (~l)*~'Sxx,....Xt+,G„(|i 
r=l 

(The first line of [56] follows from [45] and [41]; the second applies [11]; the 
third is a reorganization of the second with the help of [55] and [13]; and the 
last line follows by [54].) Equation [56] makes explicit how interactions of all 
levels with respect to generating function Ga are composed of Ga-values for all 
possible combinations of the interaction's arguments. IMoreover, the hier­
archy of interactions based on Ga symmetrically partitions Ga-values. Specifi­
cally, 

[57] -Ga(Zx • • • Z , I Z) = E S^,. . . . .xjr^'(l i )^r\Z), 
r - l 

which says that if a q-set X is analyzed as a concatenation of n sub-sequences 
X l • • • Z „ , the negated Ga-value of X , given Z, equals the sum of all different 
Ga-interactions, given Z, at all levels (including zero) among these sub­
sequences. [57] is most easily proved by induction on n. When n = 1, [57] 
reduces to [50], which establishes the base of the induction, while the induction 
step is 

- G a ( X i . - . X ^ . i l Z ) 

= - G a ( X i . . . X„ I X„^iZ) - Ga(X„^i I 20 

= - G a ( X „ . i i Z) 4- E Si. . . . . .xjL'-"(fi ; • 
r - l 

= /r (X„ . i 1 Z) -}- Z si......x.[/r"(^i ; 
r - l 

+ i':\^i; ;lr ;X„,i | z)] 

= i : [ S x . . . . . . x j r ^ ' ( ^ i ; - - - ;^r\Z) 

; ?r I Z».iZ) 

r - l 
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= ZsL . . . . . x . . j r"(? i ; - - - ;?r lZ) QED. 

(The first line is authorized by [11]; the second line applies the induction 
hypothesis; the third follows from [50] and [51]; the fotuth is a rearrangement 
of the third with the help of [55]; and the last follows by [54].) 

A useful generahzation of [57] which follows from it by way of [52] and 
[50] is 

[58] 7 f ( F i ; . . . ; Y, ; ••• Z„ |Z) 

= i :SSr . . . . . .x jr ' -^' (F, ; . . . ; F , ;^, ; . . . ; | Z). 
r-l 

This shows how an interaction at any level can be further expanded if its 
primary arguments are not all of imit length. An important special case of 
[58] is 

[59] i 2 „ ( F ; Z i . . . Z„ |Z) 

= 2 : S x . . . . . . x j r ( F ; ? , ; . . . ; M Z ) 
r- l 

^ = i : Ra(Y; z , \z)+ ± sS:......x./r(i'; ? i ; • • • ; ̂ r I z) 
.-1 r=2 

(from [58] by [49]), which says that given Z, the Ga-contingency of q-set 
Y upon another q-set analyzed as a concatenation of n sub-sequences 
Z i . . . Z„ equals the sum of F's Ga-contingencies with each Z< taken sepa­
rately, plus all the Ga-interactions of all higher orders involving F and the 
different r-selections from Z i , . •. , Z„ . 

For the limiting case wherein Z = <}> and each sub-sequence Z,- is of unit 
length, [57] reduces to 

[60] - G „ ( x . . . • x„) = i : s:^......jr'\^i ; • • • ; U 
r-l 

which, together with the corresponding limiting case of [56], leads to an 
important conclusion about the relation between a generating fimction and 
the interactions derived from it. From a domain d containing n elements, a 
total of 2" — 1 different non-null distinct-element q-sets can be formed, each 
of which has a G^-value which formally is undetermined by any of the others. 
Hence for simphcity disregarding arguments containing duplicated elements, 
the function Ga generates 2" — 1 independent items of data from the elements 
Xl , •'• , X, . The element-interaction function Gjca) (see [53]) likewise gen­
erates this same number of distinct-element data over elements X i , • • • , x, , 
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while [60] and the appropriate speciaHzation of [56] show that each of these 
Gj(a)-data can be computed from the Ga-data and conversely. Hence a gen­
erating function is equivalent data-wise to its associated element-interaction 
fimction, and the latter may thus be thought of as a "rotation" (to use an 
obvious factor-analytic metaphor) of the former which preserves all the 
information in Ga with no loss in economy of expression even while structuring 
this information for maximal visibihty of whatever relational pattemii^ 
it may contain. 

The hierarchy of interaction components also gives rise to symmetric 
partitions of configural savings. Since Si,.....,.Ii'"(?i \Z) = — Z " - i G'a(«.| Z), 
it follows by [6] from [57] that 

[61] Caixi... xn\z)= t,si,-..Ja'"% ; ••• ;^r\Z)' 

Thus the configural savings, given Z, in a q-set X with respect to Ga is the sum 
of all the (ra-interactions, given Z, of level 1 and higher among the elements 
in X . It is also of interest, perhaps, to note from [59] and [21] that 

[62] Ca(X I YZ) = Ca(X \Z)+± s : , . . . . . . j r (F ;^ i | Z) 

r = 2 

(X = Xl •" Xn) 

or equivalently, 

[63] Ca(X I YZ) = Ca{X 1 Z) -H C„..y(X | Z). 
Since each interactionla^(F; ; . • . ; ̂ , |Z) in [62] can be further expanded 
into interactions among only elements from X and F, [62] and [58] show 
that the configural savings C„(Z ] F) of q-set X after q-set F is partialled 
out equals the unconditional configural savings of X, plus certain interactions 
of level 2 and higher among the elements of X and F. 

Finally, there is still another extension of abstract-partials theory which 
is very useful for its analysis-of-variance interpretation. While generating 
fimction G was originally stipulated to be a nwm&er-valued function, there 
has been nothing in the ensuing axiomatic development which requires this 
restriction. The entire formal system-remains unaltered if G maps its argu­
ments into any commutative group whose composition operator and identity 
element are designated by "-|-" and "0", respectively. In particular, an 
abstract-partials system can in this way have as its domain a set F of number-
valued functions over another domain a such that each element (function) 
Xi tF maps each element at a. into a number x,-,, while G maps q-sets from 
F into additional functions over a. (For example, the Xi might be experimental 
variables whose values have been observed for a set a of subjects while the 
values of G are certain composite variables defined from the x< .) Let Gy 



WILLIAM W. ROZEBOOM 149 

be some symmetric fmictional (i.e., a sjmmietric fimction of fimctions) such 
that for each q-set Xi • • • x„ of functions in F , G^ixi • • • a;„) is the function 
over a which maps each element o t a into the number Gw(xia • • • Xna), whUe 
GF(<̂ ) is the constant fimction whose value for each element of a is zero. 
Now, number-valued functions of the same arguments can be added and 
subtracted in the very same way as numbers—e.g., the function G^ixi | Xa) 
G^ixiXa) — Gvixz) over a is the function whose value for an element a e a is 
GvixiaX2a) — Gvixsa)—^wlule for all functions Xi E F , the function G^ixi • • • x,) 
+ GF(^) is identical with fimction GF(XI • • • x„). Hence all definitions and 
theorems about scalar quantities derived from a number-valued generating 
function G over a domain d go over upon substitution of GF for G and F for d 
into definitions and theorems about functions derived from a function-valued 
generating functional (?F over a domain F of common-argument functions. 
In particular, if the fact that G^'s domain consists of functions is made nota­
tionally exphcit by writing each element a;< t F as in which a is an 
argument place-holder, partition [57] becomes 

[64] - G F ( X : „ . . . Z„a 1 Z „ ) = J2 Sx......xj'r'\kia ; • • • ; I Za), 
r - l 

in which each Xta (and similarly for Z „ ) is some q-set X},a • '• Xja of functions 
in F . The definition and combinatorial behavior of the interaction functions 
•̂ F ~" (^i« ; • •^ ; ?na \Za) follow by substitutlou of X . a for each X,- in [45] et seq. 

3. Interpretations 

The entry problem. 

To give the formal system of abstract partials a substantive embodiment, 
it is necessary to identify a set of measures which stand in relations isomorphic 
to the equations developed above. Since all the abstract functions G{X | Z), 
C(X I Z), R{X; Y I Z) and their ramifications were introduced above by 
exphcit definitions built upon G, finding a substantive measure G, which 
satisfies the axiomatic properties of G suffices to estabhsh an interpretation 
for the entire system (possibly excluding the fusion equations), since measures 
(?.(X I Z), C.iX 1 Z), RiX; Y \ etc. can then be defined from G. to parallel 
the uninterpreted system erected upon G. But it is not at all necessary that 
an interpreted abstract-partials system have this particular definitional 
structure—all that matters mathematically is that the system satisfy equa­
tions [l]-[3], [5]-[8], [45], and [46] (from which, excepting the fusion equations, 
all else foUows), irrespective of why this is true. Thus it may well be that one 
or more of the interpreted measures G,{X \ C.(X \ R.iX; Y\Z), etc. 
derived from substantive generating function G, in accord with the definitive 
abstract structure is actually a quantity whose most fundamental definition 
is independent of this quantity's abstract-partials relation to G, even though 
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it has the latter as a mathematical consequence. For example, all serious 
interpretations examined below begra with a substantive statistic Q(X, Y) 
on ordered pairs of q-sets from a certain domain and of which Q(X, 4>) is 
conceptually no more than a hmiting case, but which has the important 
propeirty that if generating fimction GQ is introduced as GQ(X) = Q(X, ^), 
it follows as a theorem that GQ{X \ = Q(X, Z). Any abstract-partials 
quantity for which a given interpretation of the system provides a substantive 
definition which is not merely a construction out of other abstract partials 
already given substance may be thought of as a system-entry position for that 
interpretation. The more abundantly a model of the abstract-partials system 
makes contact with its substantive substratum in this way, the more "signifi­
cant" or "meaningful" (in a sense as intuitively important as it is difficult 
to define) the interpretation is. In fact, as will be seen, the various abstract-
partial quantities in a particular model of the system are not, ia general, 
equally meaningful, and their degree of significance appears to be strongly 
determined by their nearness to a system-entry position. To understand 
different substantive instances of the system in depth, therefore, it is neces­
sary to appreciate not merely how one is isomorphic to another via the ab­
stract structure but also how they differ in respect to system-entry properties. 

The Inj^mationrtheoretical interpretation. 

The reader who is acquainted with Uncertainty analysis (information 
theory) has doubtlessly aheady recognized the isomorphism between the 
uninterpreted system of abstract partials developed above and the structure 
of partial Uncertainties previously articulated by McGill [1954], Watanab6 
[1960], Gamer [1962] and others. The fimdamental measure of Uncertainty 
analysis, first mtroduced by Shannon [1948] under the name "Information," 
is defined as follows: Let , X 2 , • • • ,yi ,y2, • • • , etc. be scientific variables 
("variates") each of which has a finite number of values and which have a 
joint probabihty distribution in some background population P. Let "xm-)" 
designate the jth value of variable x,- and similarly for yMi^ etc. Then the 
(unconditional) Uncertainty over the joint distribution of variables t/i, • • • , ?/» 
in P is defined 

[65] U(^i , • • • , 2/„) = - Z Pr [yiu) '' • VnuA log Pr [yi^ • •' 2/»(,)], 

where Pr [ymt • • • y„(,)] is the probabihty in P of a particular combination 
2/1(0 • • • Vnu) of values on variables t/i , • • • ,y„, respectively, summation is 
over all such combinations, and the base of the logarithm is an arbitrary 
parameter. More generally, the joint Uncertainty over y, , • • • , ?/„ given a 
particular combination x^) • • • x^^k) of values on predictor variables 
^11 "' ) ^ m , respectively, is 
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[66] U , 
»(») •••iiii(t) 

=' - Z Pr [yni) '' • y„u) \ • • • x„iuA 

•log Pr [t/Ko • • • y„a) \ • • a;„(t,], 

where Pr [ym) • • • VM,) I ^iw ' ' * ^mik)] is the probabihty that a random 
member of population P has configuration yno • • • y„(o of y-values when 
his configuration of x-values is x^^) • • • Xm(k-) • Finally, the conditional joint 
Uncertainty (in P) over variables y, , • • • , y^ given variables Xi , • • • , a;„ 
is the Uncertainty statistically expected to remam for the joint scores on 
J/x} • • • , 1/n of a random member of P after his scores on variables Xi, ,x^ 
are given, i.e., 

[67] U.....,„(2/x , • • • .y„) 

where summation is over all combinations of values on a;i , • • • , x„ .If the 
set of variables Xi , • • • , a;„ is considered also to include an additional null-
variable Xo whose value is the same for all members of P (a convention which 
does not affect the right-hand sides of [66] and [67]), [65] becomes the special 
case of [67] in which m = 0. A simple but vital consequence of [66] and [67] 
is that ^ 

[68] U(x, , , x„ ,yi, ,yn) 

= TJ(xi, • • • , + U.,.. . .„(2/i, • • • , y,), 

or, more generaUy, 

[69] Uz (X7) = V,iX) + Uxz(F), 

where X, 7, and Z are ordered sets of categorical variables Xi , ••• , a;„ ; 
Vi f •" f Vn and Zi , • • • , Zp , respectively, jointly distributed in P. Un­
certainty over a set of no variables is left undefined by [67], so we are free 
to adopt 

[70] Û (<̂ ) 1̂ ' 0, 

which allows [69] to hold without restrictions on the number of variables in 
X, Y, and Z. Alternatively, if <̂  is construed to be constant-variable Xo , 
[70] is a consequence of [65]-[68]. 

The argument of unconditional Uncertainty measure U is any ordered 
set of zero or more of the categorical (i.e., finite-valued) variables jointly 
distributed in population P, the value of U for a given arguinent a î, • • • , x„ 
is invariant under all permutations of the x.- , and the value of U for the null 
argument is zero; hence U satisfies the formal requirements to be the gen-
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erating function for an abstract-partials system whose domain, d c , , is some 
set of these variables. Accordingly, let 

[71] GrjiX) U ( Z ) 

for any q-set X of variables from dcv , and let Gjj(X \ etc. be defined for 
q-sets from d o , in accord with the definitions of their uninterpreted counter­
parts. In view of [69] we then have 

[72] Gx , (Z I Z) = U ^ ( Z ) 

[73] C u ( Z I Z) = i : U (̂a;,) - U^(Z) ( Z = Xx • • • x„) 

[74] Rx;(7; Z I Z) = U^(F) - Uxz(F) 

which, together with the Gu-interactions, are famihar concepts in Uncer­
tainty analysis. In particular, Ru(?/; Z)—^i.e., V{y) — Vxiy)—^is readily 
appreciated to be the Information-theoretical analog of a criterion variable's 
multiple correlation with a set of predictor variables (a paraUel which wiU 
shortly be seen to be much more than mere analogy), since it describes the 
average amount of Uncertainty in criterion y which is eliminated through 
knowledge of data on predictors Z . The quantity Cu(Z) , known as the "total 
constraint" [Gamer, 1962] or "total correlation" [Watanab6, 1960] in the 
joint d^ribution of variables Z , is a symmetric measure of total relatedness 
within an n-tuple of categorical variables and as such is a challenging new 
concept for multivariate analysis to play with, especially in hght of its pro­
vocative partitions. Finally, the Information-theoretical "fusion" of variables 
Xx, • • • , x„ is their cartesian product—i.e., 'xx • • • x„' is the single categorical 
variable whose values are the various combinations of values jointly possible 
on Xx , • • • , x„—which obviously satisfies G u ( ' Z ' ) = G D ( Z ) . 

When parallels are sought between Information theory and other systems 
of multivariate analysis, those theorems about U which command the greatest 
interest are the ones describing the partition of a criterion variable's total 
Uncertainty into components attributable to various sources. Primary 
among these is 

[75] V(y) = Ux(2/) + Rn(y;Z) 

= Ux(2/) + i : 'Rviy; xd + t, s:,....,.jr(.y; fx; • • • ; ?,) 

= Ux(2/) + i:s:,......jr(2 / ;?x ;•••;?,) 
r - l 

= Ux(2/) + i : s:,,...,.x:.l% J • • • ; S r ) ( z = X . . • . x„) 
r - l 
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(from [26], [59], and [52]), in which Ux(y) is the residual Uncertainty in y 
xmaccounted for by predictor variables X while the Uncertainty Ru(?/; X) of 
y jointly accounted for by predictors X is further analyzed into single-pre­
dictor contributions plus higher-order interaction components. This is the 
Uncertainty partition introduced by McGill in 1954 and later [Gamer and 
McGill, 1956] shown to be isomorphic to the familiar Fisherian partition 
of a metrical criterion's variance (cf. [84], below). 

It is instmctive at this point to ask what, specifically, is contributed to 
Uncertainty analysis by Shannon's definition of Information (i.e., Uncer­
tainty) as given by [65], in contrast to other available statistics which hkewise 
assess categorical dispersion. For example, a measure JJ*(x) of categorical 
impredictabiUty which makes a good deal of intuitive sense is the number of 
errors statistically expected when guessing variable a;'s value by a sequential 
procedure in which the value guessed first is the one whose probabihty is 
highest, the one tried second (if the first guess is wrong) has the second-
highest probabihty, etc. This measure is clearly sjmametric in its arguments 
when extended to the joint unpredictabihty U*(Z) of a set of variables, and 
can be taken to define an Unpredictabihty model of the abstract-partials 
system, including Unpredictabihty components which precisely parallel the 
Uncertainty components based on definition [65]. Why, then, should U be 
preferred to U*? The answer hes in [67] and [68]. Conditional Uncertainties 
are not de^ed /rom imconditional Uncertainties but in parallel to them. 
That is, the meaning of Uz(X) is not derivative from that of U(Z) but stands 
on an equal conceptual footing with it. It is consequently a happy accident, so 
to speak (though Shannon carefuUy contrived for this "accident" to occur), 
that the measure Gu(-X' | Z) defined from Gxj{X) in accord with [3] happens 
to coincide with TJziX). In contrast, while Gu»(-X' | Z) is similarly derived 
from Unpredictabihty measure Gxj*{X) = JJ*(X), Gu*(-X' j Z) does not stand 
in any fixed relation to Gu»-values for the conditional distributions of X, given 
specific values of Z, but depends entirely upon generating function Qu. by 
way of definition-form [3] for its meaning. The potency of Shannon's measure 
thus hes not in there being anything special about U(Z) as a generating 
function—^U*(X) and many others are equally qualified—^but in U(X)'s being 
a special case of a more comprehensive substantive statistic Uz(X) in virtue 
of which the Information-theoretical interpretation achieves simultaneous 
entry to the system across the entire sheet of partial Gu-values of aU orders, 
rather than at just the zero-order baseline as would be tme of an interpreta­
tion based on U*. 

It should be added that the definition of U also confers upon it another 
useful property, namely, 

[76] 
n 

JJzixi , • • • , a!„) < X) Uz(a;.), 
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with equahty holding when the Xi are all statistically independent of one 
another. Consequently, Cv(X \ and RTJ{Y; X \ are always non-negative, 

; and signify an absence of relationship by a value of zero. This convenience 
does not extend to interactions higher than the first level, however, nor does 
it provide any additional system-entry positions. As it is. Uncertainty anal­
ysis appears to have entry to the abstract-partials system only through its 
array of partial Uncertainties, with the result that the higher-order inter­
action terms in [75] have at present only dubious significance for empirical 
research. 

The analysis-of-variance interpretation. 

In a Fisherian analysis-of-variance design, we are given (a) a metrical 
criterion variable y, (6) a set d, of predictor variables, the number of which is 
unbounded in principle though remarkably finite in practice, and (c) a popula­
tion a of subjects within which y and the variables in d, have a joint proba­
bihty distribution. It is usually asstimed also that (d) each predictor variable 
has only a finite number of values and that (e) the predictors are all fully 
independent of one another. However, (d) is superfluous here, while we shall 
abstain from (e) imtil we are in position to see precisely what this crucial 
condition achieves. 

Fisherian analysis of variance partitions both the criterion variable and 
the criterion's variance. The distinction between these two partitions is 
fundamental, for abstract-partials theory makes clear that each can be 
developed independently of the other. To derive the first partition, let X 
be any q-set of zero or more predictor variables in and define fiyiX) to be 
the variable whose value for each member a of population a is the statistically 
expected value of criterion variable y among members of a whose scores on 
predictors X are the same as a's. That is, At„(Z) is the multiple curvilinear 
regression of y upon predictors X in a. For X = ^, /i„(</)) is the constant variable 
whose value for each a t a is the unconditional expectation (i.e., grand mean) 
Hyoiyia a. Now write 

[77] e„ y - /z„(Z) 

for the component of y unaccounted for by y's curvilinear regression upon 
predictors X and let 

[78] G J Z ) 1 = = ' M . - M V ( - 3 0 , 

whence by [77], 

[79] !/ - M„ = ey{X) + Ax/Z) - M„ 

= 6,(Z) - G , . ( Z ) . 

Since the regression of y in a upon variable M„(<̂ ) has the constant value M» y 
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G,.,(^) has the value zero for aU members of a. Thus while G,., maps q-sets 
of variables in into number-valued fimctions over a, it still satisfies the 

^conditions to be a generating function over d, in the extended sense described 
above. Accordingly, to each ordered set , • • • , Z „ , Z of q-sets of variables 
in d, , there corresponds an (n — l)th level conditional interaction variable 

; • • • ; Z„ I Z). By [64], these determine symmetric partitions of 
G„,(Z I Z) for any q-set X of dv-predictors. In particular, when Z = 0, 

[80] - G j z , . • • x„) = i : sS:... . . .x.ir"(^x; • • • ; 
r - l 

which by [79] thus partitions y as 

[81] 1/ - = e , ( Z i . . . z „ ) + i : s i . . . . . . x . i i r ' ( ^ i ; • • • ; 
r - l 

In the special but most famihar case of [81] wherein each X,- = x,- (i.e., the Xi 
are of unit length) and all predictors are fully independent of one another, the 
components IJijH î > * *' > ?r) of zero order (i.e., for which r = 1) are called 
the "main effects" of the various predictors Xi, • • •, a;„ upon y, while the rest 
are known as "interaction effects" of various orders from 1 to n. 

Equation [81] partitions criterion y into component variables. To partition 
y's variance in this same fashion, we introduce a second generating function 
over d, : ^ 

[82] G v , ( ^ = -Vax [M,(Z)] 

= -Yar [G^XX)]. 

That is, for any q-set X of predictors in d^ , — Gv,(X) is the variance of y (in 
a) accounted for by y'a curvilinear regression upon predictors X. Since 
tiy{X)—^and hence G„,(X)—^is orthogonal to e„(X) (a basic theorem of regres­
sion theory), [79] and [82] entail 

[83] Var (y) = Var [e.(Z)] + Vax [M„(X)] 

= Var [ey{X)] - Gy,{X), 

whence by abstract partition [57], 

[84] Vax (t/) = Var [e„(X, • • • X,)] + E Si......x.i;7"(^i J ' ' ' 5 
r - l 

The formal parallel between criterion partition [81] and criterion-variance 
partition [84] is obvious. Moreover, it is not difficult to show (though we shall 
not do so here) that if each variable in q-set X i • • • X„ is fuUy independent of 
the rest, as always contrived in analysis of variance either by experimental 
control over allocation of subjects to the various treatment cells or hypothet-
icaUy by analyzing the configuration of cell means as though this were so, then 
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the component variables in [81] are all orthogonal to (though not in general 
independent of) one another and hence 

[85] Var [I^:->(|, ; • • • ; ̂ ,)] = i;7"(|, ; . • • ;? , ) 

(full predictor independence) 

for each r-selection , • • • , from X i , • • • , Z„ . That is, imder the standard 
(but artificial) analysis-of-variance stipulation of predictor independence, 
each variance component in [84] is the variance of the corresponding criterion 
component in [81]. 

Variance partition [84] is not only formally isomorphic to the last line 
of Uncertainty partition [75] but, insomuch as variance can also be construed 
as a measure of uncertainty, is remarkably close to it conceptually as weU. 
Even so, the abstract-partials isomorphism between analysis-of-variance and 
Uncertainty analysis contains an important asymmetry. In a system of 
abstract partials based on generating function Ga , the primary measure of 
relationship is Raiv, X), i.e., the G„-contingency of element y upon the 
elements in q-set X. In the Information-theoretical interpretation, Ru(2/; X) 
is the amount of Uncertainty eliminated (on the average) by knowledge of 
X-scores, and for an intuitively meaningful isomorphism the analysis-of-
variance counterpart of this measure should be the amoimt of criterion 
variance*^ointly accounted for by the predictors, namely, Var [/i„(X)]. But 
to put Var [iiy{X)] into correspondence with Ru(2/; X), as done when partitions 
[75] and [84] are considered to be isomorphic, Gv, must be coordinated not with 
Gu but with Gu's linear development Gxj..y . Admittedly, this is a perfectly 
good isomorphism, but the coimterpart of ly (cCi ; • • • ; a;*) is then Î *~i' • 
(xi ; • • • ; ccjfc) = lu * {y, Xl ) • • • ; Xi) and there is no analysis-of-variance 
counterpart of Gu at aU. In particular, whereas both U(y) (i.e., Gu(?/)) and 
Ux(?/) (i-e-> Gxsiy 1 X)) in [76] belong to the same interpreted abstract-partials 
system as the other components in [75], there exists no expression in the 
Gv,-system for the criterion's total variance Var (y) and residual variance 
Var [e,(X)] in [84]. On the other hand, if Gu is isomorphically coordinated 
with Gy, , Ru(2/; x) becomes coordinated not with main-effect variance 
Var {ny{x)] but with a first-level interaction variance of form Rv,(a;i ; x,), 
while more generally the analysfe-of-variance counterpart of Ru(2/; X) be­
comes a sum of interaction terms which do not include any main-effect 
variance. 

A further disfiguring comphcation to the formal similarity between 
Uncertainty analysis and analysis of variance is injected by the duahty of 
partitioning in the latter. The fact that each criterion-variance component 
in [84] is normally the variance of a corresponding component of the criterion 
gives the analysis-of-variance interaction components an extra significance 
not shared by the interaction components in an Uncertainty partition. That 
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is, given predictor independence, the variance-partition sector of analysis 
of variance, unlike Uncertainty analysis, has entry to the abstract-partials 
system through all interaction terms. Thus to think xmcritically of the Un­
certainty components in [75] as analogous to the variance of main effect and 
interaction components in an analysis-of-variance design promotes a false 
sense of understanding by tempting us to think that Uncertainty components 
are the Uncertainties of criterion components. On the other hand, it is worth 
stressing that while variance partition [84] always holds whether the predictor 
variables are fully independent or not, so that the isomorphism between [75] 
and [84] does not require any distributional assumptions, if the analysis-of-
variance predictors are not fuUy independent then the variance components 
IrT^ (li ; • • • > ^r) in [84] for which r > 1 are no longer the variances of any­
thing and do not stand on the same conceptual footing as an honest-to-god 
variance. In this more general case, analysis of variance has as much to learn 
about the meaning of its variance components from their isomorphism to 
Uncertainty components as there is to be learned about the latter by sighting 
along the isomorphism in the other direction. 

The conditional-prdbahility interpretation. 

This time, let etc., be various attributes* which may or may not 
be possessed by a member of background population P, and let the quantity 

\g Pr (xi • • • x„ I 2i • • • 

be called the (conditional) Implausibility of attribute-combination • - • x„ 
(duphcations not excluded) given attribute-combination Zi • • • z„ , where 
Pr (xi " • Xn\ ' • • 2„) is the conditional joint probability of Xi • •' x^ given 
Zi • • • z„ in P and the logarithm's base is an arbitrary parameter. The un­
conditional Implausibihty of attribute-cluster Xi • • • a;„ in P is of course 
—log Pr (xi • • • x„). The Implausibihty of joint attributes Xi • • • x„ given 
attributes Zi - z„ has a lower boimd of zero, attained when Zi , • • • , 2« 
jointly imply cluster Xi • • • x„ with certainty, and increases without hmit 
as the probabihty of cluster x, • • • x„ given Zi • • • z„ approaches zero. 

Now let d A be some set of attributes which can meaningfully be ascribed 
to members of population P. Since the imconditional Implausibihty (in P) 
of any cluster X = Xi • • • x„ of attributes in d^. is symmetric in the Xi and 
may appropriately be stipulated to have a value of 0 when n — 0 (this being 
alternatively available as a theorem if ^, i.e., Xo , is taken to be a universal 
attribute possessed by every member of P), Implausibihty qualifies as a 
generating fimction over • Hence setting 

[86] Gep(Z)'=i/ - l o g P r ( Z ) 

*For clarification of the difference between attributes (i.e., properties) and scientific 
variables (i.e., "variates"), see Rozeboom [1966b]. 
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invests the abstract-partials system with an interpretation which analyzes the 
dependency structure of attributes in P with perfect isomorphism to the 
pattern of analysis apphed to categorical variables by Information theory. 
Moreover, while any other transformation of Pr (X) foUowed by an ap­
propriate zero-adjustment likewise defines a generating function over d̂ , , 
Implausibihty has the special virtue that, like Uncertainty, it achieves simul­
taneous entry to the abstract-partials system at conditional G-values of all 
orders. Specifically, since Pr ( Z | Z) = Pr (XZ)/Pr (Z), it foUows from [86] 
that 

[87] G e „ ( Z 1 Z) = - log Pr (X \, 

so Gep(X I Z) is the Implausibihty of attribute-cluster X given attributes Z. 
Configural savings and G-contingencies are readily intuited as measures of 
relationship in the conditional-probability model, for 

[88] R e p ( F ; X) = log 

[89] C(zi • • • a;„) = log 

P r ( F | X ) 

L Pr(r) J 

Pr (xi •'• x„) 

n Pr (X,) 

and similarly for conditional values of Hop and Cop . R c p ( F ; X) compares the 
probabihty of attribute-cluster Y given attributes X to the unconditional 
probabihty of Y and hence assesses how F ' s likelihood is affected by X, while 
Cep{X) compares the joint probability of the attributes in cluster X to the 
probabihty this cluster would have if its constituents were independent of 
one another while retaining their present marginal probabilities. 

It is evident that the conditional-probabihty model of the abstract-
partials system also provides an interpretation for the fusion equations, 
namely, when 'xi • • • xj is taken to be the conjunction of attributes 
Xl, "• , Xn . 

Insomuch as a categorical variable's Uncertainty is a weighted average of 
the Implausibilities of the alternative attributes which compose its values, the 
relation between Information theory and the analysis of conditional proba­
bilities is actuahy more intimate than just an abstract-partials isomorphism. 
In view of this close substantive overlap between the two systems, it should 
be worth inquiry whether there may not be apphcations of Information theory 
which would be served as well or better by a formally equivalent analysis 
of the Implausibihties of attribute clusters. Implausibihty theory (if we may 
so caU the pattern of abstract-partials analysis based on Gcp) is to an extent 
handicapped by the fact that Cop and R^p > iii contrast to Cu and Rr , can 
assume negative values as well as positive ones, though how serious a dis­
advantage this may be remains to be seen. On the other hand, whereas what 
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Uncertainty analysis reveals about the relations among variables includes 
nothing about how they are related— î.e., how one varies as a fimction of 
another—, conditional Implausibilities make explicit what probabilistic con­
clusions can be drawn about criterion attributes given the predictor evidence-
It is far from impossible that Uncertainty analysis wiU turn out to be the 
more powerful tool for detecting gross patterns of relationship in categorical 
data while Implausibility theory is then the precision instrument with which 
these relations are best analyzed in detail. 

Incidently, there is another generating function over domain d A which 
also has mathematically interesting and conceivably useful combinatorial 
properties. Let Gap (the subscript signifies "disjunctive probabihty") be 
defined 

[90] G<,p(X)1^'Pr('Z'), 

where 'x', the fusion of q-set X, is defined in this model to be the disjunction 
of the attributes in X—^i.e., 'xi • • • x„' =' the attribute of possessing at least 
one of the attributes Xi or • • • or x„ . It then foUows that 

191] U;-'\xi;-- - ; x „ | z i O 

= (-1)" Pr (x, & X2 & • • • & x„ & '-'21 & & • • • & ^z„), 

where & and\'^ are the logical connectives and and not, respectively. Hence 
for any class definable by a Boolian algebra on a set of attributes Xi , • • • , x„, 
there exists a sum of terms of form (—l)*"'̂ Î *'(xo ; xj ; • • • ;xi\i ••• xQ 
{0 < k < n), where x', • • • , xj are some permutation of Xi , • • • ,x„, which 
•equals the probabihty of that class. (The reason for including universal at­
tribute Xo, for which Pr (xo) = 1, is to allow the possibihty k = 0.) If any of 
these sums vanish, a pattern of incompatibihty or entaUment among the 
-X.- stands thereby revealed. In this connection, it is also of interest that 
'Cdp(â i • • • »„) has a lower bound of zero, attained when and only when at­
tributes X l , • • • , x„ are mutuaUy exclusive. 

The correlational interpretation. 

In hght of the close affinities between Uncertainty components and 
conditional-probability measures, their isomorphism is not particularly start­
ling. That the system of hnear correlation coefficients should also share this 
•common structure is much less evident, and that the theory of abstract 
partials reveals this to be so is a major testimonial to its systematizing poten­
tial. To be sure, previous writers [e.g., Attneave, 1959, Appendix I; Ross, 
1962; Fhan^r, 1966] have noted the appearance of linear correlations in 
more-or-less Uteral apphcations of Information theory to the johxt distribution 
of metrical variables. However, the relation between Information theory and 
correlational analysis so disclosed (a) employs not strictly the categorical 
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Uncertainty measure, the value of which is infinite for any continuous dis­
tribution, but a modification [Shannon, 1948, Section 20; Ross, 1962] ap-
phcable to metrical variables, and (b) requires the latter's jomt distribution 
to be normal; hence the equivalence established between the two systems by 
the Shannon-Ross metrical Uncertainty measure is at best a precarious one. 
In contrast, the to-be-described abstract-partials isomorphism between In­
formation theory and linear correlational analysis requires no distributional 
assumptions or measure modifications whatsoever. 

Once again let lower-case letters x, y, etc., denote variables— t̂his time 
metrical variables—^which are jointly distributed in background population 
P, while upper-case letters X , etc., denote ordered sets of these variables. 
Then we may write R,(x) for the multiple hnear correlation of criterion y 
with predictor variables X, r,y.^ ("partial" correlation) for the correlation 
between the residuals of x and y after their linear regressions upon variables 
Z have been extracted, and Ry(Z).z ("multiple-partial" correlation) for the 
multiple correlation of the residual of y upon the residuals of variables X 
after variables Z have been partiaUed out. (r,„ is, of course, the zero-order cor­
relation between x and y.) It wih be recaUed that all these correlational 
statistics (or more precisely their magnitudes) are fimctions of residual stand­
ard deviations of form cr,.x , i.e., the standard deviation of the component of 
y which remains after y's linear regression upon predictors X has been ex­
tracted.* 1(In the special case where X is the null set <f>, Cy.x — o'y— î-e., ex­
traction of y's regression upon no predictors does not reduce its variance.) 
Also, to each correlation coefficient there corresponds a coefficient of ahena-
tion, namely, 

[92] k.„ V T ^ y = ^ = ^ 

[93] K,cx, V l - R^(X) = ^ 
(Ty 

[94] k,,.^ V l - vly.z = ^ = ^ 
<Ty.Z O^x'Z 

and most generaUy of all 

[95] K,,x) .z V l - R^ycx).z = 

K „ ( X ) . z is a monotonic decreasing function of Rv(X)'Z aiid whUe ahenation is 
perhaps a less famihar statistic than is correlation, K is more directly meaning­
ful as a measure of predictive control than is R in that if a variable's standard 

*See, e.g., DuBois [1957] or Rozeboom [1966a] for detailed development of linear 
correlation theory. 
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deviation is construed as our "metrical imcertainty" (not Uncertainty) about 
its value for a random member of P, the ratio Oy-xzlf^yz states directly how 
icnuch uncertainty about y remains after scores on predictors XZ are available, 
compared to the uncertainty about y given only data on predictors Z. 

Now let the statistic Ux for the joint distribution of metrical variables 
X be defined 

[96] Hx-̂ '̂ n<r,, 
i-l 

(X = Xl • • • Xn) 
L i-l _ILi-i J 

for n > 1, while if Z is null, 

[97] 1. 

To give quantity Ex a name, we may as weU caU it the "Pi-value" of multi­
variate configuration X, while the quantity 

[98] def Hx 
TTx = 

i-l 

\ n (X = Xl Xn) 
i-l 

which is what Hx becomes when aU the variables in X are standardized to 
unit variance, is the "Pi-coefficient" of configuration X. Although Hx appears 
in [96] to be hopelessly dependent upon the order of variables in X, it can be 
shown [Rozeboom, 1965] that n | is the generalized variance [cf. Anderson, 
1958, p. 166ff.] of configuration X—^i.e., that 

[99] Hx = n cTfxji = V\C^\, 
i-l 

where n is the number of variables in X, o-(x) i is the standard deviation of the 
ith. principal component of configuration X, and jCxxl is the determinant of 
the Z-configuration's covariance matrix. Since jCxxl is imaffected by permuta­
tion of the variables in Z , the same is true of Hx and TTX ; hence n and •n- may 
be described as functions which take q-sets of jointly distributed metrical 
variables for their arguments. 

Just as Hx is the generahzed standard deviation (i.e., the square root 
of the generalized variance) of configuration Z , so may Pi-coefficient TTX , 
which symmetricaUy summarizes the coefficients of ahenation holding among 
the variables in Z , be thought of as the generalized alienation within multi­
variate distribution Z . Its maximum value, unity, is attained when Z is 
an orthogonal configuration whereas TTX = 0 (and similarly Hx = 0) imphes 
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that at least one of the variables in X is an errorless linear function of the 
remainder. 

The concepts of Pi-value and Pi-coefficient also obviously apply to con­
figurations of residual variables. Specificahy, Ux-ziTTx-z) is the Pi-value 
(Pi-coefficient) of the joint distribution of the linear residuals of the variables 
in X after the variables in Z have been partialled out. 

Since the Pi-statistic assigns a numerical value (relative to the back­
ground population) to each q-set X = Xi • from any domain d^r con­
sisting of jointly distributed metrical variables, it may be used to define 
any number of generating functions over d̂ ir . Most of these, like measures 
of categorical imcertainty other than U, merit httle if any attention; but 
one— âgain like U— îs of outstanding interest. Specificahy, let 

11001 G K ( X ) 1 l / l o g n x , 

where again the base of the logarithm is a parameter. (Stipulation [97] insures 
that GK(^) = 0 as required by axiom [2].) The quantity GK(X) might ap­
propriately be caUed the "hnear uncertainty" over joint distribution X—^in 
fact, when the X-distribution is normal, GK{X) differs from the Shannon-Ross 
metrical Uncertainty in X only by an additive constant. As consequences 
of [100] we have 

[101] G^(X \Z)^ log Ux.z, 

[102] C K ( X | Z ) = -logrx-z , 

of which the zero-order case is 

[103] 

and fiinaUy 

CK(X) = - l og TTx , 

[104] R K ( F ; Z | Z ) = - log 

various special cases of which are 

n YX-Z 
LHY.ZTIX.ZJ 

= - log TTYX-Z 
JlTY'ZTfx-Z-

[105] 

[106] 

[107] 

[108] 

'RKCV; X) = - l o g k „ , = - I log [1 - r̂ ,] 

RK(2/; X\Z) = -logksj.z = - f l o g [1 - TI^.Z] 

RK(2 / ;X) = - l o g K , ( x , = - I log [1 - R^(X)] 

RK(2/; X I 20 = - log K „ ( x , . z = - i log [1 - R^(X).z] 

and most remarkable of aU, 

[109] R K ( F ; X ) = - log n kcx.r,.- = - t log H [1 - T^X.YUI 
i-l 
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in wMch Tix.T)i, • " i rcx.Dm are the non-zero canonical correlations between 
configurations X and Y while the kcx.rx are the corresponding ahenation 
coefficients [Rozeboom, 1965]. (Cononical theorem [109] also holds for gen­
eral case [104] if kcx.rx and r(x.r)i are replaced with the corresponding 
statistics for the X-residual and F-residual configurations after variables Z 
are partiaUed out.) The abstract concept of G-contingency in the uninter­
preted theory thus subsumes, under interpretation [100] of G, aU linear cor­
relations of various orders and complexities (or more precisely a certain 
monotonic transformation of their magnitudes), while the analogy between 
linear correlation and Uncertainty reduction turns out to be a sweeping 
isomorphism. 

To be sure, not all abstract partials have intuitive significance in their 
correlational interpretation: Interactions Î """(xi ; • • • ; x„ | Z) for n > 2 
correspond to no meaningful multivariate properties now known to correlation 
theory. The same is true, however, for Uncertainty analysis—^both interpreta­
tions coordinate certain terms of the fundamental system with measures 
whose significance hes in the external merits of their substantive definitions, 
while the remaining components of the ramified system, interactions higher 
than first level in particular, acquire whatever significance they may have 
through their derivation from these system-entry positions. As it is, linear 
correlation theory's entry to the abstract-partials system is extraordinarily 
massive— âM ̂ measures in the fundamental system are entry positions for 
the K-interpretation—^and, rather than analysis of variance, is the proper 
analogy to consult when attempting to make sense out of Uncertainty com­
ponents. 

The paraUel between linear correlation theory and Uncertainty analysis 
extends even beyond their abstract-partials isomorphism in that, like [76], 

Hence CK(-X' ] Z) and R K ( F ; X\Z), like their Information-theoretical cotmter-
parts, have a lower bound of zero. There is, though, one important respect 
in which the paraUel is less than perfect: Whereas Gu is unaffected by duphca­
tions of elements in its argument—i.e., Gxj{XXY) = Gu{XY) for any q-sets 
X and Y from the system's domain—element duphcations introduce hnear 
dependencies within a q-set (XXY) (X 9^ 4>) of metrical variables, whence it 
foUows that Ilxxr = 0 and G K = — <». Neither for that matter is there any 
element in domain d̂ v which provides an inter-pretation for the fusion of a 
q-set from d,^,. The concept of "fusion" can, however, be naturaUy introduced 
into the correlational interpretation—^and for some purposes usefuUy so— b̂y 
construing the latter's domain to be the set of aU vectorial variables defined 
as ordered sets of variables in d^, ,whUe the value of G K for a q-set X, • • • X , 
of ordered sets X i , • • • , Z „ from d„, is GK(-X'I • • • X„) as in [100]. 

n 
[110] GK(XI • • • X„ 1 Z ) < E GK(X, | Z ) . 



164 PSYCHOMETEIKA 

4. Appraisal and Summary 
This paper has attempted no more than to articulate the formal abstract-

partials structure and point out its embodiment by several of the statistical 
systems which behavioral scientists hold most dear. Whatever merit, if any, a 
particular segment of this structure may have in a given substantive inter­
pretation is not our present concern. Even so, while abstract-partials theory 
has enough inherent mathematical appeal to warrant study for its own sake, a 
chaUenge which must eventually be faced is "What good is it?" 

It must cooly be recognized at the outset that wlule the system of ab­
stract partials is prepared to invest a substantive discipline with a ready-
made array of intricately interlaced analytic measures the instant some aspect 
of its data is found to have the properties of a generating function, there is no 
guarantee that these measures will be at ah useful. Each different interpreta­
tion of each abstract partial must be judged anew, with special concern for 
its relation to system-entry positions, and what is the key to hidden treasure 
in one need be no more than debris hi another. In particular, the probable 
frequency of insightful interpretations for the ramified parts of the system 
is not especiahy encouraging, not even for the hierarchy of interaction terms. 

Even with an appropriately sceptical guard posted against great ex­
pectations, however, it is stiU possible to recognize ways in which abstract-
partials theory holds methodological promise. For one, the abstract analysis 
brings hfej.ghtened mathematical power to established systems such as In­
formation theory where a particular embodiment of the abstract-partials 
structure has already acquired scientific stature. By pruning derivations to 
their formal essentials, it is generally possible to estabhsh theorems with 
greater elegance and generahty, and to exhibit logical connections among 
the concepts more perspicuously, than can in practice be achieved when the 
material under study is fogged over with irrelevant substantive detail. (Thus 
the theorems in Sections 1 and 2 above are considerably more comprehensive 
than any previous development of Information theory, though how useful 
these additional results may be is of course another question. Similarly, 
the abstract development of the interaction hierarchy is both more general 
and more succinct than previous expositions of interaction terms in the 
analysis-of-variance hterature.) Conversely, by considering what properties 
of a given substantive measure foUows from its abstract-partials character 
alone, we can investigate whether it has any methodologicaUy significant 
features which do not reside whoUy in the abstract-partials structure, and 
if so, what precisely these additional properties accomphsh. 

More importantly, by invoking isomorphism across a variety of con­
ceptual systems, abstract-partials theory transduces our famiharity with one 
into deepened understanding and provocative new twists of development in 
another. For example, while the degree of association between two attributes 
a and h has long been assessed by comparing the joint probabihty of a and 
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b to the jomt probabihty they would have, given their marginal probabihti^, 
in the absence of any relationship, aU such measures developed to date have 
been based on the difference between Pr (ab) and Pr (a) - Pr (6) [cf. Lazarsfeld, 
1961, p. 112]; whereas the strikingly successful conditional-probabihty inter­
pretation of the abstract-partials system suggests that the ratio of these 
quantities may also be an analyticaUy fruitful measure of attribute association. 
Again, abstract-partials theory discloses that the fimdamental statistic of 
linear correlational analysis is the httle-known generalized variance of a 
multivariate distribution, and urges that we investigate whether this measure 
may not have important apphcations which he beyond our present limited 
vision. Moreover, while the significance of aU the components which appear 
in symmetric partitions of Pi-coefficients and multiple coefficients of ahena­
tion (or in partitions of their negated logarithms) is far from clear, we know 
that these terms must have at least the same sort of meaning as the Un­
certainty components to which they are isomorphic, since in view of the 
system-entry patterns in the two cases, the Uncertainty interpretation can 
claim no significance for any Uncertainty component which is not equaUy 
warranted for its correlational counterpart. In particular, no matter how 
much like gibberish the higher correlational interaction terms may seem, they 
must be fuUy as meaningful as the corresponding Uncertainty interactions— 
or conversely, the latter must be as meaningless as the former. This last 
consideratibn iUustrates nicely how the theory of abstract partials can sharpen 
our comprehension of otherwise unrelated measures by pointing out formal 
identities in the conceptual routes by which they are derived. To be sure, 
an abstract-partials isomorphism between two substantive measures does 
not guarantee that they are essentially alike in their significance, for one can 
enjoy interpretive depths acquired from substantive details not pos­
sessed by the other (e.g., the interaction variances in analysis-of-variance, 
which under fuU predictor independence are not merely components of the 
criterion's variance but also variances of the criterion's components). An 
interpreted partial can acquire its meaning either from its position in the 
abstract-partials structure (relative, ultimately, to the interpretation's sys­
tem-entry measures), from additional properties not inherent in the abstract-
partials axioms, or from both. Hence when different quantities are identified 
as altemative4nterpretations of the same abstract" partial, either the signifi­
cance which is thought to invest one must be acceded to all or we must be 
able to make clear what is importantly distinctive about the one that is 
lacking in the others. 

Finally, after aU the words of caution have been spoken and the sophisti­
cated iUuminations of isomorphism properly extoUed, there still remains the 
simple-minded fact that the system of abstract partials, wherever applicable, 
can be put to work computationaUy to grind out abundant assessments on 
endless combinations of the data elements which constitute the generating 
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function's domain. Whenever a substantive measxire G, having the properties 
of a generating function is suspected to be at aU relevant to the phenomenon 
imder study, a very real possibihty also exists that patterns of regularity can 
be found among the numerical values of the interpreted partials erected upon 
G, which in one way or another imphcate hypotheses or conclusions about 
natural principles operative in these data. For example, it may be possible to 
discover informative groupings ("clusters") of the data elements by studying 
how their total configural savings can be partitioned into within-group and 
between-group components according to equation [28] or [31],* Or we might 
look for traces of causal structure by partiahing various q-sets of data ele­
ments out of the G.-relations among the remainder by means of [20] and [21] 
in order to see which residual relations vanish. Or general regularities may 
appear, such as a tendency for the G.-contingencies among the data elements 
to be a simple function of certain observable features of the latter, or a trend 
for interactions to diminish with increasing level, or etc., which cannot be 
written off to mathematical artefact and hence demand empirical explanation. 
There is even an outside chance that something akin to inferential factor 
analysis might be bmlt upon equation [62], though this would probably 
require too many implausible assumptions to warrant serious concern. What­
ever type of patterning, if any, may he within the (?,-data wiU undoubtedly 
depend criticahy upon the G,-function's substantive content. Even so, once 
we have\onceived a portfoho of regularities which, if foimd, would command 
our respect, and have written computer programs which search for them, it 
should be httle extra trouble (assuming computer availabihty) when the data 
are analyzed by more conventional methods, also to run the abstract-partials 
programs both for the sake of the data analysis itself and for whatever this 
shotgun approach may disclose about the empirical applicability of abstract-
partials theory. The system of abstract partials is an intriguing new fine-mesh 
seine which is weU worth a few test drags through interpretations additional 
to those reviewed above to see what it may catch. 
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