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New Dimensions of Confirmation Theory

When Hempel’s “paradox of confirmation” is developed within the confines of con-

ditional probability theory, it becomes apparent that two seemingly equivalent general-

ities (“laws”) can have exactly the same class of observational refuters even when their

respective classes of confirming observations are importantly distinct. Generalities

which have the inductive supports we commonsensically construe them to have, how-

ever, must incorporate quasi-logical operators or connectives which cannot be defined

truth-functionally. The origins and applications of these “modalic” concepts appear to

be intimately linked with a number of basic conundrums in the philosophy of science,

such as causation and the nature of explanation.

While Hempel’s “paradox of confirmation” has enjoyed considerable attention of
late,1 the deepest layers of this puzzle still remain unprobed. As we shall see, once
these are reached, not only the paradox’s resolution but also why it has seemed
puzzling become obvious, even trivial. But not at all trivial are the powerful new
concepts and problems disclosed by this penetration concerning the structure of
belief, the basis of explanation, and the inferential force of propositional connec-
tives.

In this paper, I shall attempt to light a fuse under certain explosive implications
which appear in our de facto inference habits when these are reconstructed by con-
firmation theory within the confines of the probability calculus. Unlike classical
logic, confirmation theory recognizes that rational inference includes not merely
formal deduction but also adjustments in the credibility of uncertain hypotheses in
light of relevant albeit inconclusive evidence. Insomuch as credibility—i.e. appro-
priate belief—is a matter of degree, technical development of confirmation theory
requires some measure of the credibility of a proposition p given evidence e. Vir-
tually any such measure which intuitively corresponds to a “rational” pattern of
belief satisfies the conditional probability axioms—in fact, under modestly ideal
circumstances, this is true even when the credibility measure is no more than an
ordinal scale reflecting the “is-more-credible-than” relation (cf. Savage, 1954). Ac-
cordingly, I shall take the probability (credibility) that p is the case, given that e is
the case—abbreviated Pr(p | e)—to be a basic concept of confirmation theory and
will assume in what follows that all theorems of the probability calculus hold for

1See Hempel (1966), Scheffler (1963), Schlesinger (1965), and numerous other references cited
therein.
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it. The unconditional (i.e. “prior”) probability, Pr(p), of a proposition p may be
construed to be p’s conditional probability relative to certain background knowl-
edge of a very general sort, the nature of which need not here concern us. Evidence
e then confirms or disconfirms proposition p according to whether Pr(p | e) is re-
spectively larger or smaller than Pr(p). (More generally, e confirms or disconfirms
p relative to background information b according to whether Pr(p | e · b) is larger
or smaller than Pr(p | b).)

I shall also make one further assumption about probabilities which, though
not strictly necessary to my fundamental point, greatly expedites its development.
Whereas confirmation theory interprets “probability” as a measure of credibility
relationships among propositions, it is well known that as the term is used in the
natural sciences, “probability” refers primarily to certain poorly understood but
well-axiomatized relations between properties (cf. Carnap, 1950, p. 35; Rozeboom,
1961). That is, probabilities in this second sense are something described by
expressions of form ‘Pr(Q | P ) = r’ wherein ‘P ’ and ‘Q ’ are predicates rather than
sentences, and where the numerical value of pr(Q | P ) is approximately equal
to the relative frequency of Q-type things among things which have property P.
(Present notation will use ‘pr ’ to differentiate this kind of probability from the
‘Pr’ of propositional probability.) While the precise relation between these two
kinds of probabilities is still controversial, there can surely be little doubt that an
important and intimate connection does exist. One intuitively plausible conjecture
which would do nicely for present purposes is that if h is a generality which entails
that pr(Q | P ) = r, then for an arbitrary object a the credibility of Qa given h
and Pa is also equal to r. Unfortunately, however, this principle is demonstrably
not universal,2 and its boundary restrictions are still too blurred to risk grounding
a serious argument upon it. Instead, I shall postulate merely that if generality h
makes no difference for the probability of property Q relative to property P, then
neither does it affect the credibility that an arbitrary object a has Q given that a
is a P. That is, so long as a is not singled out for special mention in h,

(r){Pr[pr(Q | P ) = r | h] = Pr[pr(Q | P ) = r]} ⊃ Pr(Qa | Pa · h) = Pr(Qa | Pa),

a special case of which (when P is vacuous) is that if h does not affect the prop-
erty probability of Q then neither is h relevant to the credibility of o’s being Q.
Although the logistical complexity of this assumption is somewhat disconcerting
on first glance, it is scarcely conceivable that any coherent theory of the Pr/pr
interface would not entail some such irrelevance principle. Thus while equations
(11)–(16), below, are grounded partly on intuition, it is an intuition which has

2Specifically, Miller (1966) has derived paradox from the special case, Pr[Qa | pr(Q) = r] = r,
of this principle, and although Miller’s argument exploits a correctable technical ambiguity, further
difficulties lie deep within this principle’s substantive content (see Rozeboom, 1969).

2



every right to be taken seriously until strong arguments to the contrary are forth-
coming.

I

For any two propositions p and q, it is elementary to show (cf. fn. 8, below) that
if p entails q then q as evidence confirms p provided only that neither p, ∼ p, nor q
were certain to begin with.3 However, this theorem has only limited relevance for
the confirmation of scientific generalities insomuch as these are usually conditionals
which fail to imply the categorical data by which they are confirmed. Consider,
for example, the hypothesis that

(1) All As are Bs

i.e.

(la) If anything is an A, then it is also a B,

which may be formalized as

(2) (x)(Ax→ Bx)

wherein ‘→’ abbreviates ‘If . . ., then . . .’ in whatever sense is intended by (la).
How might this hypothesis be confirmed by observing the properties of particular
objects ? Common sense cries out that data of the form

(3) Aa ·Ba

—i.e. evidence that some particular A is also a B—confirm (2). But all which can
be deduced about object a from generality (2) is that

(4) Aa→ Ba,

and even if (3), too, implies (4), it is important to appreciate that evidence which
verifies an uncertain consequent of a proposition p need not confirm p itself. That
is, if p and e both entail q while 0 < Pr(p) < 1 and Pr(q) < 1, then Pr(p | q) >
Pr(p) but not necessarily Pr(p | e) > Pr(p). Thus our intuition that (3) confirms
(2) cannot be justified merely by appeal to the principle that evidence supports

3Confirmation of a hypothesis by verification of its consequent need not be inferentially signif-

icant, however. For discussion of this point together with demonstration that the “hypothetico-
deductive” view of scientific inference is generically vacuous, see Rozeboom, 1970.
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those hypotheses which entail it; for insomuch as (3) includes datum Aa, it is
stronger than any consequence of (2).

Just as we feel that determining whether an object known to be an A is or is
not a B respectively confirms or refutes hypothesis (2), so does it also seem that
learning the B -state of something which is not an A, i.e. an observation of form

(5) ∼ Aa ·Ba

or

(6) ∼ Aa · ∼ Ba,

has no relevance to the credibility of (2). But by contraposition, (1) appears
logically equivalent to ‘All non-Bs are non-As,’ i.e.

(7) (x)(∼ Bx→∼ Ax),

which by the same intuition as before is confirmed by (6) but not by (3) or (5).
Moreover, another prima facie equivalent to (1), namely ‘Everything is either a
non-A or a B’, or

(8) (x)(∼ Ax ∨Bx),

seems by virtue of its symmetry in ∼A and B to be confirmed by either (3), (5),
or (6). This is the “paradox of confirmation,” namely, the incompatibility of our
commonsense convictions (i) that (3) but not (5) or (6) confirms (2), (ii) that (6)
but not (3) or (5) confirms (7), (iii) that (3), (5), and (6) all confirm (8), and (iv)
that (2), (7), and (8) are all logically equivalent. (That (i)-(iv) are incompatible
follows from the elementary theorem that for any three propositions p, q, and r
such that p and q are logically equivalent, r confirms p iff r confirms q.)

While the assumed equivalence of ‘All As are Bs,’ ‘All non-Bs are non-As,’ and
‘Everything is either a non-A or a B ’ is not above suspicion, the most pressing
challenge to confirmation theory raised by the paradox of confirmation is simply
that of determining, by arguments more convincing than naked intuition, just what
degree of confirmation is, in fact, given to a generalized conditional by a particular
observation which does not refute it. In our present case, if h is hypothesis (2)
while d is datum (3), (5), or (6), we need to deduce how Pr(h | d) compares with
Pr(h). But it is a fundamental theorem of confirmation theory that

(94)
Pr(h | d)

Pr(h)
=

Pr(d | h)

Pr(d)
.
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Hence d confirms h iff h confirms d, and our original query about the confirmation
of hypothesis (2) by observation (3), (5), or (6) is answerable if and only if we are
able to determine how the respective probabilities of (3), (5), and (6), given (2),
compare with their prior probabilities.

Our problem, therefore, may be recast as follows: To confirm or disconfirm
generality (2), we propose to observe the status of an arbitrary object a with regard
to properties A and B, and to adjust our degree of belief in this law in accord with
the shift from its prior probability to its probability given the observation. The
four possibilities for our to-be-acquired datum are, of course,

Aa ·Ba, Aa · ∼ Ba,
∼ Aa ·Ba, ∼ Aa · ∼ Ba,

while as just noted, we can interpret each of these in regard to the credibility of
(2) only if we know what the law, in turn, implies about the probability of this
particular observation. The probability of Aa · ∼ Ba given (2) is clearly zero—
which is why this observation would, conversely, drop the posterior probability of
(2) to vanishing. But what probabilities does (2) confer upon the three datum
alternatives with which it is compatible? One is tempted to argue that (2) merely
disclaims the existence of any A which is not also a B and should hence say
nothing about the respective probabilities of being both A and B, both non-A and
B, or both non-A and non-B. But this cannot be so, for insomuch as Pr(Aa ·Ba |
(2))+Pr(Aa · ∼ Ba | (2))+Pr(∼ Aa · ∼ Ba | (2)) = 1 = Pr(Aa ·Ba)+Pr(Aa · ∼
Ba) + Pr(∼ Aa ·Ba) + Pr(∼ Aa · ∼ Ba) while Pr(Aa · ∼ Ba | (2)) = 0, we have

(10) {Pr(Aa ·Ba | (2))− Pr(Aa ·Ba)}
+{Pr(∼ Aa ·Ba | (2))− Pr(∼ Aa ·Ba)}
+{Pr(∼ Aa · ∼ Ba | (2))− Pr(∼ Aa · ∼ Ba)}

= Pr(Aa · ∼ Ba);

whence if Pr(Aa · ∼ B) 6= 0, at least one of the three terms in braces on the left-
hand side of (10) must be positive. Thus so long as a joint occurrence of A and
∼B is not impossible at the outset, at least one of the observational possibilities,
Aa · Ba, ∼ Aa · Ba, or ∼ Aa · ∼ Ba, must confirm hypothesis (x)(Ax → Bx).
More generally, any hypothesis which entails that certain combinations of proper-
ties have zero probability of occurrence also requires a compensatory alteration of
probabilities over those property-combinations which the hypothesis does not ex-
clude. Accordingly, full specification of a statement’s meaning must clarify not

4Proof: Since Pr(p | q) = Pr(p · q)/Pr(q) for any propositions p and q, each side of (9) equals
Pr(h · d)/[Pr(h)× Pr(d)]
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merely its deductive force but its probabilistic implications as well. In particular,
it is premature to assume that two generalities which agree in what observational
possibilities they exclude necessarily confer the same probabilities upon the various
observations with which they are compatible.

II

The supposedly paradigmatic examples of data and theory which have become
traditional in philosophic reconstructions of the scientific enterprise are, in logical
complexity, usually but pale shadows of the real thing. Convenient as these sim-
plifications may be for many analytic purposes, they also obliterate details and
subtleties which often carry the main thrust of technical science. This is especially
true of typical philosophic accounts of scientific “laws,” for sentence-schema ‘All
φs are ψs’ is far too primitive for accurate description of natural regularities. In-
stead, modern science employs a variety of regularity concepts falling under the
general rubric ‘Variables X and Y are related under boundary conditions B in
fashion r ’.5 (A “variable” in scientific parlance is a set of properties which are
mutually exclusive and jointly exhaustive over a given domain of objects, while a
variable’s “value” for a member of its domain is that one property in the relevant
set which is true of that object. For details, see Rozeboom, 1966.) Technical
measures of bivariate (and, more generally, multivariate) relatedness are of two
fundamentally distinct kinds: symmetric vs. asymmetric. Symmetric measures
such as correlation coefficients describe some aspect of how variables X and Y

co-vary under conditions B—i.e. what combinations of values on X and Y tend
to be more prevalent than others. The complete symmetric relationship between
X and Y in B is given by the “joint distribution” of X and Y in B, namely, the
frequency, probability, or probability density of each combination of a value Xi

of X with a value Yj of Y among objects satisfying conditions B. Asymmetric
relational measures such as regression coefficients, on the other hand, characterize
how variable Y depends upon variable X (or conversely) under conditions B, while
the complete statistical dependency of Y upon X in B is given by the function
which maps each value Xi of X into the contingent distribution of Y, given Xi,
in B. (The “contingent distribution” of Y, given Xi, in B is the distribution of
Y—i.e. the frequency, probability, or probability density of each value Yj of Y—
under the boundary conditions of having value Xi of X as well as satisfying B.)
Mathematically, any contingent distribution of Y given Xi in B is equally toler-
ant of any arbitrary frequency, probability, or probability density in B for Xi, so

5Even this is insufficient to cover all forms of lawful relationships dealt with by contemporary
science. Over and above the fact that research on the simultaneous relatedness of an arbitrarily
large number of variables has been burgeoning over the past century, new methodologies have
recently emerged for detection and analysis of data patterns to which the more traditional mul-
tivariate concepts do not apply (see Rozeboom, 1966, pp. 197–214).
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the dependence of Y upon X in B is not ordinarily thought to reveal anything
about how the independent variable X is itself distributed in B. More generally,
there is common agreement in research practice that the distribution of one or
more variables under a given set of boundary conditions should be regarded as
a statistical datum which tells nothing about the prevalence of these boundary
conditions themselves, nor about the distribution of these variables under alter-
native boundary conditions, except insofar as we have acquired some higher-level
empirical generalizations which support inference from one statistic of this sort to
another.

The contrast between symmetric and asymmetric measures of bivariate related-
ness in large measure reflects the empirical methods by which natural regularities
are identified. In correlational research, one obtains a hopefully random sample of
joint observations on variables X and Y under boundary conditions B and inter-
prets these as a sample-frequency approximation to the joint distribution of these
variables in B. Whereas in dependency studies (often referred to as “experimen-
tal” method in contrast to the “field observations” of correlational technique), a
chosen number of Y-values are observed under conditions B at each of certain
experimenter-selected or experimenter-induced values of X, and the relative fre-
quencies of observed Y-values at each observed X-value Xi taken as a sampling
approximation to the underlying contingent distribution of Y given Xi in B. Inso-
much as the latter method imposes a distribution on X in the observed sample, it
can yield no information about X’s underlying distribution in B. Neither does it
intrinsically reveal anything about the contingent distributions of Y in B at un-
observed values of X, though in practice the function mapping observed X-values
into contingent Y-distributions is often sufficiently regular that we feel reasonably
confident in generalizing it to unobserved X-values as well.

To illustrate these habits of statistical thought, consider the inductive impli-
cations of certain hypothetical information which might be obtained about the
relationship within the population of humans between two dichotomous variables-
say Sex and Handedness, the values of which are 〈being male, being female〉 and
〈being right-handed, being left-handed〉, respectively. Since the distribution of a
dichotomous (i.e. two-valued) variable is completely characterized by the preva-
lence of one of its values, the statistical dependence of Handedness upon Sex in
humans may be described by stating for each sex the probability that a person
of that sex is right-handed. Suppose, now, that you are informed that 86% of
male humans are right-handed. This gives you the contingent distribution of hu-
man Handedness at one value—male—of the Sex variable, but what does it imply
about (a) the contingent distribution of Handedness in human females, or about
(b) the distribution in humans of Sex itself? With respect to (a), inferring that
probably about 86% of female humans, too, are right-handed is justified only
to the extent that you are willing likewise to infer that Handedness is statisti-
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cally independent of Sex among humans—an unreasonable assumption to make in
view of the profound difference you know Sex to make for so many other physical
and behavioral characteristics. More precisely, being given the incidence of right-
handedness in human males converts your prior distribution of probabilities over
the various possible dependencies Handedness might have upon Sex in humans
into a posterior distribution of probabilities for the distribution of Handedness in
human females, which distribution of distributions then collapses into a posterior
probability of female right-handedness given the handedness data for males. Just
what this posterior probability may be depends upon your background knowledge
prior to learning the male-handedness statistic, but there is no obvious reason why
it should diverge appreciably from your prior expectation of right-handedness in
human females—certainly the male datum gives you no primary inductive grounds
on which to revise your prior beliefs about females. And as for (b), there seems
to be no reason at all for inferring anything about the prevalence of masculinity
in humans from information that within the class of male humans, whatever its
incidence, 86% are right-handed. Roughly speaking, then, we may say that the
primary, or conservative, interpretation of evidence comprising the contingent dis-
tribution of one variable Y at a fixed value of another variable X under boundary
conditions B is to leave unaltered one’s beliefs both about the distribution of X

in B and about the contingent distributions of Y in B at other values of X.

On the other hand, if you are informed only that 41% of humans are both
male and right-handed, you have learned part of the joint distribution of Sex
and Handedness in humans, but what does this tell you about the remainder of
the distribution? Certainly it reveals nothing about how Sex and Handedness
co-vary under these boundary conditions unless you are also given the marginal
distributions of Sex and Handedness, even though it does make some difference
for what the latter are likely to be, and the conservative interpretation is for
your beliefs about the joint distribution of Sex and Handedness contingent upon
a person’s being not both male and right-handed to remain unchanged from what
they were before you learned the incidence of right-handed males among humans.

The fundamental point to be made here is simply that the contingent distribu-
tion of a variable Y at a given value Xi of a variable X under boundary conditions
B is a very different datum from the joint frequency of a particular combination
of values on X and Y in B, and that by the same token both of these differ signif-
icantly from the contingent distribution of X in B at a given value Yj of Y. These
differences are deeply rooted in technical conceptions of bivariate relatedness, and
while the respective implications of these statistics for other aspects of the total
bivariate structure from which they are an abstraction depend importantly upon
the details of whatever additional knowledge is also available, the primary induc-
tion in each case is that if d asserts only that some distributional property holds
within a subclass Bi of B while all that p claims is either (1) that certain things
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are true of some distribution within a subclass of B alternative to Bi or (2) that
Bi and its alternatives have a certain distribution in B, then Pr(p | d) = Pr(p).

III

When ordinary-language generality (1) is inspected from the vantage point of
distribution theory, the grammatical style in which it predicates something of the
class of objects having property A strongly urges that we interpret it as specifying
the contingent distribution of the variable B =def 〈B, ∼ B〉 among just those
objects having value A of the variable A =def 〈A, ∼ A〉.6 That is, if D is the
domain of the quantifier in (2), ‘All As are Bs’ essentially says that the contingent
distribution of variable B in D at value A of variable A is such that B occurs with
100% incidence. By the same grammatical principle, we are urged to interpret ‘All
non-Bs, are non-As’ as basically a statement about the contingent distribution
of variable A at value ∼ B of variable B. And finally, the natural impact of
‘Everything is either a non-A or a B’ is symmetric in ‘non-A’ and ‘B ’ with neither
providing a grammatical subject for the sentence, is that of a partial description
of the joint distribution of variables A and B in D, namely, as a claim that joint
occurrence of A and non-B has zero incidence in D. But then it is not correct
to regard propositions (2), (7), and (8) as logical equivalents. (Note that even in
this highly special case with dichotomous variables and extreme incidence rates,
pr(B | A) = 1 cannot be deduced from pr(∼ A∨B) = 1 or from pr(∼ A | ∼ B) = 1
unless it is also given that pr(A) 6= 0.) And if (2), (7), and (8) do not say precisely
the same thing, then neither is it paradoxical that they have somewhat different
confirmational patterns.

To be explicit, consider what the primary inductive interpretations of (2), (7)
and (8) respectively imply, by way of my introductory assumption relating the
probabilities of propositions to the probabilities of properties, about their confir-
mation by the joint values on A and B of a to-be-observed object a. Placing an
‘i ’ over the “given”-bar in those probabilities which remain unaltered from their
prior values under primary induction from the assumed generality and also over the
equalities which follow by means of the latter, while ‘1’ or ‘0’ over the bar denotes
a probability implied by the assumed generality to be unity or zero, respectively,
we have

6In scientific practice, A and B would most likely be regarded as values of multi-valued
variables—e.g. ‘All rubies are red,’ wherein being a ruby is best construed as one of many
alternative gemstone types while being red is one of many alternative colorations. For heuristic
purposes, however, any variable X of which Xi is a value can always be collapsed into a dichoto-
mous variable X* whose two values are, respectively, Xi and the disjunction of all X-values other
than Xi.
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(117) Pr(Aa ·Ba | (2)) = Pr(Aa
i

| (2))× Pr(Ba
1

| Aa · (2))
i
= Pr(Aa),

Pr(Aa · ∼ Ba | (2)) = Pr(Aa
i

| (2))× Pr(∼ Ba
0

| Aa · (2)) = 0,

Pr(∼ Aa ·Ba | (2)) = Pr(∼ Aa
i

| (2))× Pr(Ba
i

| ∼ Aa · (2))
i
= Pr(∼ Aa)× Pr(Ba | ∼ Aa)
= Pr(∼ Aa ·Ba),

Pr(∼ Aa · ∼ Ba | (2))= Pr(∼ Aa
i

| (d))× Pr(∼ Ba
i

| ∼ Aa · (2))
i
= Pr(∼ Aa)× Pr(∼ Ba | ∼ Aa)
= Pr(∼ Aa · ∼ Ba)

for the primary inductive implications of ‘All As are Bs’, whereas those of ‘All
non-Bs are non-As’ for these same datum possibilities are

(12) Pr(Aa ·Ba | (7)) = Pr(Ba
i

| (7))× Pr(Aa
i

| Ba · (7))
i
= Pr(Ba)× Pr(Aa | Ba)
= Pr(Aa ·Ba)

Pr(Aa · ∼ Ba | (7)) = Pr(∼ Ba
i

| (7))× Pr(Aa
0

| ∼ Ba · (7)) = 0,

Pr( Aa ·Ba | (7)) = Pr(Ba
i

| (7))× Pr(∼ Aa
i

| Ba · (7))
i
= Pr(Ba)× Pr(∼ Aa | Ba)
= Pr(∼ Aa ·Ba),

Pr(∼ Aa· ∼ Ba(7)) = Pr(∼ Ba
i

| (7))× Pr(∼ Aa
1

| ∼ Ba · (7))
= Pr(∼ Ba).

Finally, under the partial-joint-distributional interpretation of ‘Everything is either
non-A or B ’,

(138) Pr(Aa ·Ba | (8)) = Pr(∼ Aa ∨Ba
1

| (8))× Pr(Aa ·Ba
i

| (∼ Aa ∨Ba) · (8))
i
= Pr(Aa ·Ba | ∼ Aa ∨Ba)
= Pr(Aa ·Ba) / Pr(∼ Aa | Ba),

Pr(Aa· ∼ Ba
0

| (8)) = 0,

Pr(∼ Aa ·Ba | (8)) = Pr(∼ Aa ∨Ba
1

| (8))× Pr(∼ Aa ·Ba
i

| (∼ Aa ∨Ba) · (8))

7To clarify the proofs for (11)–(13), it will suffice to show the derivation for Pr(Aa ·Ba | (2)).
From the probability calculus we have Pr(Aa · Ba | (2)) = Pr(Aa | (2))× Pr(Ba | Aa · (2)). But
Pr(Ba | Aa · (2)) = 1 since Aa and (2) jointly entail Ba; while since by primary induction (2)
makes no difference for the probability of property A, the assumed Pr/pr irrelevance principle
implies that Pr(Aa | (2)) = Pr(Aa). Hence Pr((Aa ·Ba | (2)) = Pr(Aa)× 1 = Pr(Aa).
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i
= Pr(∼ Aa ·Ba | ∼ Aa ∨Ba)
= Pr(∼ Aa· ∼ Ba)/Pr(∼ Aa ∨Ba),

Pr(∼ Aa · ∼ Ba | (8))= Pr(∼ Aa ∨Ba
1

| (8))× Pr(∼ Aa · ∼ Ba
i

| (∼ Aa ∨Ba) · (8))
i
= Pr(∼ Aa · ∼ Ba |∼ Aa ∨Ba)
= Pr(∼ Aa · ∼ Ba) / Pr(∼ Aa ∨Ba).

Hence using principle (9), the confirmation ratios for these three versions of the
generality under each possible observation of joint values on A and B are

Pr((2) | Aa ·Ba)

Pr((2))
=

1

Pr(Aa ·Ba)
,(14)

Pr((2) | Aa · ∼ Ba)

Pr((2))
= 0,

Pr((2) | ∼ Aa ·Ba)

Pr((2)
= 1,

Pr((2) | ∼ Aa · ∼ Ba)

Pr((2))
= 1,

for ‘All As are Bs’;

Pr((7) | Aa ·Ba)

Pr((7))
= 1,(15)

Pr((7) | Aa · ∼ Ba)

Pr((7))
= 0,

Pr((7) | ∼ Aa ·Ba)

Pr((7)
= 1,

Pr((7) | ∼ Aa · ∼ Ba)

Pr((7))
=

1

Pr(∼ Aa · ∼ Ba)
,

for ‘All non-Bs are non-As; and

Pr((8) | Aa ·Ba)

Pr((8))
=

1

Pr(∼ Aa ∨Ba)
,(16)

Pr((8) | Aa · ∼ Ba)

Pr((8))
= 0,

Pr((8) | ∼ Aa ·Ba)

Pr((8)
=

1

Pr(∼ Aa ∨Ba)
,

Pr((8) | ∼ Aa · ∼ Ba)

Pr((8))
=

1

Pr(∼ Aa ∨Ba)
,

8Cases Aa ·Ba,∼ Aa ·Ba, and Aa · ∼ Ba here utilize principles (a) that if p logically entails
q, then for any additional proposition r, Pr(p | r) = Pr(q | r)×Pr(p | q · r) + Pr( ∼ q | r)×Pr(p |
∼ q · r) = Pr(q | r) × Pr(p | q · r), and (b) that when p entails q, Pr(p | q) = Pr(p)/Pr(q), which
follows from (a) by letting r be tautological.
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for ‘Everything is either a non-A or a B ’. Thus under primary induction, obser-
vation Aa · Ba would confirm (2) but not (7), observation ∼ Aa · ∼ Ba would
confirm (7) but not (2), while any one of the observations Aa · Ba, ∼ Aa · Ba, or
∼ Aa · ∼ Ba would confirm (8)—exactly as intuition says should be so.

IV

So much for the “paradox of confirmation” in its classical formulation. Its resolu-
tion consists in showing that the three generalities, ‘All As are Bs,’ ‘All non-Bs
are non-As,’ and ‘Everything is either a non-A or a B,’ are not commonsensically
understood to mean exactly the same thing, as manifested by their failure to ef-
fect the same pattern of adjustment in the credibilities we attach to the various
possible observations with which they are compatible. But this only confronts us
with a deeper problem: What must be the character of the connective in (2) if the
probabilistic conclusions we typically draw from it are to be a legitimate inference
from ‘If . . . , then . . .’ statements of this sort?

Since the point I now wish to make is more directly accessible through analysis
of nonqualified conditionals than through conditional generalities, I shall assume
that there is a sense—in fact, probably the most common sense—of ‘If . . . , then
. . .’ which is ascribed directly to complete propositions rather than to propositional
functions as in (2), but which has essentially the same pattern of primary-inductive
implications as does the connective in (2). (One could, in fact, argue that this
is inherent in (11) on the grounds that (x)(Ax → Bx) entails Aa → Ba by
instantiation of the quantifier, while it is the law’s particularization for object a
which mediates the law’s probabilistic implications about a’s properties. However,
insomuch as this argument is not impeccable, I shall bypass it.) Specifically, I
presume that when ‘p → q’ expresses this sort of conditional coupling between
two propositions p and q, p → q makes a difference for the probability of q given
also p, but not for the probability of p. Certainly in everyday linguistic practice
we often intend our conditional assertions to have this sort of force. Thus when I
speculate, “If it freezes tonight, my car won’t start in the morning,” or “If Jim’s
hole card isn’t a queen, then I’ll win this pot,” I do not consider the contingency I
am entertaining to make the slightest difference for whether it will freeze tonight
or whether Jim’s hole card is a queen. But if in general Pr(p | p → q) = Pr(p),
then the ‘→’-connective cannot be explicated as material implication. For insomuch
as ∼ p entails p → q by the definitional equivalence of p ⊃ q with ∼ (p · ∼ q) we
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have Pr[∼ p · (p ⊃ q)] = Pr(∼ p); hence

Pr(p | p ⊃ q) = 1− Pr(∼ p | p ⊃ q) = 1−
Pr[∼ p · (p ⊃ q)]

Pr(p ⊃ q)

= 1−
Pr(∼ p)

Pr(p ⊃ q)
= Pr(p) + Pr(∼ p)−

Pr(∼ p)

Pr(p ⊃ q)

= Pr(p)− Pr(∼ p)

[

1− Pr(p ⊃ q)

Pr(p ⊃ q)

]

,

or expressed as a confirmation ratio,

(17)
Pr(p | p ⊃ q)

Pr(p)
= 1−

Pr(∼ p)

Pr(p)
×

Pr[∼ (p ⊃ q)]

Pr(p ⊃ q)
.

Thus unless the prior probability of p or of p → q is unity, the probability of p
given p ⊃ q is necessarily less than the prior probability of p—whence if Pr(p |
p→ q) = Pr(p) even while p and p→ q have some prior uncertainty, p→ q cannot
be logically equivalent to p ⊃ q. The former entails the latter, but not conversely.

It is not possible to be so definite about the unacceptability of material impli-
cation for explicating the conditional in generalities such as (2), for the probability
calculus does not in itself authorize any deductive conclusions about how the prob-
ability of property A (or the proposition-probability that an arbitrary object a is
an A) given (x)(Ax ⊃ Bx) differs from the unconditional probability of A. Since
(x)(Ax ⊃ Bx) is logically equivalent to (8), it can be deduced from (13) that

(18)
Pr[Aa | (x)(Ax ⊃ Bx)]

Pr(Aa)
= 1−

Pr(∼ Aa)

Pr(Aa)
×

Pr[∼ (Aa ⊃ Ba)]

Pr(Aa ⊃ Ba)
;

however, it is not absolutely certain that probabilistic implications (13) really are
inherent in the meaning of (8). Even so, it can in any event be shown that

(19)
Pr[Aa | (x)(Ax ⊃ bx) · h*]

Pr(Aa | h*)
= 1−

Pr(∼Aa | h*)

Pr(Aa | h*)
×

Pr[∼ (Aa ⊃ Ba) | h*]

Pr(Aa ⊃ Ba | h*)
,

where

h∗ =def (X)[(x 6= a) ·Ax ⊃ Bx],

so there is at least a mathematical tendency for (x)(Ax ⊃ Bx) to imply a decreased
probability of Aa even if the auxiliary hypothesis that object a is at most the only
exception to (x)(Ax ⊃ Bx) is needed to make this tendency explicit. It appears,
then, that replacement of ‘→ in (2) by ‘⊃’ would be in fundamental violation of
the probabilistic inferences which are usually drawn from conditional-distribution
information in real life, even when the purity of primary induction as in (14) is
modulated by secondary inductions. Either these de facto inferences are badly
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misguided or there is a truly conditional sense of ‘If . . . , then . . . ’ which cannot
be truth-functionally reduced to ‘Either not-. . . or . . .’.

V

But if ‘All As are Bs’ and ‘If p, then q ’ generally say more than that (x)(Ax ⊃ Bx)
and that p ⊃ q, respectively, what then is the connective’s meaning in such cases?
I am not at all sure that I can answer this satisfactorily, partly because there may
well exist a whole family of conditionals stronger than ‘⊃’ and partly because these
may be conceptually primitive, amenable to explication only through exhibiting
their logical grammar and contexts of usage. But I can at least point out a fragment
of the answer, and a most provocative fragment it is.

The origin of the conditionality concept (concepts ?) in question—neither quite
logical nor quite descriptive—very likely resides in the responsibility ordering of
judgments. A person’s beliefs at any given moment are not an accidental aggregate
of disconnected opinions, but partake of an inferential cohesiveness by which some
of these beliefs are, for that person, the psychological basis of the rest. A person
believes proposition p to a certain degree because he believes proposition q, and
believes q in turn because he jointly believes propositions r and s, etc. Even when
two propositions are logically equivalent, their positions within a particular belief
structure will generally be asymmetric in that the degree of conviction invested in
the one derives from the conviction sustained by the other. Now psychologically,
it is but a short step from believing p because of believing q to believing that p is
the case because q is the case. Whether or not this is the notion’s sole origin, it
is in any event a fundamental fact of human reason that many of our judgments
are explicitly of form ‘p because q ’, while a great many more such beliefs are
latent in the explanations we are willing to accept. It will surely be agreed, for
example, that the conjunctive fact, say, that John and Jim are both married, is
due jointly to John’s being married and to Jim’s being married, while my birthday
is in February because I was born on Feb. 29, 1928. The direction of responsibility
in such cases may or may not coincide with the direction of entailment: p · q
entails p which in turn entails p ∨ q, yet the truth of both p · q and p ∨ q is
derivative from the truth of p—i.e. p’s being the case is (in part) why p · q and
p ∨ q are the case. More generally, it is intuitively evident that the truth of
any molecular proposition F (p1, · · · , pn) which is a truth-function of propositions
p1, · · · , pn depends upon (derives from, is due to, originates in, has as its source)
the truth-states of p1, · · · , pn but not conversely. Note moreover that while the
apparent direction of propositional responsibility is ordinarily aligned with the
direction of our inferences this is not always so. For example, though belief in a
disjunction p∨q usually derives from belief either in p or in q, the order of evidence
sometimes proceeds in reverse from p∨q to weak confirmation of p and q, as when,
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e.g. I infer from the mess in the corner that one of our two puppies has misbehaved
again even though I can’t tell which one. In such an instance we would maintain
that p∨ q is the case either because of p, or of q, or of both, even while remaining
uncertain as to which explanation for p ∨ q is the correct one. Thus even if the
concept of “because” has its psychological genesis in the experience of credibility
derivation, what we mean by saying ‘p because q ’ is something other than that
belief in q is our reason for believing p. (Just the same, I shall contend that
important if obscure analytic ties still remain between the structure of inference
and the structure of responsibility despite the lack of simple equivalence between
these.9)

Now consider a typical problem in the theory of explanation. Suppose that

(20) Dale Smith was sired by Adam Smith,

(21) Dale Smith is a male,

and that moreover,

(22) All of Adam Smith’s children are males.

Can or can we not explain (21) by appeal to datum (20) and generalization
(22)? Clearly the proffered explanation fits the Hempel-Oppenheim “covering
law” model of explanation; yet as many writers have protested, one might just as
well argue instead that given (20), (21) is a necessary condition for the truth of
(22) and, along with the sex particulars about Adam Smith’s other children, is
why generalization (22) is true. What is uncertain in this case is the direction of
responsibility: Given that Adam Smith is Dale Smith’s father, is Dale masculine
because it is a law that all Adam’s children are male, or are all of Adam’s chil-
dren male simply because Dale, like his two siblings, happened to turn out male?
Either alternative is possible, for while we have reason to think that about 13%
of three-children families should have all boys by chance alone, it is also plausible
that aberrant gamete formation in some men prevents them from siring offspring
of both sexes. Either way—and this is the point of this deliberately ambiguous
example—it is evident that (20) and (22) are an intuitively acceptable “explana-
tion” of (21) if and only if the latter is considered to be due to the former.

9A similar situation obtains for many of the important problematic concepts around which we
order our lives. For example, the notion of propositional probability almost certainly originates
in the primitive use of declarative assertions of form ‘Probably p’ to communicate less-than-
perfect confidence in the truth of proposition p. Yet what is meant by “the probability of p” in
more sophisticated contexts today is clearly distinct from any claim about the degree to which
any person does, in fact, believe p. It does, however, retain an intimate if still controversial
connection with the degree to which p should be believed.
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Although ‘p because q ’ entails both p and q, the subjunctive ‘Were q to be
the case, then, due to q, p would also be the case’ preserves the responsibility
attribution of the former while remaining noncommittal about the truth of p.
And this, I suggest, is essentially the force of the non-truth-functional ‘If . . . ,
then . . .’. When I fear, e.g., that my car won’t start tomorrow morning if it
freezes tonight, but do not consider the state of affairs so conjectured to matter
for whether it will freeze tonight, my belief is that a freeze tonight would bring
about—i.e. be responsible for—an ignition failure in my car, but that the state
of affairs which is the basis of this contingency has no influence on the weather.
(Otherwise, if I feared, say, merely some state of affairs s in light of which the
hypothesis of its freezing tonight would be a good reason for inferring that my
car won’t start tomorrow, the question would remain whether s is anything more
than the disjunction of its not freezing and my car’s not starting, and why I
should think that the conditional probability of a freeze, given s, is the same as
its prior probability. My further supposition about the order of responsibility is
needed to justify my construing the probability of a freeze as independent of s.)
Similarly, when I surmise that all As are Bs in the sense of the connective under
which primary induction yields a pattern such as (14), I hypothesize a connection
between properties A and B which I have no reason to think affects the prevalence
of A but which, once an instantiation of A has occurred, acts with the latter to
produce an instantiation of B.

That ascriptions of responsibility are a fundamental and pervasive theme in
our de facto beliefs about reality’s organization admits of no real doubt.10 How
to do justice to this intuition in formalized reconstructions of natural language,
on the other hand, is quite another matter. (One could, of course, argue that the
notion is bereft of all validity and should hence be ignored, but a more seemly
philosophic reaction is to analyze it first and worry about its epistemic status
afterward.) Whereas past skirmishes with this problem along traditional lines
have had an unblemished history of failure (witness the state-of-the-art regarding
subjunctive and counterfactual conditionals), it now appears that our primary
explicative access to propositional responsibility may well lie in the latter’s relation
to probability structure. The exact contours of this relation, however, are by no
means simple to trace, for the key issues are intricately technical and quickly fuse
with advanced problems on the nature of propositional probability. Since it is
impossible to do even frontier justice to these issues without eclipsing the main
concerns of this paper, I shall here attempt no more than to outline with minimal

10The reader who, like one referee of this paper, is sceptical of this claim is invited to test how
long he can conduct his practical affairs without any recourse, explicit or otherwise, to the concept
of “because” and its cognates. Even if one were to argue that there is no order of responsibility in
the external world but only a “pragmatic” structure of inference wherein some beliefs are reasons
for others, this would still concede that we hold some beliefs because of our reasons for them and
hence admit an order of responsibility at least among cognitive events.
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argument what seems to me to be the most promising position on the matter.
Specifically, I propose that while ‘because,’ ‘is due to,’ and similar expressions
function grammatically as propositional connectives, they are parasitical upon
other, more basic connectives by way of the probabilistic implication patterns
projected by the latter.

By an “n-adic propositional connective,” let us mean any n-place propositional
matrix F such that (i) for any n-tuple 〈p1, . . . , pn〉 of propositions, F (p1, . . . , pn)
is also a proposition, and (ii) matrix F contains no intact propositions nor any
intentional-act verbs such as ‘believes’, ‘hopes,’ ‘perceives,’ etc. We can differenti-
ate between “truth-functional” and “modalic” propositional connectives as follows:
Let a “truth state” of proposition n-tuple 〈p1, . . . , pn〉 be defined as any conjunc-
tion of n propositions p*1, p*2, . . . , p*n such that each p*i is either pi or ∼ pi. Then,

Definition 1. An n-adic propositional connective F is truth-functional iff, for
any n+3 propositions p1, . . . , pn, b, ti and tj such that ti and tj are truth states
of 〈pi, . . . , pn〉 while neither Pr[ti ·F (p1, . . . , pn) · b] nor Pr[tj , ·F (p1, . . . , pn) · b]
are zero,

Pr[ti | F (p1, . . . , pn) · b]

Pr[tj | F (p1, . . . , pn) · b]
=

Pr(ti | b)

Pr(t
j
| b)

.

That is, F is truth-functional iff, for any argument n-tuple 〈p1, . . . , pn〉 and relative
to any background information b, F (p1, . . . , pn) does not affect the likelihood ratios
of those truth-states of 〈p1, . . . , pn〉 with which F (p1, . . . , pn) is compatible. It
is easily seen that any connective which can be defined via truth table is truth
functional in the present sense. (More precisely, it can be proved that a connective
is truth functional if and, so long as it is compatible with at least two distinct truth
states of its argument, only if Pr[F (pi, . . . , pn) | t] = 1 for every truth state t of
〈p1, . . . , pn〉 such that Pr[(F (p1, . . . , pn) · t)] > 0 .) In contrast,

Definition 2. A propositional connective ismodalic iff it is not truth-functional.

The justification for introducing this second category of propositional connectives
is simply that, as we have seen, the connective ‘If . . ., then . . .’ is in practice often
construed modalically.

In principle, we should be able to distinguish many different types of modalic
connectives according to the various patterns of probability they confer upon their
arguments’ truth-states. Which of such patterns are characteristic of connectives
actually in use is still largely unknown to me; the best I can do on this occasion
is to describe two extremes which seem to idealize probabilistic inference patterns
to which our thinking does, in fact, often conform.

17



Definition 3. A dyadic propositional connective ⇒ is a modalic entailment
iff for any two propositions p and q for which the following probabilities are
well-defined, (a) Pr(p | p ⇒ q) = Pr(p), (b) Pr[q | (p ⇒ q)] = 1, and (c)
Pr[q | (p⇒ q)· ∼ p] = Pr(q | ∼ p).

Definition 4. A dyadic propositional connective ⇒ is a modalic determination
iff, for any two propositions p and q for which the following probabilities are
well-defined, (a) Pr(p | p ⇒ q) = Pr(p), (b) Pr[q | (p ⇒ q)] = 1, and (c)
Pr[q | (p⇒ q) · ∼ p] = 0.

The difference between Definitions 3 and 4 is that whereas p is only a sufficient
condition for q, given p⇒ q, when ⇒ is a modalic entailment, it is both necessary
and sufficient when ⇒ is a modalic determination.

It should be observed that modalic entailment and determination are here
defined only in terms of their primary inductive implications. Nothing is said
about probabilities contingent upon p⇒ q when this is supplemented by additional
background information b. How Pr[p | (p ⇒ q) · b] and Pr[q | (p ⇒ q) · ∼ p · b]
may be affected by secondary induction from b remains an open question. Neither
shall I here attempt to identify any patterns of weak modalic implication wherein
Pr[q | (p⇒ q) · p] is less than unity, even though some such notion appears needed
to formalize our commonsense belief in fallible conditionality—as when, e.g. I
warn “If you don’t slow down, you’ll get a speeding ticket” even though I know
that your getting ticketed is not certain to follow from your continued speeding.

Insomuch as modalic entailment and modalic determination are categories of
propositional connectives, definition of the type does little to make known what
instances, if any, fall under it. While commonsense is adamant that modalic
entailments and determinations (or at least approximations thereto) do exist, it
has been extremely frugal with specific examples—in fact, about the only one I
can think of is causation, though to be sure it is an open question whether the
unreconstructed everyday use of “cause” may not sprawl across what more refined
analysis will eventually recognize as a whole family of modalic connectives. On
the other hand, existential use of a category does not require familiarity with its
members, and we are perfectly free to introduce derivative concepts of modalic
entailment and determination which apply directly to propositions rather than to
propositional connectives as follows:

Definition 5. Proposition p modalically entails (determines) proposition q iff
there exists, at least in linguistic potential, a propositional connective ⇒ such
that p⇒ q while ⇒ is a modalic entailment (determination).
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(By saying that a connective exists “in linguistic potential,” I mean that it could
be added without ontological error to our language even if we do not in fact
currently recognize it. The clause about “linguistic potential” can be omitted if
propositional connectives are regarded not as de facto linguistic entities but as
propositional relations whose reality is independent of their recognition by any
extant language.)

It may seem intolerably irresponsible to introduce a connective such as this
whose valid utilization requires the existence of still other connectives for which
our only evidence lies buried in primitive intuition and of whose nature we have
only a feeble conception. Yet this, I contend, is just what in effect we do in our
ordinary-language ascriptions of propositional responsibility. For when construing
‘If p, then q ’ to make no difference for the credibility of p, we seldom if ever intend
any judgment about what particular connection between p and q justifies this
inference; in order for what we mean by this statement to be true, it quite suffices
that Pr(p | If p then q) be equal to Pr(p). I suggest, therefore, that when ‘If p,
then q,’ is asserted as a genuine conditional, it is usually equivalent in force to ‘p
modalically entails q ’. Similarly, ‘q because p’ may as a first approximation be
equated with ‘p modalically entails q, and p is the case.’11

VI

The preceding sections of this paper have unearthed shards of a profoundly
important but heretofore neglected dimension of human reason. These fragments
are, admittedly, too small to reveal a very coherent picture, but rather than contin-
uing to dig for more of the missing pieces—which would only break open a viper’s
nest of further perplexities—I shall try in closing to put the fundamental issue into
clearer perspective by resurveying it from a slightly different vantage point.

While I have proposed that the probabilistic implications projected by an asser-
tion ‘If p, then q ’ clarify whether the conditional is to be understood as ‘q because
p (unless not-p)’, I do not claim that ‘q because p (unless not-p)’ is true (when it
is) because its probabilistic implications are what they are. Rather, the latter are
merely a symptom that p is a source of q. We cannot construe the responsibility
ordering thus to be due to the probability patterning for, inter alia, the important

11I say “as a first approximation” for two reasons. One is that in practice we often accept ‘q
because p’ even when we believe the probability of q, given p and our grounds for ‘q because p’ be
less than unity. Secondly, and more importantly, it is not at all clear whether responsibility order
in deductive systems—e.g., p ∨ q because p—can adequately be analyzed in terms of modalic
entailment or its cognates. (I believe that it can, but the argument requires an undoubtedly
controversial interpretation of propositional probability under which, e.g., the probability of a
tautologically true proposition t is less than unity when we lack sufficient information to tell that
t is tautological.)
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reason that in order to derive the latter we must first presuppose a responsibility
structure for the probabilities themselves.

Consider, for example, the system of credibilities generated by two proposi-
tions p and q, namely, the set of all probabilities Pr(ti | tj) such that propositions
ti and tj are both truth functions (with tj logically consistent) of exactly p and
q. Although there are (24)(244 − 1) = 240 of these probabilities, they have only
three degrees of freedom in that the numerical values of any three which are math-
ematically independent of one another suffice to determine the numerical values
of the remainder. For example, 〈Pr(p), Pr(q | p), Pr(q | ∼ p)〉, 〈Pr(q), Pr(p | q),
Pr(p | ∼ q)〉, and 〈Pr(p · q), Pr(p · ∼ q), Pr(∼ p · q)〉 are three such alternative
bases for the system generated by p and q. But which probabilities in the system
are the sources of the others—i.e., which ones account for why the rest have the
values they do have ? In particular, insomuch as

Pr(p · q) = Pr(p)× Pr(q | p) = Pr(q)× Pr(p | q),
Pr(p · ∼ q) = Pr(p)× [1− Pr(q | p)] = [1− Pr(q)]× Pr(p | ∼ q),
Pr(∼ p · q) = [1− Pr(p)]× Pr(q | ∼ p) = Pr(q)× [1− Pr(p | q)],
Pr(p) = Pr(p · q) + Pr(p · ∼ q),
Pr(q) = Pr(p · q) + Pr(∼p · q),

should we say that Pr(p), Pr(q | p),and Pr(q | ∼ p) are jointly responsible for
Pr(p · q), Pr(p · ∼ q), Pr(∼p · q), and Pr(q); that Pr(q), Pr(p | q), and Pr(p | ∼ q)
are jointly responsible for Pr(p ·q), Pr(p · ∼ q), Pr(∼ p ·q) and Pr(p); that Pr(p ·q),
Pr(p· ∼ q) and Pr(∼ p · q) are jointly responsible for Pr(p) and Pr(q); or that
these probabilities have still some other responsibility structure? Only when we
decide which of these probabilities are the origin of the remainder can we begin to
determine what their numerical values are.

“But,” you protest, “why is any notion of responsibility needed here? Why
can’t I derive the numerical values of this probability system from whatever arbi-
trary basis for it I choose?” Fair enough–if you can do it thus arbitrarily. But in
order for you to think your way to any consistent set of interdependent numerical
probabilities, you must ground your conclusions about some of these upon your
preceding judgments about others, and your choice of a pattern of reasoning is
precisely wherein lie your presuppositions about the structure of propositional re-
sponsibility. Suppose, for example, that you are trying to decide the credibility of
proposition p. Insomuch as Pr(p) = Pr(p·q)+Pr(p · ∼ q) for any other proposition
q, would or would it not be rational for you to reach a judgment about the numeri-
cal value of Pr(p) before you judge Pr(p·q) and Pr(p · ∼ q)? (Note that the question
is not whether you could ever obtain evidence e which allows you to judge Pr(p | e)
before Pr(p · q | e) and Pr(p· ∼ q | e). That would only raise the prior problem of
whether, insomuch as Pr(p | e) = Pr(p · e)/Pr(e) = Pr(p·e)/[Pr(p·e)+Pr(∼ p · e)],
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you do not have to decide about Pr(p · e) and Pr(∼ p · e) before you can deter-
mine Pr(p | e).) It is simple to show by argument from vicious regress that if
rational judgment of probabilities is to be possible at all, it cannot be the case
that for every two distinct propositions p and q, determination of Pr(p · q) and
Pr(p · ∼ q) is prerequisite to determining Pr(p). In those instances in which Pr(p)
can properly be judged without prior judgment of p’s joint probabilities with q
and ∼q, let us say that p is credibilistically independent of q, or “CrInd(p, q)” for
short. If both CrInd(p, q) and CrInd(q, p) presumably Pr(p · q) = Pr(p)×Pr(q)
where P(p) and Pr(q) are decidable independently of one another. (This is not
a theorem of the probability calculus; rather, I propose that it is a fundamental
axiom governing rational judgment.) If CrInd(q, p) but not CrInd(p, q) the other
hand, your judgment of Pr(p) must derive from your judgments of Pr(p · q) and
Pr(p · ∼ q), while to arrive at the latter following an independent determination
of Pr(q) you first need Pr(p | q) and Pr(p |∼ q). But to put Pr(q), Pr(p | q), and
Pr(p | ∼ q) conceptually prior to Pr(p) is tantamount to holding that the latter
is what it is because the former are what they are, and if you further judge that
Pr(p | q) 6= Pr(p | ∼ q) you are in effect maintaining that whether or not q is
the case is, at least in part, a source of whether or not p is the case. Or at least
this is so for me: While I am still profoundly ignorant of what, specifically, must
be true of two propositions in order that one be credibilistically independent of
the other, my linguistic intuition is adamant that Crlnd(p, q) is false if p’s being
the case would in any way be due to q. In particular, it is introspectively evident
to me that the reason I would never consider it rational to judge the probability
of a truth-functional molecular proposition F (p1, . . . , pn) before determining the
probabilities of the various truth states of 〈p1, . . . , pn〉 is precisely that I consider
the latter to be the source of F (pi, . . . , pn)’s truth value. I submit, then, that until
such time as it can be shown that our numerical conclusions about a system of
prior probabilities are independent of the pattern of argument by which we arrive
at them, a choice of one such pattern rather than another is justified only if we
consider this to reflect the order of determination among the propositions at issue.
If so, it is an inescapable correlate of our having any rational basis for uncer-
tain belief at all that we also be committed to accept a structure of propositional
responsibilities.

Now consider the problem of whether natural regularities—i.e., “laws”—are
a consequence of the particular instances which they subsume, or are instead a
source of the latter. To work with the simplest possible example, let h be the
hypothesis that all objects have a certain property Q, while 〈a1, a2, . . .〉 is a set
of entities which must possess Q if h is to be the case. Assuming that (x)Qx
is not analytically true, which propositions in the set 〈h, Q(a1), Q(a2), . . .〉 are
credibilistically independent of the rest? If the truth of h derives from that of
the Q(ai), then on grounds of symmetry we have CrInd[Q(ai), Q(aj)] for each
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a1 6= aj , from which it follows by the fundamental axiom assumed above that
Pr[Q(ai) · Q((aj)] = Pr[Q(ai)] × Pr[(Q(aj)] and hence that Pr[(Q(aj) | Q(ai)] =
Pr[(Q(aj)]. That is, if h is the case (if it is) because its instances Q(a1), Q(a2), . . .
are all true, then observing that one object ai has property Q does not alter the
probability that Q also holds for another object aj . On the other hand, if h is why
its instances obtain, then observation of Q(ai) is able to confirm Q(aj) through
its confirmation of h. Specifically, if responsibility goes from the Q(ai) to h, then
Pr(h) can be no greater than the product of all the Pr[Q(ai)] and approaches zero
as the number of objects ai grows indefinitely large;12 whereas if we interpret h
as prior to the individual Q(ai) in responsibility, then we can arrive at whatever
non-zero value for Pr(h) seems appropriate and deduce as a consequence that
Pr[Q(aj) | Q(ai)] > Pr[Q(aj)].

13 (Even Pr(h) = 0 is compatible with h’s being
a source regularity through which Q(ai) confirms Q(aj), but this case is more
technically advanced and need not be discussed here.) While the present example
is far too simplistic to be more than suggestive about the responsibility ordering
of those data and generalities which concern us in real life, the evidence is strongly
presumptive that we cannot properly learn from experience—i.e., our knowledge of
particulars already observed can make no rational difference for our expectations
about the properties of objects yet unencountered—unless we admit of natural
regularities which are at least in part the sources of particular events.

Because I do, in fact, perforce believe that properties which I have observed
to occur in the past are the ones most likely to occur under similar circumstances
in the future, I am thus compelled to accept that some natural regularities exist
which bring about the features of the events they subsume, rather than resulting
from them. But by what conceptual machinery is it possible to express such a
regularity? Truth-functionally defined generalizations will not do; for in order of
responsibility, truth functions are dependent upon their components rather than
antecedent to them. For example, if (x)Qx is construed to be the limiting case of a

12It is an inevitable extension of the fundamental CrInd axiom that if all propositions in a set

〈p1, . . . , pn〉 are credibilistically independent of one another, then Pr(p1 · p2 · . . . · pn) =
n∏

i=1

Pr(pi).

13Another way to make this point in very general terms is as follows : Let ci and cj be two
conclusions which are entailed by hypothesis h, and assume that if it were not for h, ci and cj would
be credibilistically independent of each other—i.e., that Pr(ci·cj | ∼ h) = Pr(ci | ∼ h)×Pr(cj |∼ h).
Then it can be shown that

Pr(cj | ci)

Pr(cj)
= 1 +

Pr(h)× Pr(∼ h)× Pr(∼ ci |∼ h)× Pr(∼ cj |∼ h)

Pr(ci)× Pr(cj)
,

which says that ci confirms cj so long as 0 < Pr(h) < 1 and neither ci or cj are certain given
∼ h. The crucial assumption here is that ci and cj are inferentially unrelated if h is not the case.
This is reasonable as a simplifying approximation if, were h to be the case, ci and cj would obtain
because of h, but would not be acceptable if h derives from ci and cj , as when, e.g., h is defined as
the conjunction of ci and cj . (This theorem remains unaltered if all the probabilities involved are
replaced with probability densities, so a nonzero probability for h is not strictly necessary here.)
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conjunction of propositions of form Q(ai), then (x)Qx derives its truth value from
that of its instances and cannot sustain the conjecture “Q(ai) because (x)Qx”
nor provide grounds on which observations Q(a1), . . . , Q(an) rationally increase
the probability of Q(an+1). In order to assert that natural events are governed
by source regularities, we require a distinctive array of quasi-logical concepts—
call them “modalic operators”—whose grammatical behavior is more or less like
that of the logical terms from which we construct statements of instance-derivative
regularities, yet which will form generalities that are credibilistically independent
of their instances. Just what specific modalic operators may occur in natural
language or are needed by technical science and philosophy is very much an open
question. Almost surely we must recognize one or more propositional connectives
in the “modalic entailment” category, but do we require modalic quantifiers as
well? (It would appear so if, e.g., generalities of form ‘Everything has property Q ’
can be source statements when predicate ‘Q’ does not contain modalic operators.)
For that matter, are the connectives which link predicates in generalized source
conditionals truly propositional connectives, or may they not instead be higher-
level relations whose arguments are irreducibly properties? (For example, if ‘All
As are Bs’ is nothing more than a conditional-distribution assertion, formalizing
it as (x)(Ax⇒ Bx)—which entails ‘Aa⇒ Ba for any particular object a—rather
than as ‘A⇒ B’ may be unsound unless ‘pr(B | A) = r for r < 1’ is similarly read
as (x)(Ax

r
⇒ Bx) in which ‘

r
⇒’ denotes a propositional connective akin to but

weaker than modalic entailment. Actually, when ‘All As are Bs’ has probabilistic
implications [11], it is not saying merely that pr(B | A) = 1,14 but that there are
important, difficult problems here should be evident.) And will the same modalic
operators needed to express basic laws also suffice for asserting generalities which,
though responsible for their instances, are derivative from more fundamental laws,
or do we need a hierarchy of modalic concepts corresponding to a responsibility
hierarchy or source regularities? These are just a few of the puzzles which bob in
the wake of recognition that truth-functional generalizations alone cannot support
our conception of a lawful universe, and their exploration should provide many
happy hours of philosophical bemusement for decades to come.

EPILOG

The intent of this paper has been to incite concern for two hitherto overlooked

14Specifically, pr(B | A) = 1 (or any other probability of property B given property A) is
in itself neutral with respect to whether B is due to A, non-A is due to non-B, or neither of
these. As a result, interpreting “All As are Bs” to have implications (11) presumes it to assert
not merely that pr(B | A) = 1 but also that A brings about B. More generally, the fact that
primary induction construes conditional property-probabilities to carry no information about the
incidence of the reference class reveals that primary induction begins with a supposition about
the direction of responsibility.
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themes in the theory of inference which provide important new leverage upon
many currently unsolved problems in the philosophy of science; and if its empha-
sis on provocation rather than finesse has led to grievous errors of detail, these
may at least inspire others to domesticate this wilderness by setting them aright.
The themes in question are (1) our unavoidable belief in a responsibility, deriva-
tional, or “becausal” ordering of propositions, and (2) the possibility of diagnosing
a proposition’s meaning through consideration of its probabilistic implications.
Regarding (1), I have intimated above that many perplexities of “explanation”
reduce to questions about the direction of propositional responsibility, and while
I shall not develop the thought here, there is also reason to hope that suitable
recognition of responsibility seniorities will do much to ameliorate the distress of
Goodman’s “new riddle of induction” (i.e., the “green/grue” clash in inductive
extrapolations), as well as other philosophic contretemps in which an intuitively
plausible form of argument (e.g., the “principle of insufficient reason” for determin-
ing prior probabilities) yields inconsistent conclusions when applied to alternative
linguistic partitionings of the same underlying set of ideas. And as for (2), we
have seen from analysis of Hempel’s “paradox of confirmation” that two prima fa-
cie equivalent statements may project different patterns of inductive implications
and must accordingly be suspected to assert different propositions. In particular,
the probabilistic inferences drawn both in everyday life and in technical science
from assertions of conditionality show that unless natural reason is systematically
fallacious in this respect, the most basic sense of ‘If p, then q ’ cannot be defined
truth-functionally and is not, in this “modalic” sense of the conditional, equivalent
to ‘If not-q, then not-p’ even though both have the truth-functional ∼ (p · ∼ q)
as a consequence. More generally, non-truth-functional connectives such as ‘is a
cause of’ are essential for expressing the laws of a world which is truly lawful,
even if only probabilistically so; and while this paper has made no attempt to
clarify the semantic or epistemological status of such modalic concepts, it may be
conjectured that if attempts at explicit definition fail, we can at least defend them
as theoretical terms introduced by axioms which stipulate, inter alia, that they
support probabilistic conclusions in accord with the patterns by which we do, in
fact, interpret them.
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