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Linear Correlations Between Sets of Variables

Abstract

While the traditional multiple correlation coefficient appears to be inher-
ently an asymmetrical statistic, it is actually a special case of a more general
measure of linear relationship between two sets of variables. Another symmet-
ric generalization of linear correlation is to the total relatedness within a set
of variables. Both of these developments rest upon the generalized variance
of a multivariate distribution, which is seen to be the fundamental concept of
linear correlational theory.

One of the more provocative concepts to emerge from information theory (uncer-
tainty analysis) is that of the “total restraint” (Garner, 1962) or “total correlation”
(Watanabe, 1960) within a joint distribution of categorical variables. Defined as
the amount by which the total uncertainty in the distribution falls short of the
maximal joint uncertainty possible for these variables given their marginal uncer-
tainties, the total-restraint statistic is a measure of information-theoretical rela-
tionship within a set of variables which is perfectly symmetric in its arguments
(i.e., it does not divide the variables whose relatedness it assesses into criterion
and predictors) while if the total set of variables is partitioned into subsets, the
total restraint correspondingly partitions into within-group and between-group
components. Thus information theory suggests symmetric methods of relational
analysis not prima facie available to multiple correlation theory. Moreover, if a
set of variables is split dichotomously, the between-group component of the set’s
information-theoretical total restraint is a measure of relationship between the
two subsets with precisely the same meaning as the information-theoretical rela-
tionship between two single variables. Since all recognized metrical correlational
statistics accommodate but one criterion variable at a time, the ability to repre-
sent the relatedness of two sets of variables by a single number appears to be still
another way in which information theory is capable of analytic stunts which are
beyond the reach of correlation theory.

When information theory and linear correlational analysis are compared search-
ingly, however, it turns out that every information-theoretical statistic has a cor-
relational counterpart, including the total-constraint and between-set measures of
relationship. I have discussed the nature of this isomorphism in a forthcoming
article (1968) which, however, makes no attempt to explore what sort of distri-
butional significance these new correlational statistics might have. Yet worthy of
exploration they most certainly are, for they appreciably deepen our understand-
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ing of linear multivariate relationships and intensify the intimacies among multiple
correlation, principal components, and canonical correlation.

To describe this generalization of linear correlation theory, it is first necessary
to review certain concepts and theorems that are already familiar to most students
of multivariate analysis. We begin with some notational conventions. Lower-case
letters x1, x2, · · · , y1, y2, · · · etc. denote variables (variates) which have a joint dis-
tribution in some given population P. (All statistical properties cited subsequently
are relative to the same parametric population P, which will henceforth be pre-
supposed without explicit mention.) Capital letters X, Y, etc. will denote ordered
sets of variables, not excluding the null set. When we wish to make explicit what
variables are included in a set X we will write X = 〈x1, · · · , xn〉 or the like, where
n ≥ 0. To deal with the case n = 0 without requiring additional assumptions
or definitions, we may posit that every set of variables X = 〈x1, · · · , xn〉 also in-
cludes an additional variable x0 whose value is the same for every member of P.
The reason for describing the set X = 〈x1, · · · , xn〉 as ordered is only to avoid the
unnecessary restriction that xi 6= xj if i 6= j. Actually, the variables within each
set X, Y, etc. in the equations below are freely permutable, as will be obvious in
all cases except the one for which proof is supplied (Theorem 4).

Let the space, SX , of variables spanned by the set of variables X = 〈x1, · · · , xn〉
be defined as the set of all variables which are linear combinations of the variables
in X. That is, y ∈ SX if and only if there exist constants a1, · · · , an such that

y = ao +
n
∑

i=1

aixi .

Any set of variables 〈x′1, · · · , x
′

m〉, none of which is a linear combination of the
others and which are such that y ∈ SX if and only if y is a linear combination of
x′1, · · · , x

′

m, is said to be a basis for space SX . A basis X ′ = 〈x′1, · · · , x
′

m〉 for space
SX is an orthogonal basis if the covariances among x′1, · · · , x

′

m are all zero, while if
in addition each x′i in X ′ has zero mean and unit variance, X ′ is an orthonormal
basis for SX . Any space SX of variables has at least one orthonormal basis—in
fact, if the dimensionality of SX is greater than unity, it has an infinitude of them.
(The dimensionality of a space SX is the number of variables in any basis for SX ,
and is also the rank of the covariance matrix for any set of variables which span
SX .) By definition, a variable y is orthogonal to a space SX , i.e., y ⊥ SX , if Var
(y) > 0 and Cov (y, x) = 0 for every x ∈ SX , while two spaces SX and SY are
orthogonal if every variable in the one has zero covariance with every variable in
the other. If Var (y) > 0, a necessary and sufficient condition for y ⊥ SX is for y
to be orthogonal to (i.e., have zero covariance with) all the variables in some basis
for SX .

We shall write ẏ(X) for the linear regression of a variable y upon variables
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X = 〈x1, · · · , xn〉, while ey·X is the residual of y unaccounted for by x1, · · · , xn.
Then

(1) y = ẏ(X) + ey ·X ,

where ẏ ∈ SX and ey ·X ⊥ SX . A fundamental theorem of linear regression theory
is that if X ′ is any other set of variables which also spans SX , then

ẏ(X′) = ẏ(X) and ey ·X′ = ey ·X .

Thus the (linear) partition of a criterion variable into regressed and residual com-
ponents is a function only of the space spanned by the predictor variables and not,
in addition, of the particular way in which predictor space is spanned. We shall
here call the component ẏ(X) the projection of variable y into space SX , though
strictly speaking it is ẏ(X)−My (whereMy is the mean of y) which is most properly
regarded as y ’s projection into SX . Also, we shall write σy (X) and σy ·X for the
standard deviations of ẏ(X) and ey ·X respectively. The quantity σ2

y ·X is known
as the residual variance of y after variables X = 〈x1, · · · , xn〉 have been partialled
out. In the limiting case when X is empty (or equivalently, when X contains only
the constant-variable xo), σy ·X = σy.

The multiple correlation of a variable y with the variables in a set X may be
defined

(2) Ry (X) =def

σy (X)

σy
.

In the vector model of a multivariate configuration, Ry (X) is the cosine of the angle
between Y and space SX (i.e., between Y and y ’s projection into SX). Analyti-
cally, Ry (X) is the linear correlation between y and ẏ(X) and is the maximal linear
correlation between y and any variable in SX . Similarly, the multiple coefficient
of alienation, Ky (X), for the predictability of variable y from variables X is

(3) Ky (X) =def
σy ·X
σy

.

which in the vector model is the sine of y ’s angle to SX . Since ey ·X is orthogonal
to ẏ(X),

(4) σ2
y = σ2

y (X) + σ2
y ·X ,

or, dividing by σ2
y ,

(5) R2
y(X) +K2

y(X) = 1.

(The expression “vector model” used in the preceding paragraph is somewhat
ambiguous, since there are actually two major versions of this. The first, which
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is well defined both for frequency distributions and for probability distributions
and might be called the “factorial vector model,” represents each variable by a
vector whose coordinates are the variable’s factor coefficients on some orthonormal
basis for a space which includes all the variables under concern. In this model, a
variable’s standard deviation is equal to the length of its representative vector while
the linear correlation between two variables equals the cosine of the angle between
the corresponding vectors. When what is being modeled is a joint distribution
of frequencies in a population containing N members, however, it is also possible
to represent each variable x by a vector in N -space whose coordinates are the x -
scores of the various population members. The latter model is especially useful in
sampling theory and might hence be called the “sampling vector model.” Standard
deviations and correlations are also represented in the sampling vector model,
but not so simply as in the factorial vector model. Whenever in this paper the
ambiguity in the term “vector model” makes a difference, it is the factorial vector
model which is intended.)

Given a vector space S of variables, we can partition all variables in which we
are interested into projections into S and residuals orthogonal to S, and proceed
to examine the relations which are found within either set of components. The
multiple correlation of the y-residual ey ·Z with the xi-residuals ex1 ·Z , · · · , exn ·Z

orthogonal to a space SZ spanned by a set of variables Z is known as a multiple-
partial correlation and will here be written Ry (X) ·Z . Similarly, the multiple-
partial coefficient of alienation Ky (X) ·Z is the multiple coefficient of alienation for
predicting ey ·X from the exi ·Z Since the component of ey ·Z orthogonal to the
space spanned by residual set EX ·Z (=def ex1 ·Z , · · · , exn ·Z) is identical with the
component of y orthogonal to the spaces spanned by the combined predictors in
X = 〈x1, · · · , xn〉 and Z = 〈z1, · · · , zn〉 (another fundamental regression theorem),
we may write

(6) e(ey ·Z) ·EX ·Z
= ey ·XZ ,

where XZ = 〈x1, · · · , xn, z1, · · · , zm〉. Hence

(7) Ky (X) ·Z =
σy ·XZ

σy ·Z
,

(8) Ry (X) ·Z =
√

1−K2
y (X) ·Z =

√

1−

(

σy ·XZ

σy ·Z

)2

.

In conformity to prevailing custom, the multivariate-alienation statistic K may be
written with a lower-case k when there is only one predictor, i.e., the alienation
between two variables z and y after the variables in set Z have been partialled out
is

(9) kxy ·Z =
σy ·xZ
σy ·Z

=
√

1− r2xy ·Z ,
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where rxy ·Z is standard notation for partial correlation.

It is frequently convenient in multivariate analysis to transform a given set of
variables X into another set X ′ which is equivalent to the first for the purpose
at hand. In descriptive factor analysis, for example, it is customary to reduce
the original variables to an orthonormal basis for the space they span. Another
possibility is to replace the set X with an orthogonal rotation thereof. A set of
variables X ′ = 〈x′1, · · · , x

′

n〉 is an orthogonal rotation of set X = 〈x1, · · · , xn〉
when there exists an orthogonal n × n matrix {aij} of constants such that for
i = 1, · · · , n,

x′i =

n
∑

i=1

aijxi .

(By definition, an n × n matrix M is orthogonal when MM ′ = I, where I is the
n×n identity matrix.) In a scatter model (i.e., scattergram or probability-density
surface) for the joint distribution of variables X = 〈x1, · · · , xn〉, wherein the n
variables are represented by n mutually perpendicular Cartesian coordinate axes
to define a scatter space within which each member of population P is assigned a
position by his joint scores on the xi, an orthogonal rotation of X is an alterna-
tive set of orthogonal coordinate axes for this same scatter space. An important
property of orthogonal rotations is that if a set of variables X ′ is an orthogonal
rotation of set X, then X ′ not merely spans the same space of variables as does X
but also the total variance of the variables in X ′ accounted for by any further set
of variables Y is the same as the total variance of the variables in X accounted
for by Y. That is, if X ′ is an orthogonal rotation of X, then

n
∑

i=1

σ2
x′

i(Y ) =
n
∑

i=1

σ2
xi(Y )

Since the scatter model of a multivariate distribution is not the same as the vector
model thereof, it is not generally the case that the variables in an orthogonal
rotation of set X are orthogonal in the vector-model sense of zero covariances.

There is, however, one very special basis for the space spanned by variables X
which manages to embrace the configurational ideals of both the vector and the
scatter models simultaneously, namely, the principal components of the X distri-
bution. Specifically, the principal components of variables X are an orthogonal
rotation of X in which the rotated variables are also orthogonal in the vector
model. Thus the principal components of the multivariate configuration X are
both an orthogonal rotation of X (hence preserving the total variance of the set
lying in any given predictor space) and an orthogonal (though not in general or-
thonormal) basis for the vector space SX spanned by set X. (More precisely, if
there are more variables in X than there are dimensions to SX , the principal com-
ponents of X with nonzero variance are a basis for SX .) It is conventional to
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number the principal components of a set of variables in decreasing order of their
variances, i.e., if σ2

(X)i
is the variance, or eigenvalue, of the ith principal component

of set X, then σ2
(X)1

≥ σ2
(X)2

≥ · · · ≥ σ2
(X)n

. A further basic property of principal
components is that the total variance of set X accounted for by its ith principal
component is equal to σ2

(X)i
, while this is also the largest amount of the total

residual variance in set X which can be accounted for by any one variable after
the preceding i−1 principal components have been partialled out. Thus described
wholly in terms of the vector model, the principal components of set X are an
orthogonal basis for space SX such that each successive basis-variable maximizes
the amount of total X variance it accounts for while its own variance is equal to
this accounted-for variance. It can also be shown that the principal-component
variances σ2

(X)1
, · · · , σ2

(X)n
are the latent roots of the covariance matrix CXX (i.e.,

{Cov(xi, xi)}) for the variables in X. The product,

n
∏

i=1

σ2
(X)i

,

of these principal-component variances is equal to the determinant of the variance
matrix CXX and is known as the generalized variance of the multivariate distri-
bution X (see Anderson, 1958, p. 167). Thus the generalized variance |CXX | of
set X is a scalar measure of the total n-dimensional dispersion of population P on
the variables in X and subsumes the variance of a single variable as the special
case in which n = 1. We shall have more to say about this little-known statistic
shortly.

Principal components provide a standardized description of the variance struc-
ture within a set of variables. Similarly, canonical factors and canonical corre-
lations are a standardized description of the variance relations which hold be-
tween two sets of variables. The canonical factors of sets X = 〈x1, · · · , xn〉 and
Y = 〈y1, · · · , ym〉 with respect to each other are two series of linear combinations
of x1, · · · , xn and y1, · · · , xm, respectively, such that the ith canonical factor of X
and the ith canonical factor of Y (with respect to each other) are the two variables
lying in SX and SY , respectively, which have maximal linear correlation with each
other subject to the restriction that they are orthogonal to all the i− 1 preceding
canonical factors. The ith canonical correlation r(X,Y )i between sets X and Y
is, of course, the linear correlation between their ith canonical factors. Since the
definition of canonical factors as just given determines them only up to a linear
transformation, it is conventional to stipulate that their means are set at zero and
their variances are standardized to unity. (This is still insufficient to guarantee
absolute uniqueness, but it does not seem necessary to go more deeply into the
matter here.)

Canonical factors have a number of interesting properties, the most important
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of which will be listed here with brief proofs.

Theorem 1. The canonical factors of variables X = 〈x1, · · · , xn〉 with respect
to variables Y = 〈y1, · · · , yn〉 are a sequence of mutually orthogonal linear combi-
nations w(X)1 , w(X)2 , · · · of variables X such that the multiple correlation of w(X)i

with variables Y is maximal, subject to the prior successive maximization of the
multiple correlations of w(X)1 , · · · , w(X)i−1

with variables Y ; and similarly for the
canonical factors of Y with respect to X. The ith canonical factor of Y(X) with
respect to X(Y) coincides up to a linear transformation with the projection into
SY (SX) of the ith canonical factor of X(Y) with respect to Y(X).

Proof. (By induction on i.) Since the multiple correlation of any given linear
combination w(X) of variables X with variables Y is the maximal correlation that
w(X) can have with any variable in SY , and similarly with X and Y interchanged,
the theorem is obviously true for i = 1. For the induction step, assume the
theorem to be true for the first i− 1 canonical factors and consider the correlation
between linear composites w(X) and w(Y ) of X and Y, respectively, where w(X)

is orthogonal to all the first i − 1 canonical factors w(X)1 , · · · , w(X)i−1
of X with

respect to Y. wY can be analyzed as its projection into the subspace S′

Y of SY

spanned by the first i − 1 canonical factors w(Y )1 , · · · , w(Y )i−1
of Y with respect

to X, plus a residual orthogonal to S′

Y . But the component of w(Y ) lying in this
subspace S′

Y is orthogonal to w(X), for it is a linear composite of the first n − 1
canonical factors of Y with respect to X, and these in turn analyze into their
projections into SX—which by the induction hypothesis respectively coincide up
to a linear transformation with the corresponding canonical factors of X and are
hence all orthogonal to w(X)—plus residuals which are orthogonal to space SX

and hence a fortiori to w(X). Consequently, the component of w(Y ) orthogonal
to w(Y )1 , · · · , w(Y )i−1

has greater correlation with w(X) than does w(Y ) unless the
latter is itself wholly orthogonal to these factors; and hence the projection of w(X)

into SY is also orthogonal to w(Y )1 , · · · , w(Y )i−1
. In particular, if w(X) is a variable

in SX whose multiple correlation with the variables in Y is greatest of all the
variables in SX orthogonal to the first i− 1 canonical factors of X with respect to
Y, while w(Y ) is the projection of w(X) into SY , it follows that w(X) and w(Y )—or,
more precisely, linear standardizations thereof to zero means and unit variances—
qualify as the ith canonical factors of sets X and Y, respectively, with respect to
each other. QED.

It may be noted that the wording of Theorem 1 evades commitment to how
many canonical factors sets X and Y have with respect to each other. Unlike
the definition of principal components, in which it is inherent that a set of n vari-
ables has exactly n principal components, the definition of canonical correlations
leaves their number to some extent conventional. The maximum number is the
dimensionality of either SX or SY , depending on which is smaller, and this is the
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convention usually adopted; however, if each of the spaces SX or SY contains a
subspace which is orthogonal to the other, one or more of the terminal pairs of
canonical factors will be arbitrary, corresponding to zero-valued canonical correla-
tions. An alternative, more symmetric convention would be to stipulate that the
number of canonical factors is equal to the number of nonzero canonical correla-
tions. In either case, it is clear from Theorem 1 and the stipulation that canonical
factors have zero means and unit variances that the m canonical factors of set X
with respect to set Y can always be chosen as the first m variables in an orthonor-
mal basis for space SX . It is also obvious from either Theorem 1 or the initial
definition of canonical factors that

Theorem 2. The canonical factors and canonical correlations between two sets
of variables SX and SY are determined wholly by the spaces SX and SY spanned
by sets X and Y, respectively.

That is, if sets X and X ′ span the same space SX and sets Y and Y ′ span
the same space SY , the canonical factors of X and Y with respect to each other
are identical with the canonical factors of X ′ and Y ′ with respect to each other.
Consequently, canonical factors and canonical correlations are most insightfully
described as a set of relational properties between the spaces spanned by the two
sets of variables in question.

Theorem 3. The ith canonical factor (i = 1, 2, . . .) of a space of variables
SY with respect to another space of variables SX coincides up to a linear trans-
formation with the ith principal component of the set of projections into SY of
any orthonormal basis for space SX , while the standard deviation of this principal
component equals the ith canonical correlation between SX and SY .

Proof. Let X = 〈x1, · · · , xn〉 be an orthonormal basis for space SX . Then for
any variable y, it is elementary to show that

R2
y(X) =

n
∑

i=1

ryxi
=

n
∑

i=1

σ2
xi(y)

,

which says that the squared multiple correlation of a variable y with any set of
variables spanning a space SX equals the total variance of an orthonormal basis
for SX accounted for by y. Moreover, if y ∈ SY , the variance of xi accounted for
by y equals the variance of xi’s projection into SY accounted for by y (since σ2

xi(y)
equals the variance of ẋ(Y ) accounted for by y plus the variance of exi·Y accounted
for by y, while if y ∈ SY the latter is zero). Hence for any variable y in space SY ,
the squared multiple correlation of y with any set of variables spanning space SX

is equal to the total variance of the projections into SY of an orthonormal basis
for SX accounted for by y—of which Theorem 3 is then a simple consequence in
light of Theorem 1.
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We are now properly positioned to appreciate the new correlational measures
disclosed by the isomorphism between linear correlational analysis and information
theory. Let the quantity ΠX for the joint distribution of variables X be defined

ΠX =def

n
∏

i=1

σxi·x1···xi−1
(X = 〈x1, · · · , xn〉)(10)

=

[

n
∏

i=1

Kxi(x1···xi−1)

]

·

[

n
∏

i=1

σxi

]

Elsewhere (Rozeboom, 1968), I have unimaginatively named ΠX the Pi-value of
multivariate distribution X. However, in view of Theorem 5, below, it may also be
appropriately called the “generalized standard deviation” of set X.

Theorem 4. ΠX is invariant under permutations of the variables in X.

Proof. Since

σx·Zσy·xZ = σx·Zσy·Zkxy·Z = σy·Zσx·yZ

for any two variables x, y and additional variables Z, any two adjacent variables
x1 and xi+1 in definition (10) may be interchanged without affecting the value of
PiX—which by iteration proves the theorem.

Theorem 5. ΠX is the square root of the generalized variance of the set of
variables X. That is,

(11) ΠX =def

n
∏

i=1

σ(X)i (X = 〈x1, · · · , xn〉),

where σ(X)i, is the standard deviation of the ith principal component of variables
X.

Proof. It is easily seen in any of a number of ways that the quantity σxi
σxj ·xi

for any two variables xi and xj is unaffected by orthogonal rotation of the pair.
(E.g., the determinant of the covariance matrix for these two variables is

∣

∣

∣

∣

Vi Cij

Cij Vj

∣

∣

∣

∣

= ViVj − C2
ij = σ2

xi
σ2
xj
(1− r2xixj

) = σ2
xi
σ2
xj ·xi

,

while it is well known that the determinant of a covariance matrix is indifferent
to orthogonal rotations of the variables.) Hence in view of Theorem 4, ΠX is
unaffected by orthogonal rotation of any pair of variables in X ; and since any
orthogonal rotation of a finite number of variables can be accomplished by a finite
number of pairwise rotations, ΠX is accordingly invariant under all orthogonal
rotations of set X. But the principal components of X are an orthogonal rotation
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of X, so their Pi-value is equal to ΠX , while since principal components are also
uncorrelated, their Pi-value is equal to the product of their standard deviations.
QED.

Theorem 6. In the (factorial) vector model of a multivariate distribution, ΠX

equals the volume of the n-dimensional parallelotope whose principal vertex and
edges are formed by the configuration of vectors which represent the variables in
X.

Multidimensional geometric forms are difficult to visualize, and even more so
to describe in nonmathematical terms, so rather than attempting to clarify the
meaning of this theorem, I refer the reader to Anderson (1958, p. 167 f.), who
develops an equivalent of Theorem 6 for the sampling vector model. However,
Anderson’s matrix-algebra proof of this theorem is much less intuitive than what
is possible using definition (10) and Theorem 5. When n = 2, the geometric figure
envisioned by Theorem 6 is the parallelogram of which the vectors representing
variables x1 and x2 form adjacent edges. The lengths of these edges are σx1

and
σx2

, respectively, while the area of a parallelogram is the length of one edge, i.e.,
σx1

, times the length of the projection of the other edge orthogonal to the first, i.e.,
σx2·x1

. Each additional dimension multiplies the volume of the preceding (n− 1)-
dimensional side by the length of the nth edge’s projection orthogonal to the other
edges (i.e., σxn·x1···xn−1

), which by induction on n establishes the theorem.

Theorem 6 is mentioned here only to convey some feeling for the sense in
which ΠX is a measure of multidimensional spread. In the vector model, ΠX

may be construed as the volume of space occupied by the configuration of vectors
representing X. ΠX also has a volume interpretation in the scatter model which,
though it will not be discussed here, can readily be visualized from Theorem 5 by
considering the ellipsoidal volume of scatter-space occupied by an n-variate normal
distribution whose covariance matrix is the same as that of variables X.

In obvious application of the generic operation of “partialling” in multivariate
analysis, the residual Pi-value, ΠX·Z , of variables X = (x1, · · · , xn) after variables
X = (z1, · · · , zm) have been partialled out is the Pi-value of the set of components
of x1, · · · , xn orthogonal to space SZ . From (6) and (10) we then have

ΠX·Z =
n
∏

i=1

σxi·x1···xi−1Z (X = 〈x1, · · · , xn〉)(12)

=
ΠXZ

ΠZ

,

whereXZ=〈x1, · · · , xn, z1, · · · , zm〉 and the equivalence between ΠX·Z and ΠXZ/ΠZ

presupposes that none of the variables in Z is a linear function of the others (since
otherwise both ΠXZ and ΠZ become zero even though ΠX·Z remains well defined).
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It will be observed in the second line of (10) that ΠX can be analyzed as a
product of two terms, one of which,

∏n
i=1 σxi

is a function wholly of the (generally
arbitrary) units of measurement by which the variables in X are scaled, while
the other is determined entirely by the correlations (or, more immediately, by the
alienations) among the variables in X and is unaffected by any linear rescalings of
the variables. Accordingly, let the Pi-coefficient πX for a configuration of variables
X be defined

πX =def
ΠX

n
∏

i=1
σxi

(X = 〈x1, · · · , xn〉)(13)

=
n
∏

i=1

Kxi(x1···xi−1) .

The statistic πX might also be called the “generalized alienation coefficient” or
better, within-set alienation, for it is a standardized measure of the lack of inter-
predictability among the variables in X and reduces to the familiar coefficient of
alienation kx1x2

in the special case in which n = 2. The corresponding measure of
within-set correlation would be

(14) ρX =def

√

1− π2
X ,

though the only reason for preferring ρX to πX as a measure of the over-all relat-
edness in X is that ρX increases as the linear relationships within X grow tighter,
whereas πX correspondingly decreases. Both ρX and πX are bounded by 0 and 1,
with ρX = 0 and πX = 1 when the variables in X are all orthogonal to each other,
while the opposite extreme ρX = 1 and πX = 0 is reached when at least one of
the variables in X is an errorless linear function of the others. In passing, it may
be noted that ρX and πX are not invariant under orthogonal rotation of X (as is
readily appreciated by considering that the within-set correlation for the principal
components of X is necessarily zero), and that the Pi-coefficient for the residuals
of variables X after variables Z have been partialled out is

πX·Z =def
ΠX·Z

n
∏

i=1
σxi·Z

(X = 〈x1, · · · , xn〉)(15)

=
ΠX·Z

n
∏

i=1
Πxi·Z

= (n− 1)
ΠXZΠZ

n
∏

i=1
Πxi·Z

,
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the last line of which follows by application of general principle (12) under the
condition that set Z contains no linear dependencies.

As just seen, the familiar concept of the linear correlation between two variables
has a natural extension to a symmetric measure of linear relatedness among n
variables. An even more interesting extension of two-variable correlation is to
the linear correlation between two sets of variables. Assuming ΠX and ΠY to be
nonzero (a condition which will later be dropped), let the between-set alienation
KX,Y be defined

KX,Y =def
ΠXY

ΠXΠY

(16)

=
πXY

πXπY

(the second line of which follows by application of (13)), while the corresponding
between-set correlation is

RX,Y =def

√

1−K2
X,Y(17)

=

√

1−

(

πXY

πXπY

)2

.

To show that KX,Y and RX,Y are indeed a straightforward generalization of tra-
ditional correlation measures, we observe that in the special case where one of the
sets, say Y, contains only one variable y,

(18) Ky,X =
σy·X
σy

= Ky (X) ,

while similarly when Y = y, RY,X reduces to the multiple correlation of y with
the variables in X. More generally, from (16) and (12),

(19) KX,Y =
ΠX·Y

ΠX

=
ΠX·Y

ΠY

,

in which the formal similarity to (3) is conspicuous. The alienation between sets
X and Y after the variables in a third set Z have been partialled out is

KX,Y ·Z =
ΠXY ·Z

ΠX·ZΠY ·Z

(20)

=
ΠX·Y Z

ΠX·Z

=
ΠY ·XZ

ΠY ·Z

=
ΠXY ZΠZ

ΠXZΠY Z

,
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The corresponding partial between-set correlation is of course

RX,Y ·Z =
√

1−K2
X,Y ·Z ,

of which the multiple-partial correlation coefficient Ry(X)·Z is the special case in
which Y = y.

Since ΠY ·X is the Pi-value of the set of Y-components orthogonal to the space
spanned by variables X, it is unaffected by replacing X with any other set of
variables which span SX . Consequently, in view of (19),

Theorem 7. The correlation RX,Y and alienation KX,Y between two sets of
variables X and Y are unchanged by replacing either X or Y with another set of
variables which spans the same space as the set replaced.

Hence RX,Y and KX,Y are fundamentally measures of relationship between the
spaces SX and SY . Theorem 7 also shows that the definition ofKX,Y , which in (16)
presupposes sets with nonzero Pi-coefficients, can be released from this restriction.
Specifically, if either ΠX = 0 or ΠY = 0, KX,Y is stipulated to equal KX′,Y ′ , where
X ′ and Y ′ are any bases for the spaces spanned by X and Y, respectively.

Together, Theorems 2 and 7 suggest that a connection should exist between
canonical correlations and between-set correlation. This is indeed the case, and
delightfully so:

Theorem 8. Let r(X,Y )i be the ith canonical correlation between two sets of
variables X and Y, while

k(X,Y )i =
√

1− r2(X,Y )i

is the corresponding ith canonical alienation coefficient. Then

(21) KX,Y =
m
∏

i=1

k(X,Y )i ,

or, equivalently,

(22) RX,Y =

√

√

√

√1−

m
∏

i=1

(1− r2(X,Y )i
),

where m is the number of nonzero canonical correlations between sets X and Y.

Proof. Let n be the dimensionality of the space SX spanned by set X, where
of course n ≥ m. In view of Theorem 1, we can always find an orthonormal basis
X ′ = 〈x′1, · · ·x

′

n〉 for SX in which the first m variables are the canonical factors of
X with respect to Y. Each variable x′i in X ′ may be analyzed into its projection
ẋ′
i(Y ) into space SY (where ẋ′

i(Y ) has zero variance if i > m) plus its residual ex′

i·Y

13



orthogonal to SY , where in view of the orthogonalities and projection behavior
described in Theorem 1,

Cov(ex′

i·Y
, ex′

j ·Y
) = Cov(ex′

i·Y
+ ẋi(Y ), ex′

j ·Y
+ x′j(Y )) = Cov(x′i, x

′

j) = 0

when i 6= j. Insomuch as the residuals ex′

i·Y
(i = 1, . . . n) are thus all mutually

orthogonal, ΠX′
·Y =

∏n
i=1 σxi·Y , while Πx′ = 1 since variables X ′ have been

stipulated to be orthonormal. But x′1, · · ·x
′

m are the canonical factors of X with
respect to Y, so

σx′

i·Y
= σx′

i

√

1− r2(X,Y )i
= k(X,Y )i

for i = 1, · · ·m, while σx′

i
·Y = σx′

i
= 1 for i = m+ 1, · · · , n. Hence

KX,Y = KX′,Y = ΠX′
·Y /ΠX′ =

m
∑

i=1
k(X,Y )i QED

It is an obvious consequence of (16) that

ΠXY = ΠXKX,Y ΠY ,(23)

πXY = πXKX,Y πY .(24)

If KX,Y had no interpretive significance beyond its definitional introduction in
(16) as an abbreviation for the ratio ΠXY /ΠXΠY , (23) and (24) would be trivial.
However, it is not (16) but (22) which reveals the fundamental nature of between-
set alienation (and, correspondingly, of between-set correlation), just as it is (11),
rather than definition (10), which makes clear the significance of ΠX , and as a
result, (23) and (24) are enticingly informative. Thus (23) is equivalent to

(25)

n+p
∏

i=1

σ(XY )i =

[

n
∏

i=1

σ(X)i

][

m
∏

i=1

k(X,Y )i

][

p
∏

i=1

σ(Y )i

]

(where n and p are the number of variables in sets X and Y, respectively), in which
a property of the principal components of a multivariate configuration is multi-
plicatively decomposed into properties of the principal components and canonical
factors of subsets of the variables, and which under iteration can partition a gen-
eralized standard deviation (i.e., Pi-value) into a product of canonical alienation
coefficients in an enormously large number of different ways. Similarly, (24) states
that when a set of variables is dichotomously partitioned into subsets, the total
within-set alienation correspondingly partitions as a product of within-subset and
between-subset alienations.

In fact, while the most conspicuous virtue of between-set correlation (or better,
between-set alienation) lies in the powerful elegance with which this concept fuses
the various strands of past developments in linear correlation theory into a more
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comprehensive unity, there is at least one data-analysis prospect which leaps out
from (23) and (24). One of the perennial problems in multivariate analysis is how
to search within an aggregate of variables for smaller-sized clusters within which
the homogeneity is substantially greater than the similarity between clusters. This
is in effect asking how the over-all correlational agreement within the total set of
variables can be concentrated within subgroups at the expense of between-group
agreement. But in view of (24), this is precisely how one would also describe the
operation of dividing the variables into two subsets between which the alienation
is maximal or, equivalently, whose between-set correlation is minimal. Each subset
so identified can similarly be dichotomized into maximally alienated sub-subsets
and so on until either the clusters which remain have sufficient internal homo-
geneity to satisfy the investigator’s desire, or no possibility of further partitioning
remains. (In this context, the homogeneity of a group of variables would most
appropriately be measured by the minimum between-set correlation that can be
produced by some dichotomous partition of the group.) What is especially in-
teresting about this procedure is that it determines a hierarchical group-structure
which is a function only of the spaces spanned by the various possible combinations
of the variables included in the analysis, irrespective of how thickly or sparsely the
variables populate these spaces. The computational demands of multivariate anal-
ysis based on between-set correlations are severe even for a high-speed computer,
perhaps so beyond the limits of practicality. Even so, the method is sufficiently
distinctive to merit an investigation of whether it may not perhaps point to sig-
nificant structural properties of multivariate data which are overlooked by more
familiar correlational techniques.
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