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Ontological Induction and

the Logical Typology of Scientific Variables

Abstract

It is widely agreed among philosophers of science today that no formal
pattern can possibly be found in the origins of scientific theory. There is no
such thing as a “logic of discovery,” insists this view—a scientific hypothe-
sis is susceptible to methodological critique only in its relation to empirical
consequences derived after the hypothesis itself has emerged through a spon-
taneous creative inspiration. Yet confronted with the tautly directed thrust of
theory-building as actually practiced at the cutting edge of scientific research,
this romantic denial of method in the genesis of ideas takes on the appearance
of myth.

It is the contention of this article that as empirical data ramify in logical
complexity, they deposit a hard sediment of theory according to a standard
inductive pattern so primitively compelling that it must be recognized as one
of the primary forms of inferential thought. This process, here called “onto-
logical induction,” is a distillation out of unwieldly observed regularities of
more conceptually tractable states hypothesized to underlie them, and is the
wellspring of our beliefs in theoretical entities. Previous failure to recognize
this pattern of induction has undoubtedly been in substantial measure a re-
sult of inadequate attention to the structural details of scientific propositions;
for in order to exhibit the nature of ontological induction clearly, it is first
necessary to make extended forays through sparsely explored methodologi-
cal terrain—notably, the nature of scientific “variables,” the logical form of
“laws,” and the type hierarchy of scientific concepts.

1. Introduction

Despite the interest displayed by many modern philosophers in the natural sci-
ences, surprisingly little serious attention has been given to the formal details of
scientific propositions and cognitive strategies as they arise in actual practice. On
the whole, philosophy-of-science writings with enough conceptual precision to be
genuinely illuminating have tended to focus on specific problematic concepts and
the epistemic status of theories, analyzed in terms of simplified reconstructions
which, however adequate for their purpose, are considerably removed from the
living reality of scientific procedure. In particular, scientific operations at the
data-gathering and data-collating level are usually disposed of in a few broad gen-
eralities with the implication that the formal details are technical issues strictly
indigenous to the particular scientific discipline and best tended to therein.
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Now it may well be true that the primary responsibility for a methodology lies
with its users. The fact remains, however, that the empirical sciences have evolved
a formal methodology which is considerably more complex in logical structure than
has generally been recognized, yet which, apart from some statistical machinery
and aspects of experimental design, remains largely inarticulate. This failure of re-
search scientists to show awareness of the details of their own conceptual methods
is not overly surprising, perhaps, in view of the logical sophistication demanded,
but this does not ameliorate the unfortunate consequence that many supposedly
empirical problems and uncertainties of direction at the working front of science
are actually in large measure due to confusions and inadvertent biases introjected
by methodological naivete.1 More than one hard-headed (and quite possibly anti-
methodological) experimentalist who prides himself on his ability to stick by the
facts and forego the theory has arrived at wildly unwarranted, assumption-packed
conclusions which seemed to him in all innocence to be hardly more than sum-
maries of his data. I submit, in other words, that much scientific methodology,
particularly that of propositional forms and inferential techniques at the research
level, still remains largely intuitive with its users and only dimly appreciated by
philosophers. Perhaps no better illustration of this can be found than in the obscu-
rity which currently surrounds the origins of theoretical constructs. It is by now
generally recognized that a science which attains any degree of empirical success
inevitably develops systematizing theories which make use of concepts that resist
explicit definition within the data language of the science. But while the mean-
ings and ontological significance of such concepts have been subjected to intense
philosophical scrutiny within recent years (e.g., Carnap, 1956; Feigl, 1950; Hempel,
1958; Rozeboom, 1962), little or nothing has been said about how they arise in the
first place. The traditional account of the “Hypothetico-deductive” method of do-
ing science portrays a theory as a free, imaginative creation whose chief virtue lies
in its bold entailment of previously unsuspected empirical phenomena and whose
justification lies in the subsequent testing of these consequences. But this is clearly
at odds with the actual development of theory in science. For one, it is difficult (I
do not say impossible) to reconcile the Hypothetico-deductive method, so formu-
lated, with the Principle of Parsimony, a canon of good scientizing for centuries,
which discourages fanciful speculation by insisting on the simplest explanation for
the available data. The fact that in the actual professional practice of reputable
scientists, some theoretical proposals—those which go just a little bit beyond the
data in suitable ways—receive serious consideration while others (e.g., Dianetics)
are ignored as irresponsible fantasies, confutes a Popperian mystique of scientific
theorizing. Again, the traditional account of the Hypothetico-deductive method
conceives a theory as an organic whole, crystallizing outward from a germinal core

1For two quite different examples of how linguistic subtleties have prejudiced important em-
pirical issues in behavioral psychology, see Rozeboom, 1958b and 1960 or 1961.
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of its most empirically remote theoretical constructs until it spans the gulf between
numerous previously disconnected items of experience, and which also, therefore,
would be expected to vanish more or less in its entirety when disconfirmed. The
fact of the matter is, however, that the theoretical structure of a science grows for
the most part by small, piecemeal accretions along the edge of what has already
been firmly established, like ice freezing on a pond, in which local segments can
be modified or scrapped with little threat to the remaining growth, and where the
more spectacular unifications which may appear in the mature science flesh out
and tie together theoretical notions which have already taken form in lower levels
of theory. Then too, there is the remarkable formal similarity so frequently found
among rival theories erected over the same empirical foundation. The conclusion
is unmistakable that far from being spontaneous, untrammeled inspirations, the
workaday theories around which the no-nonsense research scientist organizes his
professional activities are actually pre-formed to a high degree by the corpus of
data already accumulated.

In short, just as finite observations automatically urge statistical generaliza-
tions (e.g., concluding from the fact that 98% of observed As have been Bs, that
probably about 98% of all As are Bs), so does it seem possible that empirical
phenomena cast a penumbra of theoretical inferences according to a standard in-
ductive pattern which demands little or no creative ingenuity on the part of the
individual scientist. In particular, since theoretical concepts which purportedly
refer to unobserved entities rear their (as viewed in some quarters) ugly heads in
these circumstances, it would appear that the basic armament of human reason
includes not only induction of the statistical kind, but a process of ontological
induction as well. The logical form of the latter, however, still remains to be
spelled out. True, its rough outline has already been shadowed in the philosophy-
of-science literature. Feigl, for example, has lectured on theoretical concepts as
“triangulated in logical space,” and Bridgman has suggested (Bridgman, 1927, p.
59) that physical reality is imparted to a construct by the existence of alternative
“defining operations.” But such statements serve only as suggestions which leave
still obscure the actual formal machinery of the inference. It is the purpose of
this article to begin identification of this machinery. A sketch will be offered—and
sketch it is, since in scientific methodology, as in traditional philosophy, complex
issues are so intimately intertwined that one can scarcely discuss one intelligibly
without temporarily simplifying or ignoring many others—of how theoretical con-
structs fall more or less mechanically out of certain logically complex empirical
variables, here called “structural variables,” whose formal characterization reveals
that the data language of a science supports a fairly elaborate type-hierarchy in
the Russellian sense. In order to accomplish this, however, it will first be necessary
to clarify the logical grammar of scientific “laws” (or better, “natural regularities”)
and to formalize what is probably the basic methodological concept of science, the
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scientific “variable.” A bit of this preliminary ground has already been covered by
Carnap and Menger (cit. infra), but I have yet to detect signs that these insights
have seen much dissemination.

2. Scientific Variables.

It is impossible to do much reading in mathematics, science, statistics, or logic,
nowadays, without dealing extensively with “variables.” It does not seem generally
to be appreciated, however, that the term ‘variable’ is seriously ambiguous in its
various occurrences. One would think that a non-intuitive technical concept this
fundamental would have an extensive literature devoted to it, if only to explain
its usage to the novice. Actually, while logicians have made their use (or uses) of
the notion reasonably clear, discussion of its quite different character in scientific
methodology is virtually nonexistent. I am aware of only one modern thinker, the
mathematician Karl Menger, who has seriously attempted to disentangle these var-
ious meanings and to explicate the formal properties of “variables” in the scientific
sense (e.g., Menger, 1954, 1955, Ch. 7). In what follows, I shall differ somewhat
from Menger both in terminology and scope,2 but the present interpretation is
basically in agreement with his.

While a number of secondary meaning shades can be recognized in each cat-
egory, the term ‘variable’ as used today has two basic, radically distinct, senses:
The logical, or syntactic, on the one hand, and the substantive, or scientific, on
the other. (1) In the syntactic sense, a variable is a linguistic structuring device
which acts, as it were, as a place-marker to index the spot where a descriptive
constant would occur under more determinate circumstances and to afford a point
of application for logical operators. Examples are ‘x ’ in the propositional function
‘x is blue’, ‘y ’ in the statement ‘There is a number, y, such that y = 2 + 3’, and ‘z ’
in the definite description ‘The z such that z = 2 + 3’.3 A variable in the syntactic
sense cannot properly be said to vary—i.e., to partake of change, alteration, or
flux. At best, the expression in which the variable occurs is altered by replacing
(not varying) the variable with a constant or another variable. On the other hand,
subject to restrictions concerning the scope of operators, the variables in a given
proposition can freely be replaced with others without changing the proposition’s
meaning. (2) Very much in contrast, the notion of variable as employed in science
denotes such abstract entities as Weight, Height, Habit-strength, Eye-color, etc.
A scientist’s variables are part of his subject-matter, not of his linguistic machin-

2Menger, with the typical mathematician’s viewpoint, admits only of quantitative variables,
defined extensionally.

3Many components of mathematical formulas would also qualify as examples, except that tra-
ditional mathematical notation is severely elliptical, including suppression of all logical operators,
and the precise roles of the variables in such formulas tend to be ambiguous.
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ery, and the terms by which he refers to them function syntactically as descriptive
constants, not as syntactic variables. Variables in the scientific sense are the sort
of thing which can properly be said to fluctuate (“John’s weight has varied a great
deal this year”), and cannot be interchanged (or rather, the terms referring to
them interchanged) without altering the meaning of what is being said.

In order to distinguish the scientific sense of ‘variable’ from its syntactic mean-
ing, some writers have used the expression ‘variable quantity’. In addition to an
unfortunate tendency to preserve the original ambiguity, however, this phrase un-
wisely restricts the concept to quantitative variables. Within recent years there
has been an attempt by some statisticians to adopt the term ‘variate’ for variables
that vary, but this usage has as yet made only limited headway—certainly none
in the empirical sciences. While it would indeed be advantageous to have separate
expressions for the syntactic and scientific meanings of ‘variable’, this term in its
latter sense is so deeply and synonymlessly imbedded in scientific thinking that
any discussion of scientific methodology as it is actually practiced has a strong
commitment to this usage. Consequently, except where explicitly qualified by the
adjective ‘syntactic’, the word ‘variable’ will henceforth occur in this article only
in its scientific sense.

The concept of (scientific) variable has emerged as a powerful technical device
for systematic description of the attributes of things and the inter-dependencies
found among them. In particular, in empirical sciences which have moved beyond
the classificatory stage, it provides a standard form for the recording and relating
of data. For this and other reasons, it is advantageous to begin with a brief look
at the concept of data.

Every empirical science rests upon a foundation of propositions, recorded in de-
tail (albeit usually in abbreviated notation) in laboratory protocols or field reports
and summarized in technical journals, whose truth has (presumably) been verified
by direct observation. The facts which these propositions describe are the “data”
of the science, and the statements which express them are its “datum-sentences.”
This “direct observation” by which scientific data are determined is not direct ex-
perience of “sense data” in the sense of phenomenalism, but is usually mediated
by perceptual accessories such as counters, microscopes, photographic plates, and
the like. Neither are datum-sentences regarded as so incorrigable that they cannot
be brought under suspicion of faulty observation or even outright fraud when they
appear irreconcilable with other data. However, datum-sentences express those
beliefs within the official corpus of the science which are regarded as most firmly
established. They are the criteria against which empirical (i.e., data language)
generalizations and theoretical propositions are assessed, and anchor both ends of
the science’s inferential chains. That is, datum-sentences are, ultimately, that from
which and to which, by the machinery of generalizations and theories, scientific
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inferences are made.

Now, the sort of thing that a person seems to observe most directly in this
world is that a certain object has a certain attribute, or that certain objects stand
in a certain relationship. Correlatively, we find that the datum-sentences of a
science (always?) parse grammatically in the subject-predicate form, in which a
stated n-adic property is attributed to a specified n-tuple of entities. Drawing
upon everyday language for examples in order to avoid the technical details of
more precise concepts, the following illustrate the type of sentences which express
the raw observations of scientific inquiry:

(1.1) Tom weighs 164 lbs.
(1.2) Linda has blue eyes.
(1.3) John loves Marsha.
(1.4) Rat #39 is exposed to a flashing red light.
(1.5) That ugly beast in the far cage is an orangutan.
(1.6) This rock is harder than that one.
(1.7) Peter has three siblings.

Replacing the subject-terms of these sentences with syntactic variables, we obtain
the predicates4

(2.1) s weighs 164 lbs.
(2.2) s has blue eyes.
(2.3) s1 loves s2.
(2.4) s is exposed to a flashing red light.
(2.5) s is an orangutan.
(2.6) s1 is harder than s2.
(2.7) s has three siblings.

which are ascribed, in order, to Tom, Linda, the ordered pair 〈John, Marsha〉, rat
#39, that ugly beast in the far cage, the ordered pair 〈this rock, that one〉, and
Peter; or, more accurately, to certain implicitly specified time-slices (i.e., temporal
stages) of these.5

In classifying datum-sentences, illustrated by (1.1)–(1.7), as subject-predicate
in form, I merely wish to indicate something about the syntactic behavior of these
sentences as they participate in the science’s language maneuvers, not to make

4The purist who insists on a distinction between predicates and propositional functions may
here and subsequently affix abstraction-operators as appropriate.

5When speaking of the time-dependent attributes of an object, it is most convenient to regard
the subject of the sentence as a temporal cross-section, or stage, of the object. Another, less
satisfactory, alternative would be to treat the subject of the sentence as a pair comprised of the
object and a moment in time.
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claims about an ultimate logical structure. Most sentences can be formalized in
a number of ways, and a sentence which is in subject-predicate form under one
analysis may not remain so under another. Thus if ‘three’ and ‘sibling’ were
logically unpacked, (1.7) would bristle with quantifiers and connectives. However,
the way a sentence is used defines for it a functional grammar, namely, the minimal
syntactic structure necessary to formalize its role in the inductive and deductive
chains in which it participates. It is in this sense that I speak of the grammatical
structure of scientific propositions, and assert, in particular, that datum-sentences
are (usually) of subject-predicate form.6

Sentences which functionally have a subject-predicate character behave for-
mally as “atomic” sentences, and in contrast to functionally molecular or general-
ized sentences, express what feel like brute, elemental facts which call for explana-
tion and prediction but do not themselves have explanatory or predictive force.7

Restrict the facts cited in the previous sentence to “known” facts and one also has
a passable description of the epistemic status of data. Hence we may introduce
the adjective ‘datumform’ to describe sentences which are functionally subject-
predicate in character, thereby indicating that such sentences are psychologically
on a par with statements of raw data in their lack of ability to systematize and
explain. This concept will be of service in Section 5, below.

Now, the predicates which first emerge from the datum-sentences of a science
by abstraction over their subject-terms may be seen to stand in certain interesting
formal relations to one another; namely, they form internally incompatible clusters.
Thus compare (2.1)–(2.7) with

(3.1) s weighs 108 lbs.
(3.2) s has grey eyes.
(3.3) s1 abhors s2.
(3.4) s is not exposed to a flashing red light.
(3.5) s is an elephant.
(3.6) s1 is softer than s2.
(3.7) s is an only child.

Each predicate (2.i) is incompatible with predicate (3.i) in that no entity (more
precisely, no ordered n-tuple of time-slices of objects) can satisfy both, even though
no such incompatibility exists between (2.i) and (3.j ) (i 6= j). Thus no object can

6As will shortly be seen, however, codification of data in terms of (scientific) variables has the
result that (2.1)–(2.7) do not adequately reflect the subject-predicate analysis which a science
would ultimately give to (1.1)–(1.7)

7That is, no atomic sentence can be deduced from any set of other atomic sentences. Whether
any atomic sentence can be inductively inferred from other atomic sentences (e.g., ‘P (an)’ from
‘P (a1)’, . . . ,‘P (an−1)’) without passing at least implicitly through an inductive generalization is
perhaps an open question, though one which I am inclined to answer negatively.
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at once weigh 164 lbs. and 108 lbs., though there is no reason why it cannot both
weigh 164 lbs. and have grey eyes. Obviously, (2.i) and (3.i) (i 6= 4) can be
augmented with still other alternatives which share this mutual incompatibility.
In fact, by suitably altering certain terms in (2.i) as indicated in (4.i), we can
generate a set of predicates which are mutually exclusive and exhaustive over an
appropriate domain of ordered n-tuples. That is, each element of the domain
satisfies exactly one predicate in the set.

(4.1) s weighs lbs. (Variously insert names of all the positive real numbers.8)
(4.2) s has eyes. (Variously insert adjectives describing all possible coloration-

totalities.9)
(4.3) s1 s2 (Variously insert verbs designating all possible emotional attitude-

totalities.10)
(4.4) s exposed to a flashing red light. (Variously insert ‘is’ and ‘is not’.)
(4.5) s is a(n) . (Variously insert the names of all possible genera of organ-

isms.)
(4.6) s1 is s2 (Variously insert ‘harder than’, ‘equally hard as’, and ‘softer

than’.)
(4.7) s has siblings. (Variously insert adjectives referring to all the positive

integers, including zero.)

Then each of these sets of predicates (when synonyms are winnowed out) are
mutually exclusive and exhaustive over their subject-domains when these domains
are, respectively, time-slices of objects in (4.1), time-slices of organisms in (4.4),
(4.5) and (4.7), time slices of eye-bearing organisms in (4.2), ordered pairs of time-
slices of organisms in (4.3), and ordered pairs of time-slices of objects in (4.6).

To simplify discussion, let us henceforth assume that to every meaningful pred-
icate or propositional function ‘P(x)’ there corresponds a property P such that an
entity in the domain of ‘x ’ satisfies ‘P(x)’ if and only if it has property P. (The
ontologically queasy reader may substitute ‘class’ for ‘property’ and ‘belongs to’
for ‘has’ in the previous sentence if it will help him tolerate this move. Philosoph-
ical scruples or no, transition from the formal to the material mode of speech not
only avoids problems due to de facto linguistic inadequacies (cf. Note 8), com-
plications arising from synonymy and idiom, etc., but is also necessary to reflect

8Actually, since the class of all positive real numbers is non-denumerable, not all of these
predicates can be thought of as actually existing in the language. Similarly, many of the other
predicate-sets involved in the definition of scientific variables exist only in imagination, since not
all the necessary definitions and conceptual clarifications have actually been carried out (e.g.,
(4.3) and (4.5)). The assumption made in the following paragraph will obviate this difficulty,
however.

9By “coloration-totalities” I mean color specified in such a way that no object can be two
different colors at once. For a discussion of this point with respect to the hoary philosophical
problem of color-incompatibility, see Rozeboom (1958a)

10See Note 9.
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the assumptions actually made in science; for the extensive and apparently indis-
pensable quantification in scientific discourse over predicate terms admits a host of
abstract entities. How the language of science may be reworked to minimize these
reifications, and what the consequences may be of such an assumption when it can
neither be paraphrased away nor justified ontologically is a problem which must
be reserved for another occasion.) Let a set K of properties be called a partition
of a domain D of ordered n-tuples when for each element d of D, there is one and
only one property in K which holds for d. Then what (4.1)–(4.7) illustrate is how
certain observed properties can be seen to belong to partitions of their subject-
domains. But obviously this is completely general: Any set K ′ of properties which
are mutually exclusive over a domain D, including the case where K ′ has only
one member, can be expanded into a partition of D by adding the property of
not possessing any of the properties in K ′ (cf. (4.4)). Hence any n-adic property,
observed or theoretical, may be analyzed as belonging to a partition of the ordered
n-tuples over which the distribution of this property is of scientific interest.

Now, the proper exploitation of a science’s data require a record not only of
what properties its objects of study have been observed to have, but also what
properties they have been observed not to have (since one determines the an-
swer to a question as much as does the other). Clearly, therefore, the sorting
of properties into partitions affords a tremendous saving of descriptive labor, es-
pecially when the partition contains a large number of properties. For then it
suffices to state which property in the partition does hold for a given entity, since
this concomitantly serves notice that the remainder do not. (Imagine the sorry
plight of a physicist who had to state separately whether or not an object has a
weight of five gms., and six gms., and seven gms., etc.) Additional, equally vital
methodological benefits emerge from partitions when the predictive implications
of a property, or combination of properties, are considered (see Section 4, below).
Only as a scientific discipline does, in fact, work out clearly conceived partitions
of its subject-domains is it in position to begin serious processing of its data, and
it is for precisely this reason that the concept of (scientific) variable is so basic
to scientific methodology. For apart from some secondary modifications to attain
further technical convenience, a science’s variables are simply the partitions of
which it avails itself. That is, as a first approximation, a scientific variable over a
domain D is a set, K, of properties such that each element of D has one and only
one property in K. Correlatively, to the same degree of approximation, the value
of a (scientific) variable K for an element, d, of D is that one property, P, in K
which d exemplifies. Then to say that P is the value of the K variable for d is to
assert that P (d) · P ∈ K.

The preliminary definition of “variable” just given, however, is not the most
satisfactory for giving an account of how scientists actually talk about their vari-
ables. For although by this definition two variables with the same range of values
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would necessarily be identical, we would normally want to say, e.g., that Number-
of-siblings and Number-of-traffic-violations, which are obviously different variables,
nonetheless have the same range of possible values, namely, the positive integers.
More generally, statistical analysis of the distributions of quantitative variables
proceeds (e.g., in computation of Means, SDs, etc.) as though the values of the
variables are in all cases real numbers. Again, geneticists would insist that the
Color-of-father’s-eyes and Color-of-mother’s-eyes variables are quite distinct, even
though they have the same range of values, namely, colors. These and many other
instances (including convenience in the formulation of scientific “laws”) show that
it is more satisfactory to define “variable” in such fashion that a variable is not
necessarily the same as the set of its possible values, so that many different vari-
ables may have overlapping or coincident value-ranges. There are several ways,
differing in notational details and reflecting somewhat different ontological com-
mitments, in which the desired revision can be carried through. Examination of
these alternatives and weighing of their respective merits is a chapter on scientific
methodology which badly needs to be written, if only to allay terminological dis-
cord. (For a rousing debate, ask a group of scientists or philosophers whether two
feet and twenty-four inches are the same value of a single Height variable—and if
so, are two feet and twenty-four inches then the same “denominate number”?—or
whether Height-in-inches and Height-in-feet are two different variables with the
same range of values, namely, positive real numbers.) Such an analysis is unneces-
sary for the present undertaking, however, so I shall choose the formulation which
seems to me to be the most convenient.

It will be noticed that with two exceptions, the predicate-schema (4.i) can
much more simply be rewritten as a single relational predicate; i.e., vspace-.5em

(5.1) s weighs n lbs. (‘n’ ranges over numbers11)
(5.2) s has c colored eyes. (‘c’ ranges over coloration-totalities)
(5.3) s1 feels e for s2. (‘e’ ranges over emotional attitude-totalities)
(5.5) s is a member of the x genus, (‘x ’ ranges over genera of organisms)
(5.7) s has n siblings, (‘n’ ranges over numbers)

where the domain of ‘s’ in (5.i) is the same as in (4.i). At the cost of some
awkwardness, schemata (4.4) and (4.6) may also be rewritten in this way; e.g.,

(5.4) s is in the flashing-red-light stimulus state of q.
(5.6) s1 stands in the qualitative-hardness-relation of h to s2.

where “qualitative-hardness-relation” is defined to be the set of relations 〈being
softer than, being equally hard as, being harder than〉, and “flashing-red-light

11Of course the range of possible values in this case is only positive reals, but there is no harm
done, and quite possibly technical advantages to be gained, by granting ‘n’ a more inclusive range.
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stimulus state” is defined to be the pair of conditions 〈being exposed to a flashing
red light, not being exposed to a flashing red light〉. Each of the propositional
functions (5.i) is of the form Φ(α, β) in which the domain, D, of α is a class of
ordered n-tuples and the range, R, of β is a set of abstract entities; hence (5.i)
determines a certain dyadic relation between elements of D and members of R.
Moreover, since for a given element d of D, there is one and only one member
of R to which d stands in this relation, the relation is a function12 from D to
R. Consequently, we may revise the preliminary definition of scientific variable to
read: A scientific variable over a domain D is a function from D into a set, R, of
abstract entities. An entity of the domain D will then be said to be an argument
of the variable, and the member of R into which the function maps a particular
argument will be called the value of the variable for that argument. Thus if the
function defined by (5.1) is called the “Weight-in-lbs.” variable, the arguments of
the Weight-in-lbs. variable are temporal stages of objects, its possible values are
positive real numbers, and if Tom weighs 164 lbs. today, the value of the Weight-in-
lbs. variable for Tom, today, is the number 164. Similarly, if Tom (today) has blue
eyes, the value of the Eye-color variable for Tom (today) is the coloration-totality
Blue.

The definition of “variable” just given is somewhat vague about what functions
from the domain D are to count as (scientific) variables over D. Actual scientific
practice suggests that some restriction should be made. For example, a geneticist
studying the inheritance of eye-color would list Father’s-eye-color and Mother’s-
eye-color among his variables, but would not consider Father-of and Mother-of
(which map elements of D into other elements of D) to be such, even though he
makes important use of the latter functions. Description, above, of a variable’s
values as “abstract entities” is meant to suggest some such restriction, but is not
very helpful for actually spelling it out. Just how the restriction should be drawn,
however, is not a matter about which I feel entirely clear.13 Fortunately, this is not
an issue which needs to be resolved here. A restriction which must not be made,
however, is one which is implicit—or explicit—in practically all previous writings
on this subject, namely, that a scientific variable must take numbers as its values.
To do so would be to make ‘variable’ synonymous with ‘quantitative variable’,
in flagrant disregard of the obvious fact that qualitative variables (e.g., (5.2)–
(5.6)) have a currently indispensible place in a number of scientific disciplines,

12We may here define a function from a domain D into a range R to be a 2-place property P
such that for a given element d of D, there is one and only one member r of R such that P(d,r).
We shall not here be concerned with any possible distinction between a function on the one hand,
and the function-defining relation which obtains between an argument and the function’s value
for this argument on the other.

13Perhaps a definition of the subject-matter of the science would specify certain classes of
attributes as the focus of its concern (e.g., (4.1)–(4.7)), and the functions which are formally
isomorphic with these (e.g., (5.1)–(5.7)) then constitute its variables.
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and in some instances have been found to participate in impressive law-systems
(Mendelian genetics, the laws of color mixture, and others). It is not sufficient to
point out (e.g., Carnap, 1937, p. 54f.) that numerals can be assigned to designate
the values of a qualitative variable. Such a procedure is known as a “scaling” of the
variable, and when properly done, is a valuable methodological tactic. But using
numerals to stand for non-numerical entities is to change the meaning of a symbol
which in its normal meaning designates a number, not to convert the variable
into one which has numbers as its values. Whether or not every non-quantitative
variable is isomorphic with a quantitative one is an important question which
still awaits study. In any case, simply to assume without further analysis that
all variables can be converted into quantitative ones is to undercut the whole
theory of scaling, a subject which has already received more attention than most
methodological issues in science and is still far from adequately understood.

It was pointed out earlier that any property can be construed as belonging
to a partition of the domain under consideration. But obviously, every partition
K is isomorphic with a scientific variable over this domain—if a more convenient
variable cannot be found, there is always the variable K, defined

K(s, P ) = def P (s) · P ∈ K,

as illustrated by (5.4) and (5.6). Consequently, every sentence in subject-predicate
form can be rewritten in the form, ‘The value of variable V for s is x′. This, or
some paraphrase thereof, is in principle now standard terminology for datumform
sentences in most sciences. Execution of this methodological strategy in practice,
on the other hand, is blunted by the fact that many of the variables actually
studied—at least in the behavioral sciences—are so poorly conceptualized that
even the partitions involved are highly uncertain, much less how they are to be
transformed into variables. One of the most important ways in which methodolog-
ical analysis can be of use to an empirical science is to help clean up its variables.
In fact, such observations as that there are a great many alternative ways to parti-
tion a domain with respect to what intuitively feels like the same kind of property
(e.g., in accord with the variable defined by ‘s is h inches tall’, where ‘h’ ranges
over all positive real numbers, in contrast to the variable defined by ‘s is between h
– .5 and h + .5 inches tall’, where ‘h’ ranges over positive integers only); that a set
of kindred properties may have to be augmented with a xenomorphic alternative in
order to partition the domain desired (e.g., hair-color, which has to include a value
corresponding to baldness if it is to constitute a complete partition of time-slices of
persons); that by no means all well-defined variables are empirically fruitful; and
other complications which arise when scientific variables are studied in technical
detail, all point to the need for development of a comprehensive theory of variables
which, among other objectives, attempts to discover the properties which deter-
mine a variable’s scientific fertility and to devise methods for selecting variables
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of maximal potential out of the alternative constructions available.

For the ensuing discussion, it will be convenient to adopt the following nota-
tional conventions: Specified or arbitrary scientific variables will be designated by
boldface capital letters, e.g., V. The 2-place14 propositional function (e.g., (5.1)–
(5.7)) which defines the variable V will be abbreviated ‘V(s, x )’ (or with other
syntactic variables in place of ‘s’ and ‘x ’). Continuing the present policy of not
distinguishing between propositional functions and predicates (cf. Note 4), ‘V(s,
x )’ is also to be construed as a name of V. The first gap in the variable-name
(marked in ‘V(s, x )’ by the syntactic variable ‘s’) is instantiated by expressions
which refer to arguments of the variable and will be called its “argument-place.”
Similarly, the second gap (marked in ‘V(s, x )’ by ‘x ’) is its “value-place.” Thus
the propositional function ‘s weighs x lbs.’, which defines a weight variable, may
be abbreviated simply ‘W(s, x )’, in which ‘s’ and ‘x ’ mark the argument-place
and the value-place, respectively. Then W(s, x ) = W = Weight-in-lbs.

It is also convenient to introduce the concept of “functor” at this time; namely,
a functor is a descriptional function (i.e., an “unsaturated” expression analogous
to a propositional function except that instantiations of a functor are definite
descriptions rather than propositions) which, when instantiated by the name or
description of an element d in the domain of f, designates the value of f for d
(see Reichenbach, 1947, p. 311ff.). Thus when the name of any particular person
is substituted for ‘s’ in the descriptional function ‘The weight in lbs. of s’ the
resulting expression designates that number which is this person’s weight in lbs.
It is customary in mathematics to use the name of a function as a functor-radical
which, when prefixed to an argument-name, designates the value of the function
for that argument. Thus if ‘f ’ refers to a function f, the expression ‘fd ’ (or ‘f(d)’)
designates the value of f for the argument d. Similarly, when ‘s’ is a syntactic
variable, ‘fs’ (or ‘f(s)’) is a descriptional function which yields a description of the
value of f for any argument whose name is substituted for ‘s’. At some slight
risk of confusion when the function is a scientific variable, we shall continue this
practice here. Thus ‘Vd ’ will be taken to designate the value of variable V for an
argument d. More generally,

Vs =def (

ι

x)V(s, x)(6)

= The value of V for s.

Hence,

(7) (s)(x)[Vs = x ≡ V(s, x)]

14Reminder : We are for convenience treating a variable formed from a set of mutually exclusive
and exhaustive n-place relations as a function of one argument from a domain of ordered n-
tuples, rather than as a function of n arguments. Hence an argument of a scientific variable has
n components, where n ≥ 1.
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Functor-notation in which the argument-place is entered as a subscript to the
function-name is standard in the statistical literature. For example, the familiar

statistical formula, ‘
n∑

i=1

Xi’ translates as ‘The value of variable X for entity #1,

plus the value of X for entity #2, plus . . . plus the value of X for entity #n’.

Analysis of the inner structure of scientific variables reveals many varieties and
degrees of formal complexity. While such details are here basically irrelevant, two
brief observations concerning this internal structure will be helpful. The first is
that just as the domain of a variable may be comprised of ordered n-tuples where
n > 1, so may the values of the variable have multiple components. Thus a spatial-
position variable over a domain of time-slices of particles would take as its values
triplets of numbers corresponding to coordinates in a three-dimensional reference
frame. When the value-place in the variable-name has more than one component,
the variable may be called a vectoral variable, or more generally, when higher
degrees of order are involved, a tensoral variable. When two or more variables
over the same domain are being explored for their joint implications, it may be
convenient to concatenate them into a single vectoral variable. Thus, instead of
inquiring about the values of the two variables V1 and V2 for an entity d, we may
instead attend to the value for d of the single vectoral variable V12, where

V12(s, x) =def V1(s, x1) ·V2(s, x2) (x = 〈x1, x2〉).
The other observation is that the argument-place, ‘s’, in ‘V(s, x )’ may be

part of a subordinate functor enclosed in the variable-name, so that an argument
d of V is not the actual grammatical subject of the proposition ‘V(d, r)’. Thus
in the propositional function,‘s’s father has x colored eyes’, which defines the
genetics variable, Father’s-eye-color, the argument-place is imbedded in a descrip-
tional function, ‘s’s father’. Therefore, if John’s father has brown eyes, the value
of this variable for John is Brown; yet when ‘John’ and ‘Brown’ instantiate the
argument-place and value-place, respectively, of the variable-name, the subject of
the resulting proposition, ‘John’s father has Brown colored eyes’, is John’s father,
not John. Any variable V(s, x ) over a domain D can be converted into another
variable, V∗(s∗, x), over a domain D∗ (where D∗ may or may not coincide with
D) through use of a function f which maps D∗ into D ; namely,

V∗(s∗, x) =def V(fs∗, x).

This suggests the drawing of a distinction between the formal argument and the
factual argument of a variable; namely, that the formal arguments are those en-
tities whose names instantiate the argument-place of the variable-name, while
the corresponding factual arguments are those entities which comprise the actual
grammatical subject of the propositions so formed. (There are some technical
complications in carrying through this distinction precisely, but these need not
concern us here.)
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3. The Logical Typology of Scientific Variables.

The examples used in the preceding section lend themselves to the implicit suppo-
sition that the arguments of scientific variables are always particulars, or ordered
n-tuples thereof. The definition of ‘variable’ which has been adopted makes no
such assumption, however. Actually, science makes important use of variables
whose various domains consist of abstract entities (or ordered n-tuples thereof)
at all levels of abstraction. In particular, among the arguments of scientific vari-
ables can be found the whole Russellian type-hierarchy of particulars, classes of
particulars, classes of classes of particulars, etc.

Probably the most famous variable with classes as its arguments is the Cardinal-
number variable, defined by the propositional function, ‘c has n members’. This
variable appears in various guises throughout all branches of science (e.g., ‘Species
c has n living representatives’), especially in the definition of statistical concepts.
The latter, in turn, form a group of variables over classes which have become ex-
ceedingly important in contemporary science. Crudely, what a statistical assertion
says is something about the behavior of a given variable, or set of variables, within
a certain class of arguments, and statistical concepts such as “Mean,” “Standard
deviation,” “Correlation,” etc., generate scientific variables whose arguments are
these classes and whose values correspond to alternatively possible statistical “be-
haviors” of the specified sort. For example, ‘The mean Height-in-inches in popu-
lation c is h’, or ‘MH(c, h)’ for short, designates a Mean-height-in-inches variable
whose domain can be any set of populations whose members also belong to the
domain of the Height-in-inches variable (e.g., species of organism, contemporary
U.S. Sunday school classes, etc.), and whose value for an argument c (e.g., Miss
Smith’s Sunday school class last week) is the sum of the values of the Height-in-
inches variable for the members of c, divided by the value of the Cardinal-number
variable for c (e.g., Tom’s height-in-inches plus Dick’s height-in-inches plus Harry’s
height-in-inches, divided by three.)

Variables whose arguments can be classified according to the Russellian type-
system may be given a corresponding type designation; namely, the type-level of a
variableV is one greater than the highest type of any element in an ordered n-tuple
which comprises an argument of V. Thus the Height-in-inches variable, whose
arguments are particulars and hence of zero type-level, is a first-level variable.
The Mean-height-in-inches variable, whose arguments are classes of particulars
and hence first-level in type, is a second-level variable. A third-level variable is
one whose arguments are classes of classes, many examples of which are to be
found in sampling statistics. (Thus, the Standard Error of the Mean for a variable
V in samples of size n from population P is the standard deviation of the means
of V among all samples of size n drawn from P. So described, the SE of the
mean of V has population P as its formal argument, but its factual argument is
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a class of classes.) In general, the different possibilities for statistical behavior of
a certain kind by an nth-level variable within a class of its arguments define an
(n+ 1)th-level statistical variable.

Since the formal and factual arguments of a variable need not always agree in
Russellian type, a corresponding distinction may be drawn between the variables’s
formal type-level and its factual type-level. In this paper, unqualified reference to
type-level will always be to factual type-level.

The present definition of a variable’s type-level ignores the logical type of the
variable’s values, and is defined for variables whose arguments are abstract entities
other than classes only to the extent that the logical types of the latter are well
defined. While this is adequate for the present purpose, which is to provide a
convenient classification of variables according to the logical complexity of their
arguments, future investigations may well suggest modifications of this definition.

Variables whose values are ascribed to arguments by datum-sentences are some-
times known as “observation variables.” While the easiest sentences to verify are
usually those whose subjects are particulars, it by no means follows that only
first-level variables can be observation variables. In particular, if the values of a
variable V can be observed for a sufficiently large number of members of a class c,
then the statistical properties of V in c may also be said to be “observable”; for
even if c is indefinitely large, repeated observations of the values of V for members
of c, buttressed by modern sampling theory, in principle permit determination of
the statistical behavior of V in c to any desired degree of accuracy. Hence vari-
ables which reflect such sampling-determinable statistical properties may also be
regarded as “observation variables,” if only in an extended sense.

4. Natural Regularities.

While no science can exist without a substantial foundation of data, if sciences
were merely compendia of datum-sentences, they could scarcely command the
pragmatic respect and intellectual interest they in fact do. But of course, the
recording of data is only a means to detecting and formulating the interdependen-
cies which exist among the attributes of things. That is, it is both an official goal
and an active pursuit of science to discover laws of nature.

Now, the pragmatic force which underlies the concept of “law”—or better,
to avoid this term’s obscure but supercharged philosophical tensions, “lawful rela-
tion” or “regularity”—is that under certain conditions, knowledge about one event
or events provides information about (i.e., is helpful for predicting) another. In
the more sharply defined concepts of modern science, this is put by saying that
a regularity is what holds under background or “boundary” conditions C when
the value of a variable V for an entity s in circumstances C is dependent upon
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s’s value of another variable U. (“Natural” regularities are then those which in
some sense are extra-logical, in contrast to “analytic” covariations such as that
between Height-in-feet and Height-in-inches. However, drawing this distinction
sharply turns out to be extraordinarily difficult.) The precise statistical definition
of this sort of dependency is not difficult to state: Variables U and V are not
independent under circumstances C when and only when the joint probability dis-
tribution of U and V, given C, fails to be the product of the marginal probability
distributions of U and V in C. Explanation of this technical definition by showing
its derivation from the intuitive notion of “providing information,” and discussion
of other problems which it introduces (notably, the difference between probability
and frequency) would be a major undertaking which would lead us far afield. How-
ever, an intuitively simpler formulation which is almost equivalent to the technical
one is that V is dependent upon U under C when the “best estimate” (defined in
terms of the means of contingent distributions) of V for an entity s known to be in
circumstances C, given also the value of U for s (and when no other information
about s is utilized), is a non-constant function of the latter. (As an additional
aid to intuitive appreciation, this condition, in turn, holds when the value of V

for an entity in circumstances C can be predicted better when the value of U is
known for that entity than when it is not known.) Therefore, subject to a slight,
here irrelevant qualification,15 variable V is lawfully related to variable U in cir-
cumstances C if and only if the best estimate of the value of V for an entity s in
circumstances C (disregarding other information which may be available about s)
is a non-constant function of its value of U. The function which relates the best
estimate of an entity’s value of V to its value of U in circumstances C is known
as the “regression” of V on U in C.

By saying only that it is the “best estimate” of one variable which is a function
of another in a lawful relationship, we recognize the element of uncertainty found in
even the tightest of empirical regularities. However, the logical details of statistical
regression and the theory of prediction are neither simple nor particularly germane
to the purpose at hand. Therefore, formal discussion of lawful relationships will
here be confined to the ideally simple case in which the value of V is perfectly
predictable from the value of U in circumstances C. In this case, a lawlike relation
obtains between two variables under background conditions C when the value of
the one variable for an entity which conforms to C is a determinate non-constant
function of the value of the other variable for that entity. That is, the logical form

15Namely, it is in principle possible for the contingent distributions of V to be a non-constant
function of U even when the means of the contingent distributions do not vary with U.
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of a (perfect) law-statement16 is

(8) (s)(x)[C(s) ⊃ [U(s, x) ⊃ V(s, fx)]]

in which f is a (non-constant) function which maps values of U into values of V.
(8) may also be written as a functor-equation; namely,

(8′) (s)[C(s) ⊃ [Vs = f(Us)]],

which has greater brevity than (8), but does not make the logical form of the law
so explicit. Conventional formulas asserting lawful relations (see examples below)
are usually analyzable most directly as ellipses for form (8′).

Though instructive, it would be prohibitively space-consuming to support (8)
by analyzing a number of “laws” as they are actually known to science and com-
monsense. (The analyses would also be intellectually taxing and perhaps dis-
concerting: Tightening up the variables involved would uncover a morass of un-
suspected logical complexity and vagueness over detail, while the philosophically
puzzling entities which appear as the arguments of many of these variables make
only too clear that analytic philosophy is still a long way from spelling out all
the prima facie ontological presuppositions of science and everyday life.) For the
moment, therefore, I shall give only three abbreviated examples, one which is
non-empirical. Others will appear in the course of subsequent discussion.

(a) The area of a circle. As every schoolboy knows, the formula for finding the
area of a circle is ‘A = πr2’. What the schoolboy probably does not know, however,
is the proposition which this equation is intended to convey. (Obviously, the
symbol-sequence ‘A = πr2’, which has no literal meaning, must be an abbreviation
for something else.) In ordinary English, the relation between a circle’s radius and
area in terms of a given unit of measurement, say centimeters, may be expressed,
‘Any circle with a radius of x cm. is πx2 sq. cm. in area’—in symbols,

(s)(x)[Circ(s) ⊃ [R(s, x) ⊃ A(s, πx2)]].

An alternative, more compact formulation is that the area of a circle in sq. cm. is
Pi times the square of its radius in cm.; i.e.,

(s)[Circ(s) ⊃ [As = π · (Rs)2]]

16See likewise Carnap (1958, p. 169). There is, however, one obscure but important respect
in which (8) is lacking; namely, it is written purely extensionally. Actually, to be classed as a
genuine law-statement, (8) has to authorize subjunctive and counterfactual conditionals (e.g., if
the value of U for s were x, the value of V for s would be fx ), which raises some rather nasty
questions about, e.g., the value of V predicted from a value of U which does not in fact obtain
for any entity in circumstances C. But this complication (which is worked into the more general
statistical definition of a law by the difference between probability and frequency) has to be ruled
out of bounds in the present discussion.
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the relation of which to the conventional ellipsis is readily apparent.

Because of their clarity in concept and simplicity in relationship, mathematical
laws are much easier to analyze than are natural regularities. Other mathematical
examples could be proliferated endlessly, especially when more than one indepen-
dent variable is admitted. (For reduction of the case of n independent variables to
form (8), see below.) However, it is empirical relationships which are of primary
concern here, and so the following two examples illustrate the much messier laws
found in the natural sciences.

(b) The law of falling bodies. The simplest case of this physical principle is
usually expressed by the formula ‘s = 1

2
gt2’, in which ‘g ’ stands for the empirically

determined numerical constant, 32.16 (or thereabouts). This highly elliptical law-
statement may be unpacked into a functor-equation,

(s)[C(s) ⊃ [Ss = 1

2
g · (Ts)2]],

in which an argument s is a time-slice of an object o at time t, and which says
that if an s (= o,t) conforms to a rather complicated set of background conditions
C—i.e., o is in a period of free-fall at t which began with zero velocity at a position
near the earth’s surface, etc.—then the distance in feet (Ss) between o’s position
at t and at the time it began free-fall is a certain function, namely 16.08× ( )2, of
the length of time in seconds (Ts) that o has been in free-fall at t. A more general
statement of the laws of motion would describe the position of o at time t + ∆t

as a stated function of the position, velocity, and force acting upon o at time t, an
assertion which also analyzes readily in form (8) or (8′).

If the empirical “constant” g in the (simple) law of falling bodies is determined
to one or two further decimals, it is found to vary a bit with different geographical
locations. Hence ‘s = 1

2
gt2’ may be interpreted as a family of laws, one for each

different region in which free-fall takes place. Thereby hangs a tale, the telling of
which will shortly receive protracted attention.

(c) The law of color-afterimages. A person who stares fixedly at a color c and
then transfers his gaze to a grey surface will soon see an afterimage whose color is
the complement of c. Putting this is somewhat more precise terms (and in doing
so we are forced to be explicit, if somewhat arbitrary, about certain features which
are so easily left comfortably vague in ordinary speech), we could say, ‘For any
person o at time t, if o has maintained steady visual fixation on a colored patch
for at least 30′′ prior to t, and at t transfers his fixation for at least 2′′ to a neutral
grey surface, then, if o fixated a c colored patch just prior to t, o experiences at
time t + 2′′ a color which is the complement of c.’ Read ‘s’ for the pair, ‘o,t ’,
and form (8) is unmistakable. This example, incidently, illustrates that functional
relationships are not restricted to quantitative variables. Both variables here take

19



colors as their values, and the function, complement-of, which maps colors into
colors, is defined by the laws of color mixing with no reference to quantities.

Sentences whose functional grammar classifies them as being of form (8) or
(8′) are used to infer the value of V for an entity s from the value of U for
s and the information that C(s). Consequently, such a sentence has a genuine
predictive and, to at least some extent, explanatory value, even if it is merely
a fairly restricted empirical generalization occupying a relatively low rung in the
hierarchy of scientific laws. (I ignore degenerate non-empirical statements such as
one describing the relationship between V and V. It might fairly be questioned
whether such sentences have a functional grammar at all.) I shall therefore call a
statement which is functionally of form (8) or (8′) (or more generally, a statistical
assertion of the sort that (8) idealizes) a lawform sentence, irrespective of whether
it qualifies fully as a “law” in the most profound philosophical sense (whatever
this might be), to contrast its psychological status as a force for systematization,
prediction and explanation with that of datumform sentences. The type-level of a
lawform sentence will here be identified with that of the highest variable to which
it makes reference.

Before turning at last to exploration of ontological induction, I cannot forbear
two brief general comments on the nature of scientific “laws” as described here.
First of all, it might be wondered if form (8) or (8′) has sufficient formal com-
plexity to do justice even to ideally perfect laws. After all, may not a dependent
variable be a function of several independent variables; and must a law always
relate the values of independent and dependent variables for the same argument?
But since the values of n variables for the same argument are equivalent to the
value of a single n-dimensional vectoral variable for that argument, (8) encom-
passes laws with more than one independent variable. Further, while dependent
and independent variables must have the same formal argument in an applica-
tion of (8), the factual arguments may differ. Thus the law of color-afterimages,
as described above, lawfully connects color experiences which are seconds apart;
while as a further example, a genetical principle relating a person’s blood-type to
that of his parents would, in application, link three different factual arguments—
i.e., person s, s’s father, and s’s mother—even though the dependent variable and
the two independent variables, namely, Blood-type (of s), Father’s-blood-type,
and Mother’s-blood-type, all have the same formal argument. In particular, any
perfect relationship between variables U and V based on a more general (not
necessarily one-one) coordination of their arguments (see Menger, 1958) can be
expressed as a relation of form (8) between variables U∗ and V∗ obtained by sub-
stituting suitable descriptional functions in the argument-places of ‘U(s, x)’ and
‘V(s, x)’. Hence while a lawform sentence may indeed display a more complex
form than that made explicit in (8), this further complexity may be subsumed
under the internal structure of the constituent variables.
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Of course, to claim that all scientific statements are either functionally da-
tumform or functionally lawform in the sense defined here would be decidedly
premature. Just what other functional propositional forms play a significant role
in scientific procedures is a question for further research.

My other comment has to do with the notion of “law” as it has tended to occur
in the philosophical literature. Perhaps the most frequent conception has been to
portray law-statements as simple universally quantified conditionals, i.e.,

(s)[P (s) ⊃ Q(s)],

sometimes accompanied with an admonition that the implication is in some nomo-
logical sense “necessary,” or with a clause ‘(∃s)P (s)’ affixed to prevent the condi-
tional from holding vacuously. My quarrel with this formulation is not so much
that it is wrong, but that it fails to bring out a feature which is essential in both the
scientific and the intuitive concept of “law.” To say that possession of a property
Q is lawfully influenced by possession of property P is to imply that occurrence
of P makes a difference for occurrences of Q. Therefore, full expression of a law
must indicate the tendency to Q not only among entities which have P, but also
among those which do not. Granted, when (s)[P (s) ⊃ Q(x)], that P would lack
relevance for Q only if (s)Q(s), the assertion ‘(s)[P (s) ⊃ Q(x)]’ still fails to make
the relevance explicit. Moreover, need to manifest the dependency of Q on P be-
comes particularly acute when we leave idealized cases and get into probabilistic
relationships. If P (s) implies Q(s) with p% likelihood, we know nothing about the
connection between P and Q unless we also know something about the probability
of Q among entities which are not P.

A much more serious mistake in the philosophical conception of “law,” on
the other hand, has been the occasional assumption that a scientific law is what
entails the time-sequence of an entity’s properties of a certain kind —i.e., that any
function which maps the time-coordinate of any time-slice s of a given entity E
into the value of a certain variable V for s is a law of the sort dealt with in science.
Russell sets up this concept of “law” (Russell, 1948, p. 312) and then points out
the paradox (arguing from it that some restriction must therefore be placed on
functions which count as laws) that every sequence of events is then necessarily
lawful, since some function, no matter how irregular, will yield the value of V for
temporal stages of E as a function of time. But while this relationship can indeed
be put into form (8), notice how queerly it emerges. Let ‘E(s) and ‘Tc(s, t)’ state,
respectively, that s is a time-slice of entity E and that t is the time-coordinate of
s. The “law” relating V to Tc for time-slices of E is then

(s)(t)[E(s) ⊃ [Tc(s, t) ⊃ V(s, ft)]],

in which f is the necessary function. But logical form is not the whole story
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of natural regularities, and the present case differs from laws which get studied
by the empirical sciences in several important methodological respects, the most
critical being that by definition, no two ss conforming to boundary conditions E
can have the same value of the independent variable. (From this the existence
of a function which perfectly relates Tc and V within time-slices of E follows
analytically because the joint distribution of Tc andV is then necessarily such that
each contingent distribution of V contains at most one member.) What this “law”
actually does is merely to map certain arguments of V into their values of V, and
is hence logically of a kind with the single variable V itself, not with relationships
between two logically distinct variables. Confessedly, the additional conditions to
which a regularity must conform in order to count as a natural law were suggested
only casually above; and indeed, inventory of lawform propositions discloses the
need for a whole taxonomic spectrum between “analytic” and “synthetic” in the
classic sense. Nonetheless, it should be clear that the distinctions which must be
made would exclude the Russellian time-sequence per se as an instance of the sort
of laws which are at stake in scientific research or philosophic inquiry about, e.g.,
the limits of determinism. Of course, it may well be that the iterated application
of a set of natural laws generates a predictable time-sequence, but the progression
of an entity’s values of a variable, no matter how simple or complex the function
which describes it, is not itself such a law.

5. Structural Variables.

As just seen, a natural regularity may be asserted by a universally quantified
statement which says that any entity conforming to certain background conditions
C has its value on one variable related by a stated function to its value on another
variable. However, this same factual content may alternatively be expressed by a
sentence whose grammatical structure is quite different, namely, as an assertion
about the class of entities which conform to conditions C. For consider the following
paraphrase of (8): ‘It is a property of the class of entities in condition C that each
member thereof has its value of V related to its value of U by the function f.’
That is, let

(9) RVfU(c) =def (s)[s ∈ c ⊃ Vs = f(Us)].

Then ‘RVfU(c)’ is a predicate over classes which states of a class to which it is
ascribed that V is a function f of U therein. Adopting the notational convention
that ‘Ĉ’ designates the class of entities satisfying conditions C, i.e.,

(10) Ĉ =def (

ι

c)[(s)[s ∈ c ≡ C(s)]],

it follows that (8) and (8′) are logically equivalent to

(11) RVfU(Ĉ)
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But although (8) and (11) express the same factual material, they nonetheless
differ in important respects, both formally and psychologically. Formalized as (8),
which is lawform, this material is in syntactical position to authorize inferences
about the value of variable V in certain instances, and to be treated as one of
the explanatory principles of the science. Conversely, (11) is datumform, and so
formalized, has the syntactical status of an atomic, not generalized, sentence. (Of
course, the suppressed structure of (11) can be reclaimed by adduction of (9), but
that is another matter.) By itself, this syntactical difference would be merely a
trick; but to the extent that (8) and (11) reflect different functional grammars
which may be given to their common content, the distinction is fundamental: If
the use which is made of this belief is adequately formalized by (11), then the
holding of relation f between U and V in C is pragmatically a simple datum, a
brute fact about class Ĉ which, rather than having explanatory value, is on a par
with other data. Moreover, even if this content is for some purposes best rendered
in form (8), it may still be most methodologically illuminating to employ form (11)
for the analysis of other cognitive contexts in which it occurs. Thus if Ĉ is a thing-
kind, say a species of organism (see example below), (8) might be used for certain
practical problems of estimation, yet in a scientific investigation wherein thing-kind
Ĉ and its peers are themselves the objects of study, the status of information about
the relation of V to U in C would most properly be formalized as a datumform
assertion like (11), while a lawform reconstruction such as (8) would be misleading.
That is, to turn the argument around, when our primary concern is to make sense
out of the similarities and differences among various classes of a certain sort, we
frequently find that one of the important ways in which these classes differ is in
the pattern of covariation certain first-level variables display within them. That
one of these classes sustains the particular internal covariational pattern it in fact
does is then simply a to-be-accounted-for datum, no different in epistemic status
from any other datum except that the subject in this case happens to be a class
rather than a particular.

Since the “structure” of a thing is the way in which its parts are interrelated, I
shall call a predicate such as (9), which describes a possible way in which certain
properties may happen to hang together within a class, a structural predicate, and
the corresponding property a structural property.

By considering the various possible ways in which two variables can be related
within a class (the detailed spelling out of which involves some complications
which may be ignored here), structural properties may be sorted into partitions
which then determine structural variables. Let the dyadic predicate ‘RVU(c, φ)’
be defined for any two variables U and V as

(12) RVU(c, φ) =def (s)(x)[s ∈ c ⊃ [U(s, x) ⊃ V(s, φx)]],

in which ‘c’ ranges over classes whose members are arguments of both U and V,
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and ‘φ’ ranges over various possible functions by which V can vary with U.17

Then RVU is a structural variable whose arguments and values are classes and
functions, respectively; and instead of (11), we may equivalently write

(13) RVU(Ĉ, f),

or

(13′) RVUĈ = f.

Of course, the formal arguments and values of a structural variable do not have
to be classes and functions, respectively. A function which maps, say, particulars
into classes (e.g., an object into a class of its parts) could be used to define a struc-
tural variable whose factual arguments are classes but whose formal arguments are
particulars. Likewise, if the functions which are the values of a structural variable
can be put into a one-one correspondence with abstract entities of another sort,
the latter can be arranged to be the values of the variable (see example below).

In the remainder of this paper, I shall try to show how appreciation of structural
variables illuminates the otherwise mystifying emergence of theoretical concepts
from routine data-processing. Before plunging into such potentially controversial
matters, however, let me first illustrate the concept of “structural variable” with
a relatively innocuous example. Since organisms of the same species are approxi-
mately the same shape, albeit of different sizes due to variation in age and other
growth factors, the height of an organism belonging to a given species will be
(approximately) proportional to the cube-root of its weight. Thus for a certain
species of chimpanzee, we would have, say, the species-specific empirical regularity
that for any member, s, of P. troglodytes, if s weighs x lbs., then s is .9 3

√
x feet

tall. That is, letting ‘H’ and ‘W’ designate the Height-in-feet and Weight-in-lbs.
variables, respectively,

(s)(x)[s ∈ P. troglodytes ⊃ [W(s, x) ⊃ H(s, .9 3
√
x)]].

Similarly, we would find for hippopotami, let us say, that

(s)(x)[s ∈ H. amphibious ⊃ [W(s, x) ⊃ H(s, .2 3
√
x)]].

17To make this a genuine partition, the various ways in which V can vary with U must include
less-than-perfect statistical covariations, and indeed, some of the examples discussed subsequently
would bear little resemblance to reality if only perfect relationships were admitted. Strictly
speaking, therefore, ‘RVU(c, φ)’ needs to be defined by a statistical formulation more complex
than (12). However, the present article only attempts to sketch the outlines of what are actually
quite involved methodological concepts, and (12) will here suffice as a simplified formal description
of structural variables in the same way that (8) suffices as a simplified description of laws.

24



More generally, for each species S there is a numerical constant18 k such that

(s)(x)[s ∈ S ⊃ [W(s, x) ⊃ H(s, k · 3
√
x)]].

The magnitude of this constant varies characteristically from one species to an-
other, assuming smaller values as the mass of the species-shape tends to be spread
out horizontally rather than vertically.

Now while these height-weight covariations can be expressed in a way which
gives them the form of laws, and circumstances can be imagined (e.g., episodes in
the life of a zoo-keeper) in which they might be useful for predicting the height
of a particular organism, it still seems a bit odd to think of these relations as a
family of scientific principles, one for each species, which help to explain why a
given organism has the particular height which it does. Rather, in the search for
biological principles, the relation between height and weight within a particular
species would be regarded simply as a distinguishing characteristic of the species
as a whole, which in any study of, say, speciation and other genetic processes,
constitutes part of the brute data which are to be systematized and explained.
For most scientific purposes, therefore, intraspecies height-weight relationships
would be expressed by sentences which are functionally datumform and should be
formalized as such, e.g.,

RHW(P. troglodytes, .9∗),

RHW(H. amphibious, .2∗),

and more generally for species S,

RHW(S, k∗),

where k∗ is the function, k -times-the-cube-root-of. In the present example, since
the values assumed by RHW over the domain of species are distinguished only
by a numerical parameter, this number may itself be taken as the value of the
variable; i.e.,

R∗

HW(S, k) =def RHW(S, k∗).

Then the relation between Height-in-feet and Weight-in-lbs. within a species may
alternatively be described by the datumform assertion that the value of the struc-
tural variable R∗

HW for species S is a certain number, k. Either way, laws may

18Even in real life, where no statement of this form would literally apply because of the statistical
imperfections which appear, we can still arrange for the relation between height and weight
within a species to be described by a function in the family, k -times-the-cube-root-of, by simply
stipulating the H-W relation in S to be the best-fitting curve of this form. However arbitrary
this might seem, it does serve to associate with each species a characteristic shape-describing
constant and illustrates something which, in fact, is repeatedly done in the datum-level struggles
of a science to define manageable observation variables.
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now be sought which connect RHW or R∗

HW with other variables—e.g., prin-
ciples which account for changes in the value of RHW during the evolutionary
development of a species, correlations between RHW and ecological adaptations,
etc.

More generally, whenever the particulars studied by a science fall naturally into
distinctive classes which differ significantly among themselves in the patterns of
covariation which the first-level observation variables show therein, the structural
variables which are defined by these covariations add a second layer of observation
variables which participate in lawlike relationships of the second level. The latter,
in turn, if sufficiently variable from one set of background conditions to another,
similarly generate still another layer of third-level structural variables which form
the ingredients of third-level regularities, and so on up the type-hierarchy until
relationships are found which no longer depend upon restrictive background con-
ditions.

Empirical sciences abound with concepts based on structural variables, and ex-
amples are not hard to come by, even though the intimate connection between em-
pirical structural properties and theoretical concepts (see next section) frequently
makes a given instance susceptible to alternative interpretations. Thus in physics,
the specific gravities of minerals may be defined as the values of a structural
variable concerning weight-volume relationships, while the force-potential (e.g.,
g) acting at different positions in a force field may be construed in terms of the
Time-from-release – Distance-and-direction-traveled relations that would be found
among standard test-particles placed at those points. Even more obvious examples
are the Machian conception of “mass,” defined as a force-movement relationship,
and the “half-life” of radioactive substances. In fact, the possibility of establishing
more satisfactory functional relations among lower-level variables by distinguish-
ing among entities which would otherwise appear to be more or less of a kind is
not infrequently used to help identify thing-kinds—e.g., the Hertzsprung-Russell
diagram in astrophysics, on which different bands of plotted points are taken to
discriminate Population I from Population II stars, and normal stars from white
dwarfs (see Luyten, 1960) or the dark-adaptation curve of physiological optics,
whose two limbs so strikingly reveal the difference between photopic and scotopic
vision.

Similarly, structural variables help to explain why variables defined as ratios
or other combinatory functions of two or more observation variables over the same
domain—i.e., the sort of variable which Campbell (1920) labeled “derived mag-
nitudes” and which have been called “intervening variables” in the recent psy-
chological literature—are in some instances quite useful, even though they might
seem only to lose some of the information contained in the defining variables. For
if the various relations between variables U and V within different scientifically
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significant divisions {Ci} of the domain of U and V form a set of functions dis-
tinguished only by a certain parameter, and the value of this parameter for one of
these categories Ci—i.e., the value of the structural variable R∗

VU for Ci—can be
computed by a certain function f from the values of U and V for any member of
Ci, then the “intervening” variable IVU(s, x),

19 where

IVUs =def f(Us,Vs),

determines the same partition as {Ci} except for discriminating between the mem-
bers of different categories with the same value of RVU, and computation of the
value of IVU for an entity s to a large extent determines the category Ci to which
s belongs. That is, when a structural variable helps to differentiate among certain
important groups of entities, it may be possible to extract out of the lower-level
variables which comprise the structural variable another lower-level variable whose
values have roughly the same significance as these groupings. (For further discus-
sion, see next section.) Thus in the biological example just examined, dividing
the height-in-feet of an unidentified organism by the cube-root of its weight-in-lbs.
would provide a clue as to its species, while if it belongs to a heretofore unknown
species, the value of this ratio, assessed in terms of known empirical regularities
in which the structural variable R∗

HW has been found to participate, would lead
to expectations about other attributes of this organism and its species. Another
example closer to actual usage may well be the physical concept of “density,” the
value of which for a homogeneous object corresponds to the specific gravity of
the substance of which it is composed. The suggestion obtains, then, that what
distinguishes those “intervening variables” or “derived magnitudes” which are sci-
entifically fruitful from the vastly greater number which, if introduced, would be
utterly worthless, is that the former descend from higher-level structural variables.

6. Ontological Induction I: Dispositional Variables.

In the previous section, I have tried to set forth the methodological properties of a
highly important but heretofore philosophically unacknowledged type of concept
in the empirical sciences, the “structural” variable. Especially salient features of
structural variables are that (a) their values correspond to lawlike relations among
lower-level variables where the appearance of such a regularity is regarded primar-
ily as a distinguishing feature of a class in which it appears; (b) their factual
arguments are second-level or higher in logical type, hence involving the higher

19The subscripts to ‘I’ are entered in roman type, rather than boldface, to indicate that IVU is
on the same type-level as U and V. A subscript affixed to the symbol for one variable in reference
to another will here be printed in boldface if and only if the subsidiary variable is of lower type
than the main variable.
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reaches of formal complexity; and (c) to the extent that their values reflect statis-
tically confirmable relations among observation variables, structural variables are
themselves observation variables, and as such belong to the empirical foundations
of the science, in contradistinction to its theoretical superstructure. Given an
appreciation of this formal background, we are now in position to examine more
substantive aspects of the role which structural variables play in scientific think-
ing; in particular, their origins as datum-concepts and the virtually irresistible
pressures to theoretical inference which they exert.

As was briefly indicated in Section 5, the circumstances under which an empir-
ical regularity observed between variables U and V under conditions C is likely
to be regarded simply as a datum about the class Ĉ rather than as an explanatory
principle of the science, are those in which the background conditions C are only
one out of a number of comparable alternatives upon which the particular relation
between U and V is very much dependent. For clearly under these circumstances
the variable U does not in itself suffice to determine V in the manner observed.
Some other factor must be involved, of which a particular U-V relationship is
then an indication. Moreover, if these alternative background conditions under
which the various relations of U and V are observed are such in nature that they
cannot themselves be admitted as this additional determinant (see examples be-
low), and no other agent to which direct responsibility for these U-V relations
is attributable can be teased out of the principles already known to the science,
then the RVU variable becomes the observable counterpart of the inferred—and
hence theoretical—variable which is presumed to underlie it, and the higher-level
empirical regularities in which RVU is found to participate indicate an isomorphic
network of theoretical hypotheses.

Suppose, for example, that one of the adding machines in a certain office is
observed to be doing its sums in a rather peculiar manner one day; specifically,
that it always adds one too many. Now this observation is actually an empirical
generalization, and might be expressed somewhat as follows: ‘If the add-bar of
Machine #3 is depressed at any time t on Feb. 30, 1961, then, if the number
(actually numeral, but it will be harmless to waive the distinction here) showing
in the dial of Machine #3 at t is x1 and the number simultaneously pressed into
its keyboard is x2, the number which shows in the dial of Machine #3 a few mo-
ments after time t is x1 + x2 + 1.’ There should be no difficulty in recognizing
this as assertion of a functional relationship between the Numbers-in-keyboard-
and-dial and Number-in-dial-a-moment-later variables for entities which conform
to the background conditions of being a time-slice of Machine #3 on Feb. 30, 1961,
when its add-bar is pressed. (At the price of a more complicated functional rela-
tionship, it would be easy to add the position of the add-bar as a third component
of the independent variable and broaden the background conditions to include all
temporal stages of Machine#3 on this day.) Yet this relationship would never be
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taken as an explanatory principle of cybernetics. Rather, it is simply a brute fact
about Machine #3 on this day, epistemically on a par with any other datum which
might be available about this machine, but requiring the formal machinery of a
structural predicate for its expression. The relationship between the Numbers-
in-keyboard-and-dial and Number-in-dial-a-moment-later variables is very much
a function of the particular background conditions prevailing (i.e., those defining
the set of machine stages scrutinized), and is discovered by observant secretaries
and laboratory assistants to depend upon (i.e., to participate in second-level em-
pirical regularities with) such factors as the type of machine involved, length of
time since last repair, position of power plug, etc. Moreover, when an exasperated
office-worker says of Machine #3, ‘This machine isn’t working properly; there’s
something wrong with it ’, this “something wrong” is something attributed to it at
every moment of the period during which the malfunction takes place, including
those times when, through inactivity, the machine is not actually yielding incor-
rect sums, and is hence an inferred characteristic to which responsibility for the
observed input-output relation is attributed.

Another instance: Suppose that a certain rat seems to have developed a dis-
criminatory response in the Skinner-box, as shown by the fact that he presses more
frequently when the light is off than when it is on. This discovery was made, let
us say, by keeping track of the rat’s lever presses during a 30 min. run during
which periods of illumination were alternated with periods of darkness. Let ‘0 ’
designate the temporal segment of this rat during this run. Then the observation
made (say) is that for any time-slice s from 0, s’s lever-pressing rate is 3.2 re-
sponses per minute when the light is on and 47.6 responses per minute when the
light is off—obviously an empirical regularity within this set of rat stages. Now
the relationship between light-state and lever-pressing rate is by no means the
same for all time-segments of objects in Skinner-boxes, even when the objects are
living organisms or when the time segments are from the same animal. It is, in
fact, quite variable, and behavioral psychologists have worked hard to discover the
factors which influence stimulus-response covariations of this sort. The relation be-
tween stimulus-conditions and lever-behavior observed among 0 ’s temporal stages
is simply a distinguishing feature of 0, a to-be-accounted-for datum which might
be genuinely puzzling (e.g., if the rat had just been trapped in the wilds) or is to
be expected in view of known behavioral principles and the animal’s recorded con-
ditioning history. In fact, most behaviorists would agree without hesitation (given
certain additional data which are of no concern here) that this animal had demon-
strated a lever-pressing-to-dark habit. Yet this “habit” is something attributed
to the rat at every moment of his Skinner-box stay (and beyond), whereas the
light-lever correlation which was actually observed is a property of the class of
time-slices from 0 and is not a property common to every member of this class.
With scarcely a thought, the empirical structural property is converted into a
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lower-level theoretical attribute.

Again: When we see that John is able to do long division, what we have
observed is a correlation between certain types of arithmetic problems presented
to John under normally motivating conditions and the numeral-producing behavior
of John shortly thereafter; yet the ability to do long division is attributed to John
at each moment in the period of his life wherein this relation obtains, whether he
is actually solving a long division problem at that moment or not. This example
is not drawn so explicitly as the previous two, because the ability-concepts that
we employ so glibly in everyday life are horribly vague. Not only are the criterion-
responses loosely conceived, but description of an ability as what an individual
can do ignores the antecedent stimulus-conditions. Nonetheless, a little reflection
reveals that with a few possible exceptions, the criterion for an ability is not the
mere emission of a certain act, but performance of that act in response to (i.e.,
in covariation with) the proper environmental circumstances. In similar fashion,
other psychological traits (e.g., honesty, irascibility, generosity, shyness, etc.) are
attributed to an individual on the basis of observed regularities between the type
of situation in which he finds himself and the behavior in which he subsequently
engages.

Obviously there is no limit to the examples available of this sort, not only
from psychology but also from physics and any other discipline which makes use
of predicates ascribed according to how an object reacts to certain test-conditions
(e.g., tensile strength as assessed by maintenance of integrity under traction, tem-
perature as determined by thermometric effect, flexibility as described in terms of
shape-distortion under strain, electrical resistance as computed through amperage-
voltage covariation, etc.) In general, any concept about the response character-
istics, reaction tendencies, powers, or effects of a thing, to the extent it is a part
of the data language, is about a structural property and must be expressed by a
structural predicate—except that usually, as now to be discussed, it is allowed to
slip down a level in the type-hierarchy and become a theoretical concept. I venture
that the vast majority of technical concepts in empirical science, when scrutinized
closely, may be seen to be of this sort, and a great many from ordinary language
as well.

More generally, if an empirical regularity,

(s)[C(s) ⊃ [Vs = f(Us)]],

has been observed to hold under conditions C, when this particular relation be-
tween U and V does not generally hold under circumstances other than C and
has no ready explanation in terms of other known principles, the following chain
of inference is likely to occur in scientific—and everyday—thinking:

(1) Since Vs = f (Us) is not generally the case, that this is so within the class
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Ĉ is a distinguishing feature of Ĉ (which way of looking at the matter, of course,
is functionally datumform).

(2) What it shows, moreover, since U and V are not by themselves able to
sustain this relation, is that members of Ĉ partake of some additional condition
which, along with U, is able to determine V in the manner observed—i.e., that
there is an attribute DVfU such that

(s)(x)[DVfU(s) ·U(s, x) ⊃ V(s, fx)],(14a)

(s)[C(s) ⊃ DVfU(s)].(14b)

Now so far this reasoning is impeccable, for C itself satisfies the conditions imposed
on DVfU by (14a, b). However, further circumstances of the DVfU-concept’s birth
contribute additional restrictions which in most cases eliminate C or other data-
language constructs satisfying (14a, b) as an acceptable replacement for DVfU. As

a preliminary, note that a restricted regularity RVU(Ĉ, f) appears most datum-
like when the background conditions C are defined in reference to some particular,
such as a temporal segment of some object (cf. preceding examples). Since it is
a prejudice of science that the concepts which participate in genuine explanatory
principles must be truly general, and since the hypothesized property DVfU is
conceived as being in some vague but important sense responsible for the relation
between U and V in Ĉ, clearly DVfU cannot be equated with C in this case. Even

when Ĉ is a thing-kind, one can usually argue that its defining properties are not
the sort that can properly be said to account for the structural attributes of Ĉ.
Hence a stipulation which should accompany (14a, b) is that ‘DVfU’ must not be
defined in such a way that ‘DVfU = C’ is logically true, although the possibility
of an empirical identity of DVfU and C need not be excluded.

A more fundamental reason why the inferred property DVfU cannot simply be
identified with the background conditions C, however, is that it is the structural
property RVfU which is the clue—and at this initial stage, the only clue—to the
presence of DVfU. Hence by parity of reasoning, if DVfU is attributed to the

members of Ci on the grounds that RVU(Ĉi), it must likewise be attributed to
the members of any other class Cj such that RVfU(Ĉj), so long as Ĉj , like Ĉi, is
a class whose structural properties inspire inference to attributes which underlie
them. More generally, the chain of reasoning continues as follows:

(3) The relation, f, between U and V in Ĉ is only one of the possible relations
which might have been found between these variables; and had another value, g, of
RVU been observed for Ĉ, another underlying condition DVgU, contrasting with

DVfU, would have been inferred to hold for the members of Ĉ. These alternatives
hence constitute an inferred variable DVU,

20 the values of which correspond to

20See Note 19.
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and may hence be identified with those of RVU,21 such that

(15a) (s) (φ) (x) [DVU(s, φ) ·U(s, x) ⊃ V(s, φx)].

Then, if Ĉi is a class within which the observed relation between U and V is
interpreted symptomatically, the assumptions built into the DVU-concept yield
the hypothesis that

(15b) (φ) [RVU(Ĉi, φ) ⊃ (s) [Ci(s) ⊃ DVU(s, φ)]].

It must be stressed that when an inferred variable DVU emerges in this way, it does
not do so as a deduction from RVU. In particular, ‘DVU’ is not defined in such
fashion that (15b) is logically true for all possible arguments Ĉi of RVU, for this
would quickly bring disaster (see below). What (15a, b) describe is the conclusion
of an inferential leap, the premises of which are a number of observations of form
‘RVU(Ĉi, f)’. It is in short, an ontological induction, for it postulates the exis-
tence of a new variable intimately related to but distinct from—in fact, different
in logical type from—the structural observation variable RVU. The conclusion so
reached is certainly not unconditionally assertable; rather, it is a hypothesis which
may or may not be borne out by subsequent evidence, and whose initial credibility
is influenced by secondary factors such as the nature of Ĉi, past successes of similar
inferences, etc., just as confidence in a statistical induction is swayed by consid-
erations of this sort. In particular, for (15a, b) to be acceptable it is necessary
that Ĉi be what in some intuitive sense is a “natural” class. For if classes of oth-
erwise heterogeneous particulars are assembled by picking and choosing according
to their values of U and V, a structural property RVfU can be made to hold by

sheer definition. For example, suppose that Ô is the set of temporal stages of a
certain organism during a particular period of its life, and that within Ô, the rela-
tion between the occurrence of a certain stimulus S and the emission of a certain
response R is null—i.e., the probability of an emission of R, given the occurrence
of S, is the same as the probability of an emission of R, given the non-occurrence
of S. Ô can be conceptually divided into two subclasses, Ô1 and Ô2, where Ô1

contains those time-slices in Ô for which either S is present and R is emitted or
S is absent and R is not emitted, and Ô2 contains the remainder of Ô. Perfect,
though opposed, non-null stimulus-response relationships then hold in both Ô1

and Ô2, in contrast to the null-relationship in Ô, and an s which belongs, say, to
Ô1 would be ascribed incompatible values of the habit-variable DRS by applica-
tion of (15b) to both Ô and Ô1. However, Ô1 and Ô2 are obviously artificial in a

21Since at this stage the values of DVU are distinguished by the U-V relations which are their
criteria, it is most convenient to conceive DVU in such fashion that the abstract entities which
it takes as values are the same as the corresponding values of RVU. (How to replace a variable
whose values are in one-one correspondence with those of a second variable with another variable
whose values are the same as the second should be obvious from the discussion in Section 5.)
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way that precludes any incentive to account for the S-R relationships therein by
appeal to an underlying habit. It is the S-R covariation within the “natural” class
Ô which determines the S-R habit-strength attributed to the members of Ô. Just
what differentiates “artificial” classes from those which are psychologically able to
sustain an ontological induction is a question which still awaits exploration.22

Since the connection between DVU and RVU is conceived as a manifestation
of natural regularities, not as a logically necessary consequence of a formal con-
struction, recognition of the error-variance always found in lawful relationships
as determined empirically and the perpetual revisions undergone by our beliefs
about the world under the impact of increasing knowledge immediately qualifies
the assumptions which emerge from an ontological induction with the reservation
that they are undoubtedly simplified approximations to a more complex reality.
Consequently, once a theoretical variable DVU has been generically introduced as
in (15a, b), it is permissable to feel relatively free about secondary modifications
in its postulated relations to other variables, if reasons so warrant. One likely
revision is to relax the assumption (cf. (15b)) that all members of a class in which
RVU is symptomatic of DVU have precisely the same value of DVU. In exper-
imental behavioristics, for example, extinction of an S-R habit as a function of
unreinforced stimulus presentations is frequently determined by observing the S-R
covariation within successive blocks of trials. If the value of RRS for the class
of the organism’s temporal stages during a given trial-block were taken to reveal
the exact value of DRS at each moment therein, extinction of the habit (i.e., the
change in the value of DRS as a function of unreinforced trials) would have to
be construed as a nomologically puzzling step-function whose details, moreover,
would depend on an arbitrary grouping of the trials into blocks. It is much more
satisfactory to assume a continuous decrement in habit-strength with extinction
trials and to regard the value of RRS within a block of trials as an estimate of the
average value of DRS therein. Another modification which may become desirable,
once ‘DVU’ has been admitted in explanation of RVU, is to weaken the initially
assumed one-one correspondence between the values of DVU and RVU by allowing
for the possibility that more than one value of DVU might give rise to the same
relationship between U and V. What is conceptually fundamental about ontolog-

22This business of “artificial” classes, incidently, undermines the possibility of defining
‘DVU(s, φ)’ as ‘(∃c)[s ∈ c · RVU(c, φ)]’. It is instructive to note that a very similar situa-
tion holds in the case of statistical induction, namely, that the formal pattern of the induction,
when applied to certain oddly constructed antecedents, yields (inductive) conclusions which are
not only intuitively unacceptable, but also clash with the conclusions which inductively follow
from more “natural” antecedents (cf. Goodman, 1955, pp. 30f, 74f). This difficulty is currently
perhaps the most enigmatic aspect of statistical induction, and the fact that ontological induction,
as set forth in (15a, b), shares this same peculiarity is perhaps a little additional evidence that
ontological induction and statistical generalization are on a par as primitive inferential devices
by which human belief is extended beyond the narrow range of the given.
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ical induction as described by (15a, b), however, is that this is the basic form in
which a theoretical concept first precipitates out of a set of empirical observations.
Once the new theoretical entry achieves recognition as an autonomous element in
the conceptual scheme of the science, it is then in position to begin a course of
revision and development which may soon obscure its humble origins.

Just because the credibility of an ontological induction varies with the nature
of the class whose structural properties are the grounds for the inference and the
inference itself can be reconstructed as a series of explicit steps as in (l)–(3) above,
it by no means follows that the ontological inductions which actually occur in
scientific and everyday thinking usually or even frequently follow such a course
of deliberate reason. Quite the contrary, what makes ontological induction an
“animal inference” of a kind with statistical induction is that it usually comes off
with no conscious intent at all—in fact, for those restricted covariation-manifesting
classes to which attention is drawn spontaneously, a deliberate effort is required
to abstain from the inference. For the primordial incentive behind ontological
induction is simply an urge to attribute to the individual members of a class a
structural property which holds only for the class as a whole. Since literally this
is logical absurdity, it has the effect (shades of the Axiom of Reducibility!) of in-
troducing a lower-level theoretical surrogate for a data-language concept of higher
logical type. This process, which might be called “typological sedimentation,” is
facilitated by the fact that the members of the class showing the structural prop-
erty are in many cases readily conceivable as the parts of a more comprehensive
entity of the same logical type as these parts, to which the structural property
can then be attributed indirectly in that it is a property of this whole that the
class of its parts has the structural property in question. Thus it is a property,
say, of time-segment 0 of a certain organism that the class Ô of time-slices from
0 manifest a certain stimulus-response covariation. But we are not accustomed
to distinguishing clearly between the attributes of a whole and those of its parts,
especially when the whole is a temporal interval of some object, and so the struc-
tural property of the whole becomes naively conceived as a property shared by its
components. Rather than demanding methodological sophistication, ontological
induction is abetted by the logical laxity of language in use. No wonder, then,
that even the radical empiricist, who imagines himself to be concerned only with
what he can observe, actually conducts his private thinking and public utterances
with a vocabulary profusely studded with theoretical terms.

Moreover, since ontological induction transpires so readily without conscious
intent, it would be surprising if the empirical regularities which define the struc-
tural variable on which an ontological induction is based needed to be articulately
expressed and well documented. It has been amply demonstrated, for rats and
pigeons as well as people, that behaviors which correspond, in more mentalistic
terms, to belief in such regularities can frequently be conditioned by one or two
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experiences of the proper sort. Hence theoretical suppositions would be expected
to emerge long before their observable correlates become accepted knowledge. In
fact, the recent history of theoretical behavioristics shows that the mere plausibility
of certain empirical covariations lends respectability (and at times, unfortunately,
also dogmatic credulity) to the theoretical constructs which they support.

In view of the infrarational nature of typological sedimentation, it might be
suspected that structural predicates would not be the only concepts of higher
type-level to undergo this downward drift cum theoretical transfiguration. To some
extent this suspicion appears to be borne out: There is a tendency, for example, for
the frequency of an attribute P in a class to be converted into a “propensity” to P
possessed by each member of the class. For reasons about which I am not entirely
clear, however, only structural properties seem to urge inference to theoretical at-
tributes with the same relentless, unreasoned compulsion that characterizes other
primitive forms of inference23—which is why the conception of “ontological induc-
tion” set forth here has been limited to this case. The manner and extent to which
other observable properties of classes invite introduction of lower-level theoretical
concepts is another of the many problems in scientific methodology still awaiting
investigation.

As the reader is doubtlessly aware, attributes conceptualized primarily in terms
of how an entity characteristically responds to or is affected by a certain kind of
treatment are known in the philosophical literature as “dispositions.” Despite the
earnest philosophical scrutiny which dispositional concepts have received within
recent decades, their analysis is still obscure. Efforts to locate them wholly within
the data language have repeatedly proved unsuccessful, and the feeling appears
to be spreading that dispositions are probably best classified as a form of low-
grade theoretical entity. To this conclusion the present analysis lends substantial
support. For while our purpose has been to trace the gestation of theoretical no-
tions within the data collations of empirical science, not to clarify the meanings
of dispositional terms already in use, concepts which are newly born of an onto-
logical induction as portrayed in (15a, b) certainly pertain to the sort of thing—
habits, abilities, response characteristics, and the like—which have traditionally
been called “dispositions.” Whether all dispositional concepts are of this kind, or
whether some should be analyzed as more involved constructions related to but
not identical with theoretical terms introduced by ontological induction is an issue

23One important factor may be that structural properties, unlike other class-attributes, provide
simple, readily grasped postulates about the observable effects of their theoretical surrogates (i.e.,
(15a)). Conversely, it is very difficult to comprehend, e.g., just how a “propensity” to have a
property P lawfully results in a certain frequency of P in a class of entities sharing that propensity.
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for another occasion.24

That dispositional concepts which originate like ‘DVU in (15a, b) must on
the whole be part of the theoretical framework of the science, rather than data-
language constructs, has already been pointed out. Any data-language criteria
for the values of the DVU variable, if applied ruthlessly, will in general inconsis-
tently assign more than one value of DVU to a given argument, and are hence
unacceptable as rigorous criteria for these values. One data-language construc-
tion which has a certain interest for special cases, however, is the propositional
function ‘Vs = φ(Us)’ (i.e., ‘The values of U and V for s fall under the function
φ’). This is unsatisfactory as a generic definition of ‘DVU(s, φ)’ because a single
pair of values 〈Us,Vs〉 will simultaneously fall under a great many of the possible
functions mapping values of U into values of V. (The situation is even worse when
the more realistic case of imperfect covariation is considered.) However, it may be
that the values of RVU which actually obtain within the domain of classes under
consideration (e.g., weight-volume relations in minerals, height-weight relations in
species, etc.) belong to a restricted set of functions identified by a parameter which
can be determined from the values of U and V for any member of an argument
of RVU. Then, as discussed in Section 5, it is possible to define an “intervening”
variable IVU which is essentially equivalent to ‘Vs = φ(Us)’ when ‘φ’ takes values
only from this restricted set of functions and whose value for an entity s identifies
the value of RVU in the “natural” class to which s belongs. In such a case, the
observation variable IVU is isomorphic with the dispositional variable DVU and
it becomes very uncertain whether IVU should itself be held responsible for the
observed U-V relations, or whether it is merely a good observational indicator of
a more fundamental theoretical variable.25

7. Ontological Induction II: Structural Covariation.

According to the views developed above, dispositional concepts are nascent theo-
retical terms, born of structural predicates by ontological induction. Now clearly,
dispositionals (at least those which have been traditionally so classified) do not
alone suffice to provide the richness of theoretical texture found in the concep-
tual systems of most sciences today. It would appear, however, that many of
the more abstruse elements and linkages of the theoretical network can also be
shown to derive more or less immediately from observable regularities of higher

24What I have in mind is a possible necessity for distinguishing between dispositional predi-
cates which refer to the theoretical property responsible for the U-V relation, and dispositional
predicates which assert that an entity has a property which is responsible for the U-V relation.

25Thus Campbell (1920, p. 276): “It is rather difficult to say whether, in the present stage of
development of physics, we actually mean by density this ratio [of mass to volume], or whether
we merely employ that ratio as an indication of some other property, which is what we really
mean by that term.”
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type-complexity. Discussion of these further developments with even the simpli-
fied precision employed so far is rather unwieldly, not only because of the logical
intricacies encountered but also as a result of the distracting conceptual gaps and
obscurities which quickly appear in the analysis of any example from actual scien-
tific practice. Consequently, I shall here give only a brief, informal outline of how
the empirical regularities found among structural variables, and the still higher-
level structural properties which these in turn define, deposit additional strata of
theory and afford the “triangulation in logical space” that gives convincing sub-
stance to an otherwise tenuous theoretical notion.

It was pointed out earlier that once a restricted regularity is treated simply as
a datum concerning the value of a structural variable RVU for a certain class, an
obvious move is to look for further regularities in which RVU is itself a partici-
pating variable. Thus, once it is observed that the sets of time-slices comprising
various temporal segments of an organism differ in the relations they sustain be-
tween presentation of a certain stimulus S and emission of a certain response R,
it becomes of concern to discover laws which govern this S-R covariation. Once
discovered, such laws can be formulated—cumbersomely—as empirical regularities
of higher logical type, or alternatively, with greater formal simplicity, as theoret-
ical principles holding for the dispositions inferred from the structural variables.
Thus the behavioral law, that the strength of a conditioned reflex is a function of
the number of learning trials, can be expressed either as an observed dependence
(under suitable background conditions) of the relation between stimulus Sc and
response R within the time-slices of an organism between times t and t+∆t upon
the number of joint presentations of Sc and the unconditioned stimulus Su received
by this organism prior to t, or as an inferred dependence of an organism’s Sc-R
reflex strength at time t on this conditioning-history variable.

Now, some empirical regularities in which the dependent variable is structural
can be rewritten to avoid the structural variable altogether by distributing its
first-level components between the independent and dependent variables of a first-
level regularity. While the formal details of this situation are too complex to be
developed here in any generality, an illustration is the aforementioned dependence
of conditioned reflex strength on the number of previous conditioning trials. The
empirical relation between number of conditioning trials and the Sc-R structural
variable can be rephrased without reference to the latter by stating that under the
stipulated background conditions, emission of response R is a function jointly of
Sc-presentation and the number of past conditioning trials. Moreover, since the
relation between emission of R, presentation of Sc, and conditioning history can
thus be expressed wholly in a first-level statement without recourse to an Sc-R
reflex inferred from the Sc-R structural variable, this reformulation does nothing
to confirm the existence of the Sc-R reflex—if anything, it weakens the latter’s
credibility by suggesting that this theoretical entity may be superfluous. However,
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such paraphrasing away of theoretical implications is not possible for all lawful
relations involving structural variables. Many important regularities, as actually
determined empirically, can be given lawform expression only on the higher type-
levels, and these then contribute additional materials to the theoretical structure
of the science. The prime example, here, is the case of structural covariation.

As the name implies, structural covariations are simply those natural regular-
ities in which both the dependent and independent variables are structural. If U,
V, X, and Y are first-level variables, it may turn out that the relation between
U and V within a class which meets certain specifications K is itself a function of
the relation between X and Y therein—i.e., that

(16) (c)(φ)[K(c) ⊃ [RYX(c, φ) ⊃ RVU(c, Fφ)]],

where F is a function which maps values of RYX into values of RVU. For example,
within the sets of time-slices comprising various temporal segments of a certain
organism, it might be observed that the strength of the relationship between pre-
sentation of stimulus S1 and emission of response R waxes and wanes from one
temporal segment to another in accordance with the strength of the relation therein
of R to a second stimulus S2. As a matter of fact, this tendency of the strength of
one S-R covariation to influence that of another with the same response compo-
nent is a highly important empirical phenomenon known in behavioral psychology
as “stimulus generalization.”

Now, while a structural covariation such as (16) can be written in a form which
refers only to first-level variables, the result is a virtually incomprehensible logi-
cal monstrosity, bearing little or no resemblance to a lawform statement. To give
these findings data-language expression in a way that reveals their significance, the
scientist has no recourse but to the formal machinery of structural concepts. This
has three immediate consequences: First of all, by focusing unavoidable attention
on U-V and X-Y relations conceived as data, it virtually guarantees the intro-
duction of theoretical variables DYX and DVU by ontological induction from the
corresponding structural observation variables. Secondly, the desirability of these
inferences is enhanced by the logical complexity of a second-level lawform asser-
tion such as (16), especially when it is put to use in deriving predictions about
particulars. It is much more convenient to replace (16) with the corresponding
first-level hypothesis about the covariation between DYX and DVU, namely,

(17) (s)(φ)[K ′(s) ⊃ [DYX(s, φ) ⊃ DVU(s, Fφ)]],

where K ′ is some characteristic which distinguishes members of classes which fill
requirements K. Finally, through finding a natural regularity (i.e., (17)) which
involves DYX and DVU in a way that goes beyond their initial ad hoc introduction
via ontological induction, there is reassurance that these hypothetical entities are
not misguided illusions, but do, in fact, exist. In such fashion, observed structural
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covariations support the objective reality of theoretical variables and lay down the
“triangulating” nomological connections necessary to make the theory a cohesive
whole.

Moreover, the conditions K under which a structural covariation such as (16)
is found to hold may again be only one of many alternatives which differ widely
among themselves in the particular relation they sustain between RYX and RVU.
Then it is a distinguishing feature of the class of classes K̂ that the structural
variable RVU is related therein to the structural variable RYX by the function F,
and we are on our way to another datum-sentence of still higher type, namely,

(18) RRVURYX
(K̂, F ),

which attributes the value F of a third-level structural variable, RRVURYX
to K̂.

Then, by essentially the same inductive process as described in (15a, b), RRVURYX

authorizes introduction of still another theoretical variable which eventually sinks
two levels to become responsible for the relationship between the more peripheral
theoretical variables DVU and DYX in the same way that the latter are attributed
responsibility for the empirical U-V and X-Y relations. Or rather, this addi-
tional theoretical variable could be inspired by this third-level structural variable.
Actually, since the theoretical assertion (17) would have already substituted for
the more unwieldly (16), the structural theory-language variable RDVUDYX

rather
thanRRVURYX

would be the antecedent for the ontological induction toDDVUDYX
.

Further, remaining strictly in the data language, the restricted structural covari-
ations in which RRVURYX

and other third-level variables participate will define
fourth-level structural variables which then deposit still another layer of theoretical
variables, and so on.

If the apparatus of typological stratification and sedimentation pictured here
appears horribly involved, it is no more (and in fact considerably less) than what
actually occurs in scientific research and theory. I do not mean to imply that all
or even many of these higher-level variables actually receive explicit recognition
in the language of a science, for its theoretical development precludes the neces-
sity of this. What I do want to stress is that a great many theoretical concepts
and the postulates which connect them are so intimately tied to higher-level ob-
servation variables and their relations that if the theoretical structure were to be
abandoned in favor of a radical empiricism, then it would be necessary to make
use of this forbiddingly elaborate typological machinery in order to express what
has been discovered empirically. This conclusion is a highly significant one on
at least two counts. For one, it appreciably clarifies the way in which certain
theoretical assumptions, or components thereof, seem warranted to tough-minded
specialists in that area, while others may be shrugged aside as gratuitous and ir-
responsible. What the present analysis brings out is the apparent necessity for an
irreducible minimum of theoretical structure in order to formulate the more com-
plex empirical findings of a science in manageable propositions, while proposals
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which go beyond this central core are speculative in a way that the latter is not.
(That ontological induction as described here is the only inferential process which
contributes to this hard core of theory, by the way, is definitely not one of the
present contentions. Neither is it here concluded that more tenuous conjectures
have no place in science. Imaginative extrapolations and even wild guesses, no
matter how seemingly arbitrary, may lead to valuable discoveries so long as they
are entertained as stimuli to novel explorations and not confused with those ele-
ments of theory which the documented empirical findings of the science support.)
Moreover, it is now possible to see how what appears to be a highly recondite
dispute over theoretical components deep in the entrails of the theory may actu-
ally be susceptible to a direct experimental resolution in terms of whether or not
certain higher-level empirical regularities do, in fact, obtain. This helps to explain
the somewhat enigmatic observation that although according to the Hypothetico-
deductive view a theory is supported or disconfirmed in its entirety, practicing
scientists frequently show surprising concordance in their application of certain
empirical findings to a circumscribed region in the theoretical network. It also
exposes the methodological naivete of those radical empiricists who, in arguing
that theories are parasitical superfluities which accomplish nothing that cannot
be handled better without leaving the data language, actually cut themselves off
from appreciation of empirical regularities which are too complex to be handled
strictly in observation-language sentences.

Perhaps no better illustration of these points can be found than in the behav-
ioral phenomenon of stimulus generalization, described above, and the unobserved
processes controversially hypothesized to mediate between the stimulus input and
response output of a conditioned habit. (Indeed, it was search for an experimental
resolution to the long standing question of “What is learned?” that first led me to
awareness of structural variables and ontological induction.) The manner in which
one habit, S1-R, depends upon another, S2-R, itself varies from one organism to
another, and from time to time even in the same organism. Hence the degree of
generalization from S2-R to S1-R, if described strictly in terms of what is actu-
ally observed, is a third-level structural variable. Moreover, while hard data are
meager, there is good reason to suspect (see Rozeboom, 1958b) that the tendency
of S2-R to generalize to S1-R is a function of the extent that occurrence of S2
has been contingent upon the occurrence of S1 in the organism’s past experience.
Finally, it is also likely that the extent to which the past contingency of S2 on
S1 influences the degree of generalization from S2-R to S1-R is itself a function
of currently unknown but experimentally identifiable factors—thus introducing
a fourth-level variable and inviting search for fourth-level laws. Obviously, this
towering hierarchy of observation variables and the strictly empirical relations in
which they participate is conceptually unworkable; only the corresponding network
of theoretical assumptions can mold these data (more accurately, these prospec-
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tive data) into a usable form. But the theory which so emerges is a theory of the
internal processes mediating between the external stimulus and overt response of
a conditioned habit, a subject which has been a high-pressure source of unresolved
controversy for well over a generation, and one which some experimental behav-
iorists have derided as being empty of empirical significance. What has happened
is that behavior theory has bogged down in a wrangle over the admissibility of
idea-like “expectancies” between conditioned stimuli and learned responses, not
realizing that the manifest bone of contention between “S-R” and “Cognitive”
theorists, namely, whether behavioral principles can be conceived wholly in terms
of peripheral stimuli and responses or whether hypotheses about central brain (or
mental) processes are also necessary, actually has little relevance for a theory of
behavior. What has really been at stake is involvement in the conditioned habit of
a mediating element—which can be conceived either in S-R or Cognitive terms—
which maintains a linkage with the original unconditioned stimulus. For it is such a
theoretical mediation variable, with no commitment as to its physiological nature,
that follows with inductive immediacy from the fourth-level structural variable
abstracted from empirical generalization phenomena in the way described above;
and discovery of the observable regularities in which this latter variable partici-
pates will provide immediate, controlled access to an unobservable central process
which has seemed to be little more than a dogma of transempirical faith.

8. Recapitulation and Overview.

The focal contention of this article has been that a scientific theory (i.e., a set of
beliefs about the unobserved which can legitimately be construed as a claim to
knowledge), far from being either a flight of empirically useless fancy or a bold
intuition about the unknown, constrained by known data only to the extent of
avoiding unsightly clashes with the latter, is actually built around a virtually in-
dispensable framework of theoretical suppositions forced upon the science by the
data themselves. In support, it has been shown that empirical regularities, when
interpreted simply as data, define “structural” observation variables on higher lev-
els of the Russellian type-hierarchy, out of which lower-level theoretical variables
are distilled by an inferential process so immediate, insistent and unreasoned (but
not irrational) that it deserves to be recognized as a second kind of primary induc-
tion, ontological in contrast with statistical. Moreover, the higher-level empirical
relationships in which these structural variables participate confirm the reality of
and enrich our knowledge about these inferred entities by weaving them into a
corresponding theoretical network. To be sure, ontological induction, at least to
the extent it has been sketched here, is not the only determinant of this hard
core of theory. Structural properties may not be the only observables to deposit
theoretical constructs, and in any case, once born, a theoretical notion is immedi-
ately subject to transfiguration under the stress of felicity of expression, continuity,
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analogy, and other forces which may bear upon an evolving concept. But what
should now be clear is that there need not be any methodological mystery about
the genesis and maturation of scientific theories. While the psychology of imagina-
tion may still have something to contribute to our understanding of these matters,
especially in regard to perception of patterns in unruly raw data and subcognitive
inspirations to unorthodox research tactics eventuating in important new discover-
ies, it becomes more and more plausible to me that a formal rubric can be spelled
out for the derivation of justified theory from a body of empirical data. That the
logical form of this derivation would not be deduction does not, as Popper (1959,
p. 30 ff.) has contended, make such a rubric part of a somehow philosophically
illicit “psychology of knowledge” as opposed to the (ah, virtue restored!) “logic of
knowledge.” The logical relations in which propositions can stand to one another
are in no ways limited to entailment and contradiction, while the actual trans-
mission of belief along an inferential sequence is as much a psychological process
when the inference is deductive as when it is inductive. (Some remarks about the
“justifying” of inferences would be germane here if space permitted, but it must
suffice to point out that to the extent “justification” involves more than observ-
ing the logical relations among components of the inference, it also goes beyond
a mere “logic of knowledge,” and can take this additional step for induction as
well as for deduction.) Whatever the inadequacies of the present arguments (and
I am only too aware of how much they leave undone), I submit that the ideas
marshalled therein are sufficiently suggestive to warrant a more detailed unfolding
and scrutiny.

Behind the present thesis about theory-origins, however, lies a more encom-
passing and urgent intent, namely, the detection, clarification, and refinement of
basic formal methodology at the working edge of science. If contemporary research
scientists tend, as many unfortunately do, to regard philosophical dicta with in-
difference and scorn, this is due at least in part to the failure of philosophy to give
the experimentalist any appreciable technical assistance with the conceptual tools
and tactics that he actually uses. Philosophy of science has consisted primarily
in philosophizing about science, not for science, remaining by and large content
to explain scientific methods (schematically portrayed) to outsiders and to tidy
up an occasional pile of philosophical debris. Yet despite the vaunted precision of
scientific language (and to be sure, it is a marked improvement over everyday dis-
course), it is still tormentingly vague; and the festerings of gratuitous assumptions
and masked ignorance, sheltered from the antisepsis of critical judgment within
the folds of innumerable ellipses, contractions, ambiguities, grammatical inconsis-
tencies, and the like, exude conceptual poisons which stultify effective thinking
on many important scientific issues. There are massive quantities of heavy-duty
analytical labor to be done in scientific methodology, work that cannot be accom-
plished by appending exegetical footnotes to the scientific achievements of past
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eras, but only by grubbing down into the litter and confusion of problems now
in progress to show by precedent and by principle how they can be dealt with
more resourcefully. The methodological concepts outlined here—the nature of sci-
entific variables, the logical form of laws, structural variables and their vital role
in theory-building—have been forged under the impact of demands of this sort,
and have afforded at least one behavioral scientist a certain amount of insight into
some of the more baffling aspects of his trade. How much of the living method-
ology of science yet remains even to be surveyed, much less explored in depth,
is barely hinted at by the loose ends dangling from nearly every paragraph of
the present work. And if these views help provoke more serious attention to the
wilderness between orthodox science and orthodox philosophy, then even if they
prove ultimately to be misguided in substance they will have served their purpose.

References

Bridgman, P. W. (1927). The logic of modern physics. New York: Macmillan.

Campbell, N. R. (1920). Physics: The elements. Cambridge: Cambridge Univer-
sity Press.

Carnap, R. (1937). The logical syntax of language. New York: Humanities Press.

Carnap, R. (1956). The methodological character of theoretical concepts. In
H. Feigl & M. Scriven (Eds.), Minnesota studies in the philosophy of science
(Vol. 1). Minneapolis: University of Minnesota Press.

Carnap, R. (1958). Introduction to symbolic logic and its applications. New York:
Dover.

Feigl, H. (1950). Existential hypotheses. Philosophy of Science, 17 , 35–62.

Goodman, N. (1955). Fact, fiction, & forecast. Cambridge, Mass.: Harvard
University Press.

Hempel, C. (1958). The theoretician’s dilemma. In H. Feigl, M. Scriven, &
G. Maxwell (Eds.), Minnesota studies in the philosophy of science (Vol. 2).
Minneapolis: University of Minnesota Press.

Luyten, W. J. (1960). White dwarfs and stellar evolution. American Scientist ,
48 , 30–39.

Menger, K. (1954). On variables in mathematics and in natural science. British
Journal of the Philosophy of Science, 5 , 134–142.

Menger, K. (1955). Calculus: A modern approach. Boston: Ginn & Co.

Menger, K. (1958). Is w a function of u? Colloquium Mathematicum, 1958 ,
41–47.

Popper, K. R. (1959). The logic of scientific discovery. London: Hutchinson &
Co.

Reichenbach, H. (1947). Elements of symbolic logic. New York: Macmillan.

43



Rozeboom, W. W. (1958a). The logic of color words. Philosophical Review , 68 ,
353–366.

Rozeboom, W. W. (1958b). “What is learned?”—an empirical enigma. Psycho-
logical Review , 65 , 22-33.

Rozeboom, W. W. (1960). Do stimuli elicit behavior?—a study in the logical
foundations of behavioristics. Philosophy of science, 27 , 159–170.

Rozeboom, W. W. (1961). Formal analysis and the language of behavior theory.
In H. Feigl & G. Maxwell (Eds.), Current issues in the philosophy of science.
New York: Holt, Rinehart, & Winston, Inc.

Rozeboom, W. W. (1962). The factual content of theoretical concepts. In H. Feigl
& G. Maxwell (Eds.), Minnesota studies in the philosophy of science (Vol. 3).
Minneapolis: University of Minnesota Press.

Russell, B. (1948). Human knowledge. New York: Simon & Schuster.

44


