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The degree to which scale values computed by the method of successive 
intervals diverge from theoretically "true" values is seen to be due to three 
types of error: error due to inequalities in variances of the distributions from 
which the scale values are computed, error due to non-normahty of the 
distributions, and sampling error. The contribution of each type of error to the 
total error is evaluated; the latter is seen to be surprisingly small imder appro
priate conditions. Certain aspects of the formal methodology underlying 
scaling procedures are also briefly considered. 

One of the most popular and perhaps the simplest of aU methods by 
which stimuli can be assigned values for some psychological variable is the 
rating scale technique. Basically, a rating scale is some set of categories that 
partition sets of events into mutually exclusive classes. For example, a rating 
scale might be defined by the categories high, medium, and low, and a set 
of events generated by "the evaluation of the esthetic value of art object 
i by judge y,'̂ ' where i and j range over specified classes of art objects and 
judges. That is, each judge j assigns each art object i to a category of the 
rating scale, such an assignment constituting an event. Corresponding to 
each event designated by the coordinate pair i, j there is one and only one 
category: high, medium, or low. 

Usually, the localization of each eveM on the scale is only a means to a 
representation of various subclasses of th6 events by a single value of the 
scale. This can be done by taking the most Representative scale value of the 
distribution of scores in a subclass as the scale value for the subclass as a 
whole. Thus, for the example already given, we may be less concerned with 
the rating given to a particular art object by a given judge than we are in a 
rating representative of the values assigned to that object by the various 
judges. Since a specific art object defines a subclass of ratings, the most 
representative rating (however defined) can be taken as the value of this 
stimulus on the esthetic scale, not dependent upon any particular judge. 

In its most elementary form, a rating scale imparts no measure of quantity 
to the events rated by it, merely being comprised of a set of mutually exclusive 
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indorsement of the Department of Defense. 

165 



166 PSYCHOMETRIKA 

categories. A n example of this simplest type is the standard color chart by 
which colors are classified. Stevens (9) has named this kind of scale a nominal 
scale. With appropriate additional data, assumptions, or definitions, however, 
the rating scale can be utilized as an ordinal, or even an interval scale. 

If a relation can be obtained which orders the categories, then the rating 
scale has become an ordinal scale for that relation. One of the more customary 
ordering relations employed by psychologists in generating ordinal scales is 
that of preference, or choice. If the categories are such that, for a given 
judge, (i) an item assigned to category A is always chosen over any item 
assigned to category B (at least at the time of the assignment) and any 
item assigned to category B is always chosen over an item assigned to category 
C, and (ii) no item assigned to C is ever chosen over items assigned to A, 
then categories A, B, and C are ordered by the relation of preference. 

It is customary at this point either to define or to hypothesize the 
existence of a psychological continuum underlying the categories of the 
rating scale, such that each category covers a range of the continuum, these 
ranges being exhaustive, mutually exclusive, and in the same ordinal relation 
as the corresponding categories. In short, the rating scale is interpreted as 
a gross technique by which the values of events are estimated on a similar, 
but much more discriminating imderlying scale. Thus, art objects evaluated 
in terms of a three-category scale are assumed to be much more finely dis-
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F I G U R E 1 
Conversion of a Sequence of Ordered Categories into an Interval Scale. Scale C Represents 
the Observed Rating Categories; Scale c, the Assumed Underlying Continuum; and 
Scale B, the Metric (with Arbitrary Origin and Unit Distance) Assigned to Scale c. 

tinguishable esthetically. This is illustrated in Figure 1. Scale C is comprised 
of the categories Ci , C2 , Cg . Events falling in a category C,- are ordered as 
higher or lower than events in C,(t ?̂  j) for the property being rated, but 
no distinction is made among the events falling in C<. Scale c is the continuum 
which is hypothesized or defined to underUe scale C, the smaller categories 
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indicating much finer differences in degree of the rated property. Strictly 
speaking, the underlying scale need not be an actual continuum; it may be 
conceptuahzed as a finite number of subdivisions of each category of the 
rating scale, as long as these subcategories are ordered by the same relation 
that orders the rating scale. 

If numbers can now be assigned to the various positions on the under-
Ijdng scale in such a manner that an interpretation can be defined, discovered, 
or assumed for the relative differences between positions on the scale, the 
theoretical underlying scale becomes an interval scale indicated in Figure 
1 by scale B. Then the assignment of an event to a category of C is interpreted 
as an estimation of the score of the event on the underlying scale B. We shall 
refer to theoretical metrics such as B, defined or inferred from cruder empirical 
measures, as base scales. It has been cutomary to define the base scale (more 
rigorously, a set of base scales, hnear transformations of one another) for a 
particular set of categories and distributions over the categories as that 
assignment of numbers to the continuum which normaUzes the distributions 
(10). There may be other equally vaHd ways of defining the base scale, e.g., 
the counting of just-noticeable-differences, or defining the base scale so as 
to normalize distributions other than the ones being dealt with in the given 
study. It is not always possible, given more than one distribution over the 
same continuum, to find a numbering of the continuum that simultaneously 
normahzes all the distributions. Although the method of successive intervals, 
as described in the hterature, has assumed normaUty for all distributions 
used in the analysis, we shall demonstrate that the vahdity of the method as 
a computational technique need not assume normal distributions. 

Once the existence of a base scale has been defined over the categories 
of a rating scale, each event classified by the scale is considered to have a 
value on the base scale. Since each category corresponds to an interval of the 
base scale, the assignment of an event to a specific category determines a 
range in which its base scale value falls. If, now, the shape of a distribution 
of scores on the base scale is known, values for the widths of the various 
category intervals can be computed in terms of the standard deviation of 
that distribution as the unit of measurement. These are computed by tabu
lating the cumulative proportion of scores at each boundary of the interval 
and calculating the width in sigmas corresponding to such a percentile 
difference for that type of distribution. If the distribution is known or 
assumed to be normal, then the interval width will be the standard deviation 
of the distribution multiphed by the difference between the normal deviates 
corresponding to the cumulative proportions at the lower and upper 
boundaries of the interval. If a number of distributions are available, i.e., 
a group of judges rates a set of stimuh so that each stimulus determines a 
class of ratings, a number of measures of each interval width will be obtained 
in terms of the sigmas of the various distributions. If these are pooled, 
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estimates of the interval widths in terms of a common unit of measurement 
are obtained. Finally, if the median of a distribution be taken as the base 
scale score representing the distribution, the exact base scale value of this 
point can be estimated as follows: observe the cumulative proportion at the 
boundaries of the interval in which the median falls, compute from the assumed 
distribution function the proportion of the distance from the lower boundary, 
multiply this proportion by the interval width, and add the product to the 
base scale value for the lower boundary. 

This and similar techniques for conversion of distributions of scores of 
a set of rating scale categories into points along an interval scale have been 
variously described in the hterature, most frequently under the title, the 
method of successive intervals (1, 2, 4, 5, 6, 7, 8). The general computational 
steps usually given for evaluation of the interval widths are: (i) for each 
distribution, compute each interval width in terms of the sigma of that 
distribution by taking the difference between the normal deviates correspond
ing to the boundaries of the interval, assuming each distribution to be normal; 
(ii) let the average value of the computed widths for a given interval be taken 
as the best estimate of the width of that interval in terms of a unit of measure
ment common to aU intervals. When the cumulative proportion at a boimdary 
of an interval is nearly 0 or 1, the estimate of interval width given by that 
distribution for the interval is too unrehable for use, so the average width 
for an interval must be a weighted average; the weights of 0 or 1 have been 
employed in all past apphcations of the method. 

Pre^ous advocates of the method of successive intervals have attempted 
to vahdate the technique by demonstrating its extremely high correlation 
with the method of paired comparisions (8), and its internal consistency (3). 
It is our present aim to evaluate the method in terms of the degree to which 
results of the computations from empirical data can be expected to diverge 
from theoretically " true" values as determined from the definition of the 
base scale. That is, we propose to evaluate the absolute validity of the method. 

The primary scores which are determined by the method of successive 
intervals are the widths of the category intervals relative to some arbitrary 
unit of measurement. The location of medians of the various distributions 
is secondary to estimation of the interval widths, since once the latter are 
known the former are easily determined. It is obvious that (i) if all the 
distributions used to measure the interval widths have equal variances, (ii) 
if all the distributions are normal, and (Hi) if there are no samphng errors, 
then the computed values of relative interval widths are identical with the 
theoretical values. For, if each experimentally obtained distribution were 
normal, and for every distribution the proportion of cases falhng within 
each interval showed no sampling errors, then the interval widths computed 
from a given distribution would be identical with the theoretical values as 
measured by the standard deviation of that distribution. If the variances 
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of all the distributions were equal, then each distribution would give the 
same computed value for a given interval width. Thus there are three possible 
sources of error in computation of base scale values by means of the method 
of successive intervals: type (a) errors due to unequal variances of the 
distributions used to compute the interval widths, type (6) errors due to 
non-normahty of the distributions, and type (c) sampling errors, i.e., errors 
due to the estimation of cumulative proportions of the interval boundaries 
from finite samples of the measuring distributions. 

As a tool for evaluation of the contributions of these sources of error 
to a total error of estimate of relative interval width, it is convenient to 
define a coefficient of error. Let a quantity x be estimated by a quantity X. 
Then the coefficient of error, ,̂ for the estimation of x by X is | = (-X" — x)/x 
or X = (1 + |)x- The magnitude of the coefficient of error gives the dis
crepancy between X and x as a proportion of x and is nothing more than 
1/100 of the percentage error in the approximation of x by X . 

Relative interval widths computed by the method of successive intervals 
are estimates of true relative interval widths on the base scale. B y relative 
interval widths, we recognize that the unit of measurement is arbitrary, so 
that the ratio of one interval width to another (which is invariant under 
transformation of the unit of measurement) is the critical quantity by which 
relative interval width is expressed. We can evaluate the coefficient of error 
for the estimation of true interval width ratios from computed ratios as 
follows: (i) fii^d an expression for the computed interval widths, L,- and , 
for categories j and k, in terms of the three types of errors that influence the 
computed widths, and of the true interval widths, X, and X* ; (ii) set 

L , / L , = (!-}- ^0(X,/XO. (1) 
Solving for , we obtain the coefficient of error for the estimation of relative 
interval widths by the method of successive intervals as a function of the 
different types of error; we shall be able to see exphcitly the manner and 
extent to which each kind of error contributes to the total error. 

Let X, be the true width on the base scale of an interval j in terms of 
some arbitrary unit of measurement U, and L, the width of the interval as 
computed by the method of successive intervals. Let rji (measured in terms 
of U) be the standard deviation of the ith. distribution over the base scale. 
If the ith. distribution is normal and displays no sampling errors, then the 
cumulative proportions at the upper and lower boundaries of interval j 
permit an exact computation (through use of a table of the normal proabihty 
integral) of the magnitude of X,- in terms of 77, as a unit of measurement. 
Specifically, 

where la is the width of interval j as computed from distribution i; X, and 
rji are the true magnitudes of interval j and the standard deviation of distri-
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bution i, respectively, in terms of the arbitrary unit of measurement U; and 
Vi = \lni. However, to the extent that distribution i diverges from normahty 
and contains sampling errors, la will differ from y.X,- . In general, 1^ = 
Vi\ f <; > where ta is the discrepancy between the computed Z,, and the 
theoretical ViX,- . f ,,• can be analyzed into two additive components Ei^ and 
e,,- , where Ei,- is a constant bias due to non-normaUty of the distribution and 
e., is a random sampling error. Thus, 

I.. = ;,,x, + ^ . . + eu . (2) 

It should be noted that the unit of measurement for the error terms E^ and 
e,, is 17; , the standard deviation of the ith. distribution; while the unit of 
measurement for l/y,- and X,- is the arbitrary U, which is the same for all 
distributions. 

The computed width L, of interval j is a weighted average of the estimates 
of widths contributed by the various distributions. That is, 

Li = X ) "^iihi = X, ^ WijVi + 52 f^ijEii + X ) '^ii^ii , (3) 

i i i i 

where w,-,- = 1- Defining the quantities A,- , j8,-, and 7,- by 

Ai = WiiVi , (4) 

Pi = {llwuE,,)/{Ai\d, (5) 

7,- = ( E « ' o e o ) / ( A , X , ) , (6) 

we obtain 
L , = A ,X , ( l + /3 ,+7,) . (7) 

Since X,- is inversely proportional to, and A , proportional to the magnitude 
of the base unit of measurement U, Aj\, is invariant for transformations of 
U. Therefore |8,- and 7,- , which are also invariant under transformations of 
U, may be interpreted as error per unit length of interval due to non-normahty 
of distribution and to samphng error, respectively. L,- may be interpreted 
as an estimate of X,- with as the unit of measurement. It will be seen below 
that 1/Aj is approximately the harmonic mean of the standard deviations 
of the measuring distributions. 

We are now able to evaluate the coefficient of error, ,̂ * , for the computed 
ratio Lj/Lk as an estimate of the true ratio X,/Xjt of the widths of intervals 
j and k. Finding by substitution of k for j throughout (7) and solving 
for $,t in (1) we find that 

_ Ai (1 + Pi + li) _ . 
- A, U + /3. +yj 
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which may be written 

t _ A + |8 ,+7A , Pi - Pk • 7 , - 7 t 
~ " ' * V l + /3t + 7*/ ^ 1 + /3* + 7* 1 + + 7* ' ^ ^ 

where 

a,-, = ( A , / A . ) - 1. (9) 

Since a,* reflects the difference between units of measurement within interval 
j and within interval fc, and vanishes (as shown below) when the variances 
of all the distributions are equal, a,,, may be regarded as the error in relative 
interval width due to unequal variances of the distributions which are used 
in estimating the interval widths. Thus, of the three sources of error in the 
method of successive intervals, type (a) is represented quantitatively by 
a, type (6) by /3, and type (c) by 7. 

y-Error 

It will be recalled from (3) that each distribution i was assigned a weight 
Wi,- for its contribution la in the computation of L, . It is now possible to 
assign these weights in a manner that minimizes the sampling error 7, . 
Assuming the various distributions to be essentially independent of one 
another in their sampling errors, we find from (6) the mean and variance 
for 7, (under\repeated sampling with a fixed set of weights) to be 

iJLyi = 22 w.-,M..-,-M,X,- ; (10) 

4 , = I:^/^?,•«r^.,/(A,X,)^ (11) 

But e,,- = 5j7.., — , where hva and 5z,,.,. are the sampling errors for the 
standardized deviates of the normal probabihty distribution corresponding 
to the cumulative proportions of distribution i at the upper and the lower 
boundaries of interval j, and 5 ~ A P/y, where is the sampling error of 
a cmnulative proportion at an interval boimdary and y is the ordinate of 
the normal probability distribution at P. Since the sampling mean of A P is 
zero, / i , . , ~ 0 and hence, from (10), 

M . , ^ 0 ; (12) 

while 

"•^f = <nv,i + < ŝt./ ~ 2 cov {hui, , Si(,.) 

_ 1 rPc;. .(l - P^..) ^ PL.II - PL,,) _ 2P^,,(1 - Pv.dl ^^^^ 
rii L y%ii ylii yhayvii J ' 

where Ui is the sample size of distribution i, Pti, (Pua) is the parametric 
cimiulative proportion of distribution i falling at the lower (upper) boundary 
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of interval y, and (yua) is the ordinate of the normal probabihty distri
bution at P i . . ; (Pp.,). Since the sample size n< is known, and the sample 
cumulative proportions provide sufficiently close approximations to the 
parametric cumulative proportions, very close approximations of CT^,,. may 
be computed from empirical data by use of formula (13). Furthermore, 
a\if may be made as small as desired by choosing the sample size n.- suf
ficiently large. 

The assumption of (11) might at first seem gratuitous; for many ex
perimental situations the sampling errors of one distribution will not be 
strictly independent of the next. Thus, if two sample distributions are obtained 
from judgments for two stimuh by the same judges, the sampling errors 
of the two distributions would probably be correlated. However, the dis
turbing effects of such a lack of strict independence are vitiated by the 
following considerations: (i) factors linking the samphng errors of two 
distributions usually comprise only a small portion of the total factors 
determining the outcome of the observed cumulative proportions; (it) linear 
correlations among the sampling errors may be neghgible even when significant 
non-linear correlations exist; and (iii) the intercorrelations may assume both 
positive and negative values, so that even when their absolute magnitudes 
are significant their net effect may be neghgible. Thus the assumption of 
(11) involves httle loss of generahty. 

Sincbyby (12) the average value of y, is approximately zero, the expected 
absolute magnitude of 7/ is less than (though on the order of) o-.̂ , , so the 
expected (absolute) size of 7,- will be minimal when <r̂ , is minimal. B y 
differentiation of (11) it wiU be found that <Ty,- is minimal when, for each 
i, Wi,a'ii = hj , where fc,- is a constant of proportionahty. Since 22.- — 
1, fc,- = (Zi <rZT\o 

y^ii .= («^'.. E (14) 

Equations (14) and (13) provide the steps for computation of the proper 
weights. (Except for those distributions for which the cumulative proportion 
at one of the boundaries of an interval is close to 0 or 1, the weights assigned 
to the various distributions for that interval are very similar. Hence, the 
customary procedure of giving zero weight to those distributions for which 
the sampling rehabihty of the interval estimate is small and of giving the 
remaining distributions equal weight in the computation of the interval width 
should be acceptable for most purposes.) 

Substitution of (14) in (11) gives 

cr\, = ( A , X , ) - ' ( E O " ^ (15) 

Since a],, is usually on the order of 1/n.-, letting n be the average size of the 
sample distributions and N the number of distributions, cr̂ ,- is roughly on 
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the order of (A,X,)~* (nN)~^. Thus the expected order of magnitude for 
7, is roughly (A,X,)~^ (niV)"*. This value may be made as small as desired 
by taking sufficiently large n and N. For example, if AjX,- = .5, AT = 50 and 
n = 500, then the expected order of magnitude for 7, is 10"'*. Thus for an 
empirical study of any substantial proportions an expected order of magnitude 
for 7, of 10"^ should not be difficult to obtain. In order to maintain a fixed 
order of magnitude for 7,, a decrease of interval widths must be compensated 
for by an increase in (i) the sample sizes, (ii) the number of distributions, or 
(iii) both. For with held constant, -s/nN is inversely proportional to 
AjX,- , while the latter, as shown below, is the width of category j in units 
of measurement given by the harmonic mean of the standard deviations 
of the measuring distributions. This has direct imphcations for the design 
of rating scales, for it shows that the number of categories into which a 
scale can be rehably decomposed is limited by the number of stimuh and the 
size of the population upon which the scale is to be standardized. 

Thus, if the width of an interval relative to I/A,- is not too small, and 
if the study by which the scale is being standardized is of reasonably sub
stantial dimensions, the error in estimation of X, due to sampling will be 
insignificant—generaUy on the order of 10~*. In hght of this, the mean and 
sampling error of can be evaluated. Any reciprocal, 1/s,-, from a distribution 
of s with mean M, can be replaced by the expression (2/iIf, — Si/M]) with 
an error coe^cient of — [(s,- — M,)/M,f. Since from (12), the mean of 
(1 -H 18 -h 7) is (1 + P), [1/(1 + /3* + 7*)] may be replaced by [(1 + -
7*)/(l + Pkf], with an error coefficient of — [(7t)/(l + Pk)f, the error of the 
replacement being neghgible so long as /S* does not approach — 1. With this 
replacement we find from (8) and (12) that the sampling mean of is 

=^ «,*[(! + ^,)/(l + P.)] + (Pi - Pk)/(l + PO, (16) 

while, disregarding second-order terms, 

<r,,, ~ [(1 + a,-,)/(l + P,)']V(l + Pk)"<r\, + (1 + Pi)\\, . (17) 

a-Error 

For evaluation of a,* , the error due to inequahty of variances, it is 
convenient to employ the identity 

N 
Ai = "^ii^i = Nc^^d.r^i. + NwiV 

.•-1 

where N is the total number of distributions, C7-„,. is the standard deviation 
of the weights for the jih. interval over the N distributions, cr, is the standard 
deviation of the Vi over the iV distributions, r„,, is the product-moment 
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correlation between Wa and Vi over the N distributions, and V is the mean 
value of Vi over the N distributions. From (9), this gives for a,it 

(X 'jg 

where C,- = iVo-„,. , C* = Na^^ , and F , = <Ty/v. 
The value of C,- depends only on the shape of the distribution of weights 

for the interval this value wiU be of an order higher than 10"^ only when a 
relatively small proportion of the distributions receive a significant weight 
for interval j. In the case where a proportion, k, of the distributions receive 
equal weights and the rest receive 0 weight, C = V ( l / k ) — 1, which exceeds 
1 only when k < .5 and is no larger than 3 when k = .1. The correlation, 
r„,, , between the weights assigned to the distributions for interval j and 
the reciprocals of the standard deviations of the distributions can be expected 
to assume some smaU negative value (with a chance divergence which 
vanishes as N grows large), since as ij,- increases the boundaries of the interval 
draw closer to the center of the distribution, yielding an increase in w„-. How
ever, we should expect this correlation to be equal for both intervals j and k. 
Thus, the maximum value of a,* would be approximately V, X 10"^. 

But is the coefficient of variation for the reciprocals of the standard 
deviations of the measuring distributions and is approximately equal to 
the coefficient of variation for the TJ.- . We shall, as a rule, expect to find V, 
on the order of 10"^, which makes a,k on the order of 10"^. Thus only when 
the variances of the distributions by which the interval widths are computed 
differ widely among themselves is the error contributed by the inequahty 
of variances of any significance. In such cases, the data can be reanalyzed 
usmg the correction for inequalities in variance suggested by Attneave (1). 

It should be noted that if Ml distributions receive equal weights for two 
intervals j and k, then a,k = 0, regardless of the magnitude of V, . Even 
when the rji differ widely, a,k will be neghgible if the Wa and Wi^ are sufficiently 
homogeneous. It should also be noted that 

Ai = (C,T„,,y, + l ) i ; ~ j J , (19) 

where v is the reciprocal of the harmonic mean of the 17. This substantiates 
our earher contention that the computed interval widths are expressed in 
units of measurement determined by the harmonic mean of the standard 
deviations of the measuring distributions. 

fi-Error 

Of the three sources of error in the method of successive intervals, evalua
tion of j8-error is the most difficult. We can replace E i ^ - i "^u^a by {N<T„, 
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(TEj'Ty.jEi + Ej), where Ei and o-̂ ,. are the mean and standard deviation of the 
errors introduced into the estimation of X,- by the non-normahty of the N 
distributions. Then from (5) 

Pi = (C,<7«,r„,^, + E,)/{Ai\,). (20) 

Note that En is measured in terms of the standard deviation, ij. , of 
distribution i. In particular, when Px,,.,. and Pvn are the cumulative pro
portions of distribution i at the lower and upper boundaries of interval j, 
Eii is the difference between the number of sigmas spanned between PLU 
and Puii by the actual distribution i and the number of sigmas spanned 
between PLU and Pun by a normal distribution. Let Da be the number of 
sigmas spanned by distribution i between these two cumulative proportions, 
and let da be the corresponding number of sigmas spanned by a normal 
distribution. Then En = da — D,-,- = oinDn , where oj.-,- = (da/Da) — 1 
and is thus the coefficient of error for the approximation of the distance in 
sigmas spanned between Pu,,. and PLU by distribution i by the corresponding 
distance spanned by a normal distribution. Since D.-,- = X,-/J7,- = »',-X, , (20) 
may be rewritten as 

Pi = (C,T„,£,cr„,,x, + Uiv\i)/(Ai\i) 

^ = Cir^,Ei(r^n./Ai) +o}i(y/Ai). 

But when V, is small, 

and 

o}j{v/Ai) ~ <T„,F,r„,., + w,- . 

Therefore, 

/3,- ~ o-„,(C,-^»,B,- + F,r„,„) + w,- 2̂1) 

^P^+ibi, 

where 

P'i = <T^XCir„iE,- + T , r „ , , ) . (22) 

In general, while there may be some smaU non-hnear correlation between 
Wii and Eii > the linear r„,E, will be close to zero as N increases and the 
chance fluctuation of V„,B, thus diminishes. A similar argument holds for 

; because of the small expected values of C,- and 7, , Pi should be on the 
order of o-„,. X 10"̂  at maximum. It will be shown below that even when a 
distribution is markedly non-normal, the expected order of magnitude for 
Uii is only 10~\o (r„, will be on the order of 10"^ at maximum. Thus, P- will 
be on the order of 10~* at maximum and is more hkely to be of order 10"'. 
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It follows that the only likely significant component of /3, is w, , the 
latter comprising the average value of w,, over the N distributions used to 
measure the width of interval j. These N distributions may be conceived 
as a sample of size N from an infinite population of potential distributions 
over the scale. Then w, has a sampling mean, jus,- , and variance, (r|, , of 
its own. Similarly, the w,,- for the infinite potential population of distributions 
over interval J have a mean, /u„, , and variance, al,-. Finally, since w, is the 
mean of a sample of size N from the oj;,- , /ns,- = M-,- and o-i,- ~ o-l./iV,- . 
(More generally, al^/N < al,- < al,- , depending upon the extent to which 
the for the sample of N distributions are iadependent of one another. In 
most situations, we will expect to find that the un are not wholly independent, 
but, for the same reasons advanced to justify equation (11), we shaU expect 
that the sum of the covariances will be neghgible.) Let /S-' be the extent to 
which 03i diverges from its mean. Then 

= py + Mo,, , (23) 
and thus, from (21), 

/3,. = /3f + + Ato,, . (24) 

Since jS,-' is of order t r „ , / \ / ^ , and as already mentioned, the expected order 
of magnitude for cr„, is 10"^ or smaUer, then if is reasonably large the maxi
mum expected order of magnitude for 0'/ is 10 '^ This leaves MO,, in (21) as the 
only component of /3, likely to be significant. But /x,,,. is merely the expected 
value of on the interval j . As indicated below, the absolute magnitude of 
ojii is only of expected order 10"^ even when the distributions are quite non-
normal. While it is impossible to make any definite statement about the 
average, , for an interval j, it would seem unlikely that it could exceed 
.10 except under cases of extreme, persistent, and positively correlated 
non-normahties among the population of distributions over interval j. Thus, 
except under unusual circiunstances, /3, is of expected order of magnitude 
10" ' or less, and we may simplify (16) and (17) to 

iJ'iik — «7* + Pi — Pk (25) 

^ocik + {p'i - Pi) + (py - pn + M«, - M . . 
and 

a^i, ~ V 4 7 + ^ . (26) 

Of the terms in (25), only MO,, and ju^i are of expected order larger than 10"'*. 
It yet remains to determine the anticipated order of magnitude for w. 

Since the population of potential distributions over a rating scale cannot 
be specified, it is impossible to assign a mathematical expectation to this 
term. However, co may be computed as a fimction of the degree of non-
normahty of the distribution being approximated. One may then select a 
range of distributions within which an empirically encountered distribution 
reasonably may be anticipated to fall and hence obtain reasonable bounds 
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for the magnitude of w. What we shaU illustrate here is a technique by which 
a distribution of any given shape readily may be inspected for its values of 
£0. B y this technique, the reader may select what he considers to be fair 
examples of empirically anticipated non-normal distributions and easily 
convince himself that w is unlikely to be of an order greater than 10~'. 

It win be recaUed that a = (d/D) — 1, where d and D are the distances, 
measured in terms of the standard deviations of the distributions, spanned 
between the cumulative frequencies at the upper and lower boundaries of 
the interval by a normal distribution and the empirical distribution, re
spectively. Let Pu and PL be the cumulative proportions at the upper and 
lower boundaries of the interval, let y{x) and Y(x) be the ordinates at x of 
the imit normal distribution and of the empirical distribution standardized 
to o- = 1, respectively, and let Xp and Xp be the distance of cumulative 
proportion P from the means of the unit normal distribution and the standard
ized empirical distribution, respectively. Then d = Xpj, — Xpj, and D = 
Xpf, — Xpj^ . But 

Pu — PL = I y{x) dx = yd, 

where y is the mean value of the ordinate to the unit normal distribution 
over the interval. Similarly, 

Pu- PL = f Y(x) dx = YD. 

Hence d/D — Y/y, so co = (Y/y) — 1 and is thus the coefficient of error for 
the approximation of the average height of the unit normal distribution 
between two cumulative proportions by the corresponding average height 
of the standardized empirical distribution. The magnitude of co is then 
readily seen by an inspection of the graphs of y and Y against P. That is, 
let y(P) = y{xp) and F(P) = Y(Xp). It is computed without difficulty that 
y{x) = y(P), where y{P) is the harmonic mean of y(P) between PL and Pa , 
and sunilarly Y{X) = Y{P). Also, except for those intervals over which 
the coefficient of variation for y{P) or Y(P) is large, y(P) ~ y(P) and Y(P) ~ 
Y(P). Thus, given any empirical distribution, the magnitude of the approxi
mation error can be determined readily by standardizing the distribution to 
imit variance, graphing the height of the distribution against cumulative 
proportion, and superimposing the corresponding graph of the imit normal 
distribution. One may then select two cumulative proportions, estimate the 
average difference between the curves over the interval visually, and divide 
this by the estimated average ordinate of the normal distribution over the 
interval. 

We illustrate the method through its apphcation to two arbitrary 
distributions, a rectangular distribution and a triangular distribution skewed 
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SO that the projection of the apex divides the base in a ratio of 1:3. These 
are shown with unit variance in Figure 2, together with the unit normal 
distribution by which they are to be approximated. Both distributions 
represent departures from the normal that, in an empirical distribution, 
would be considered severe. Figure 3 shows the same distributions in terms 
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of the ordinates of Figure 2 plotted against the corresponding cumulative 
proportions. If various pairs of cumulative proportions are selected and w 
estimated, it is seen that | co | has a modal value in the range.25 to .30 for the 
two distributions and grows much larger than this only when one of the 
proportions approaches 0 or 1 (due, here, to the finite ranges of both illustrative 
distributions). This is typical for most distributions; co is hkely to exceed the 
order of 10"^ only when one of the cumulative proportions at an interval 
boundary approaches the upper or lower hmit. But it is precisely in this case 
that the error variance of a proportion obtained through finite sampling 
becomes so large as to give neghgible weight to the contribution to the total 
estimate by an interval width estimate based on such a proportion. 

In those few cases where an empirical distribution is hkely to show large 
approximation errors (such as the case of multimodal distribution in which 
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the modes are well separated and the intervening troughs deep) the severe 
non-normahty of the distribution should be painfully apparent when the 
distribution is plotted on the successive intervals scale as finally computed. 
The non-normal distribution then may be discarded and a new analysis of the 
remaining data performed if the investigator sees fit. 
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P-Error and Its Relation to the Base Scale 
So far we have found it unnecessary to make any comments concerning 

the base scale which supposedly underhes the rating scale except to hypo
thesize its existence. 

Necessary and sufficient conditions for the existence of an interval base 
scale underlying a successive interval rating scale are: (i) There must 
(potentially) exist a numbering of all the potentially infinite number of events 
classifiable by the rating scale such that there is no overlap, for any two 
categories of the rating scale, of the ranges of the numbers corresponding to 
the events falhng within each category, (ii) The positions of the ranges 
corresponding to the various categories must be in. the same ordinal relation 
as are the categories. (Hi) For any set of events so numbered, there must 
exist some interpretation of (a) the ordinal relations among the numbers 
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assigned to members of the set and of (6) the ratio of the difference between 
the numbers of any pair of the set to the difference between the numbers of 
any other pair, in terms of some properties of the events of the set. (If the 
base scale provides interpretations for additional properties of the numbers 
assigned to events, it may become a ratio or even an absolute scale.) There 
may be many different niunberings satisfjdng conditions {i) and {ii), and 
many different interpretations in accordance with condition {Hi}. Hence 
there may be many different base scales vmderlying a given successive intervals 
scale. In fact, any assignment of niunbers satisf3dng conditions {i) and {ii) 
is a potential base scale for the rating scale since we can never know for 
certain that there exists no interpretation of a numbering in conformance 
with condition (m). Such potential base scales for a given rating scale need 
be correlated only to the extent that the values of a given event on the various 
potential base scales must aU fall within ranges corresponding to the same 
rating scale category. In particular, any order-preserving transformation of 
a potential base scale is also a potential base scale. 

The essential result of a method of successive intervals analysis is the 
derivation of a set of numbers corresponding to the boundaries of the intervals 
of the rating scale; these numbers, when paired and the ratio of differences 
between members of pairs taken, give the ratio of the base scale intervals 
corresponding to these pairs. The ratio of intervals for a potential base scale 
is always the same as the corresponding ratio for any linear transformation 
of that scale. However, this is not uniformly true for any other transfor
mation. Let all potential base scales be separated into classes, any member 
of a given class being a linear transformation of any other member of that 
class. These classes are, in general, characterized by different values for the 
ratio of two intervals corresponding to two pairs of points on the rating 
scale; the classes of potential base scales most closely approximated by the 
scale computed through the successive intervals technique wiU be those 
classes whose ratios for interval widths are most sunilar to the ratios dis
played by the computed scale. That is, the classes of potential base scales 
most closely approximated by the computed scale are the classes of potential 
base scales minimizing the | , t . 

Since the exact magnitudes of the ,̂-fc are unknown in apphcations of the 
method of successive intervals, it is impossible to determine the class of 
potential base scales most closely approximated in a specific instance. The 
classes of potential base scales most Uhely to minimize the kik , however, are 
those which minimize the expected values of the . Now, the data of a specific 
successive intervals analysis are obtained by sampling of two kinds: a sample 
of size N from possible distributions over the rating scale, and a sample of 
Wi individuals from each distribution i {i = \, 2, • • • , 2^. The expected 
value of for a specific sample of distributions is given by (25). But the 
terms a,* , (jS,- — /S*), /3-' , /S*' are dependent upon the specific sample of 
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distributions chosen; j8-' and /S*' , by definition, have an expected value of 
0, while both a,* and (jS,- — jS*) are determined essentially by differences of 
the form X,r,,«,. — X^r^^^^, where X, y, and z are various specified properties 
of the N distributions. These differences should be negative as often as positive, 
so that the expected values of a,-* and (/8- — /SQ should be 0. Thus, the ex
pected value of is approximately n^. — yuo,* , and hence the classes of 
potential base scales most closely approximated by the expected computed 
scale are those base scales showing the smallest differences among the MO,, , 
M a , i , • • • for the various intervals j, k, • • • of the scale. This important 
conclusion may be rephrased as: the classes of potential base scales expected 
to be most closely approximated by the method of successive intervals are the 
classes for which the average coefficient of error (for the estimation of interval 
widths under assumptions of normality) is most nearly the same for all intervals 
of the rating scale. 

In particular, if, as imphcitly assumed by previous psychometric analyses 
wherein the base scale remained unidentified, there exists a class of potential 
base scales which simultaneously normahze all distributions, then = 0 
for all intervals of these scales; there is no class of base scales more closely 
approximated by the expected computed scale. 

Thus, we see that there is no single answer to the question of the 
magnitude of error involved in the approximation of an unidentified base 
scale by the method of successive intervals; the magnitude of error is relative 
to that base scale for which the computed scale is considered an approxi
mation. If we wish, however, we may define the base scale to be approximated 
as that scale which simultaneously equahzes the M<O for aU intervals. A class 
of such scales can always be found, and further, the set of all such classes 
includes all base scales which simultaneously normahze all distributions over 
the rating scale if such scales exist. If the base scale is so defined, then from (25) 

= a,* + (̂ ; - /SO + (py - pn- (27) 
Only when the measuring distributions are extraordinarily non-normal are 
any of the terms on the right side of (27) of expected magnitude greater 
than 10"^, and thus has an expected order of magnitude of no greater 
than 10"^. This, in conjunction with (26), shows that if the sample sizes of 
the distributions have been taken sufficiently large (say, large enough to 
make ay on the order of 10"^), then the extent to which interval ratios computed 
by the method of successive intervals diverge from the corresponding theoretically 
"true" values should not exceed 10 per cent of the latter, and may be much smaller 
if the experimental study has been well designed. 

ConclvMOns 
Abstracting the essentials of the foregoing analysis, three major points 

are of significance—the first, a contribution to the computation technique 
of the method of successive intervals; the second, an evaluation of the vahdity 
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of the method; and the thu-d, the significance of the method for the basic 
methodology of psychophysical measurement. 

The contribution to computational technique is given by equations (13) 
and (14); it involves the computation of weights for the estimates of a given 
interval width so as to minimize the sampling errors for the composite 
estimate of the interval width. Except for the more exacting studies, however, 
or unless suitable tables have been obtained, the improvement of this exact 
method of weighing over the more rough and ready techniques now in use 
will scarcely be worth the extra computational labor. Of greater potential 
apphcation in the design of empirical studies is the determination of the, 
relations among width of interval, the number of measuring distributions 
and their sample sizes for the maintenance of a fixed level of freedom from 
sampling error. 

The vahdity and rehabihty of the method of successive intervals do 
not depend upon normahty of distributions or equahty of their variances. 
The rehabihty, as attested by (26), may be made as high as desired. If the 
base scale is suitably defined (i.e., defined so as to equahze, for the various 
intervals, the error due to estimation of interval width from a table of the 
normal probabihty integral) and if the rehabihty is made sufficiently high, 
then the validity, as imphed by (27), is so high as to lead to an expected 
coefficient of error for relative interval widths of no more than a few parts 
in a hundred. Further, this validity is in reference to the theoretical values 
of the interval ratios. It is thus an absolute vahdity in contrast to past vah-
dation ^ f psychophysical scaling techniques, where vahdation is attempted 
only in terms of internal consistency or consistency among different techniques. 
purported to compute the same base scale. It would appear, then, that until 
similar analyses can be constructed for other psychophysical scaling tech
niques, the method of successive intervals should be accepted as the basic 
standard against which other techniques are to be validated. 

Finally, and probably most important of all, we consider the imphcations 
of this analysis for the methodology of psychophysical measurement. It has 
been shown that it is unnecessary for psychophysical measurement (or for 
that matter, for any form of measurement) to assume any specific form of 
distributions over a measuring scale. The only assumption required is that 
certain properties of the measurements obtained by the measuring technique 
have some potential interpretative significance. The major premise of 
psychometric scahng in the past has been that if (o) a scale can be obtained 
which normalizes the distributions over it, then (6) that scale, or another 
very similar to it, has interpretive significance as an interval scale. We may 
now replace this premise with another: if (a') a scale can be obtained which 
equalizes, for all intervals, the average coefficient of error for the approxi
mation of interval width by the distance which normal distributions of 
equal standard deviations would span between corresponding percentiles, 
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then (6) that scale, or another very similar to it, has interpretive significance 
as an interval scale. The latter premise is both weaker and stronger than the 
former: weaker in that a scale satisfying (o') can always be found, and such a 
scale also satisfies (a) when scales satisfying (o) exist; stronger in that the 
latter premise demands a meaningful scale to underhe every psychophysical 
measuring technique, whereas the former demands such a meaningful under-
structure only if a psychometric scale can be found to normahze simul
taneously all distributions over it. Actually, the (6) clause of these premises 
is not so strong as it might appear. In a certain sense, the mere act of defining 
a scale in terms of the distributions over it imparts a meaning to the scale 
values so defined. Essentially, what our present analysis has shown is that 
it is always possible to give a distributional definition to a base scale ^viieh-
simultaneously normalizes all distributions-regardless of whether or not a 
scale exists. u>!̂ /c^ '=>>t'nu l-f-ari^aousL^ ^]ot'-i*iah^€:> aff <i'^toei-4<'isus. 

Since interpretation of psychometric scales has been sought in actual 
practice, regardless of whether simultaneous normahzation could be reaUzed, 
it is essential, if psychometric custom now current is to be justified, that a 
way be found to define psychometric scales in terms of properties other 
than such normahzation. It is our behef that such justification has now been 
furnished. 
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