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Abstract

Recent discussion of the replication crisis has largely neglected a fundamental issue, 

namely how replication attempts are best evaluated. We develop a “good-faith” approach to 

assessing evidence for replication. In this approach, the design of the original study is used to 

derive an estimate of a theoretically interesting effect size that the researchers can reasonably be 

assumed to expect. A likelihood ratio is then calculated to contrast the match of two models to 

the data from the replication attempt: A model based on the anticipated effect size, and a model 

in which the effect is zero. When applied to data from the Replication Project (Open Science 

Collaboration, 2015), the procedure indicates that as many as 42.8% of the results failed to 

replicate.  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Assessing Evidence for Replication

The Replication Crisis

There has been a great deal of concern expressed recently regarding the “replication 

crisis” in psychology (e.g., Lindsay, 2015; Pashler & Harris, 2012), in which a potentially large 

number of published results may be difficult to replicate. Replication problems have been 

ascribed to a number of factors, including data analysis strategies that inflate the Type I error rate 

(e.g., Simmons, Nelson, & Simonsohn, 2011), publication practices (e.g., de Bruin, Treccani, & 

Della Sala, 2015), and inherent problems with significance testing (e.g., Masicampo & Lalande, 

2012). Any or all of these issues may indeed contribute to a failure to replicate, but an equally 

important question revolves around what actually counts as evidence for or against replication. In 

fact, it seems critical to have a solid statistical foundation for deciding whether a replication has 

been a success or failure before determining solutions for issues related to improving the 

reproducibility of results. 

In the present paper, we first describe what we consider to be an appropriate framing of 

the replication question. We follow this by briefly reviewing some of the approaches to assessing 

replication, all of which seem to have shortcomings given our framing. We then develop what we 

refer to as a “good-faith” approach based on assumptions about the competence of the original 

researchers. Finally, as an illustration of the technique, we apply it to data from the 

Reproducibility Project (Open Science Collaboration, 2015).

What is Replication for?

A core problem in science is deciding whether or not an observed result provides 

evidence for a theoretically interesting effect. As many have noted, a theoretically interesting 

effect is not the same as a statistically significant effect (e.g., Thompson, 1993). For example, an 
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effect of any magnitude can be statistically significant given sufficient power, whereas a 

theoretically interesting effect must be of a certain magnitude regardless of statistical 

significance. We assume that published papers will generally provide reasonable evidence for 

theoretically interesting effects given that such evidence is a central criterion on which 

publication depends. And of course, published work is what is normally targeted for replication 

attempts.

From the perspective of the field and for the advancement of scientific knowledge, we 

normally would not care whether a replication produces precisely the same result as the original 

study; we care whether the replication evidence supports the same interpretation (that there is a 

theoretically interesting effect). However, the magnitude of a theoretically interesting effect can 

be difficult to determine. Although researchers may have an intuitive knowledge of how large an 

effect should be in order to be interesting, it is rarely discussed in research reports. The technique 

developed below provides one way to estimate the size of a theoretically interesting effect by 

examining the form of the original study. In essence, it is a way of gauging the researchers’ 

expectations about effect size from the design of the study that they ran. Thus, the first critical 

aspect of a replication attempt is that it asks the question: Does the evidence from the replication 

support the existence of a theoretically interesting effect or not? 

A second critical aspect of assessing evidence for replication is that one’s concerns are 

symmetrical: We wish to be able to identify both when the evidence is in favor of replication and 

when it is against replication. If one can gauge the magnitude of a theoretically interesting effect, 

the replication question can be posed in this symmetrical fashion. The benefit of constructing 

such a symmetrical question is that it is straightforward to address statistically. That is, we can 
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ask: Does the replication evidence support the existence of either a theoretically interesting 

effect, or does it support a null effect? 

In contrast to posing the question symmetrically, extant replication techniques generally 

pose the question asymmetrically: Either they are designed to find evidence in favor of 

replication or they are designed to find evidence against it. The consequence of addressing the 

matter in this asymmetric fashion is that these techniques can only ever address one of the two 

questions of interest. Moreover, they are often silent on the issue of whether a replication attempt 

demonstrates a theoretically interesting effect or whether the effect is merely statistically 

significant. Below, we discuss several of these extant techniques and describe weaknesses that 

make them unappealing to those wishing to evaluate a replication attempt. Following this 

discussion, we introduce our “good-faith” approach and describe how it addresses both of the 

critical issues we described above: the issue of how to define a theoretically interesting effect, 

and whether the evidence from the replication attempt is either for or against it.

Existing Methods of Assessing Replication

Comparing Patterns of Significance. For many researchers, the most intuitive approach to 

deciding whether results replicate the original is to compare patterns of significance. Finding a 

significant result where was one found before would be construed as a replication, whereas 

failing to find such an effect would count as a failure to replicate. However, this method has a 

number of defects. An obvious one is that two results may be very similar, with largely 

overlapping confidence intervals, yet one is significant and the other is not. For example, if the 

original study obtained a significant result with a p value only a little below a criterion of .05, 

then a replication attempt with only a slightly smaller effect size might easily be nonsignificant. 

Under such circumstances, the two means would be very similar and the confidence intervals for 
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the two results would largely overlap. This situation is illustrated in Panel 1 of Figure 1. Even 

though the results of the two studies are on opposite sides of the threshold for significance, their 

data are nearly indistinguishable, and it makes little sense to describe the result as a failure to 

replicate.

A related, but perhaps less well recognized, issue is that two results might both be 

significant but quite different. This is illustrated in Panel 2 of Figure 1. In this case, a significant 

result is obtained both in the original study and in the replication attempt. However, the effect in 

the replication attempt is much larger than that obtained in the original, and there is no overlap in 

the confidence intervals for the two effects. Thus, even though both have significant effects, there 

is clearly a large difference in the two results, and it would be misleading to describe the second 

as a successful replication. 

Both of these problems reflect the fact that null hypothesis significance testing entails an 

arbitrary distinction between “significant” and “nonsignificant” results and requires that 

researchers behave differently in situations in which significant or insignificant results are 

obtained (cf. Gigerenzer, 2004). Dixon (2003) has described the problems that arise from this 

aspect of significance testing in factorial designs, where there can be little relationship between 

patterns of means and patterns of significance. However, the problem is also apparent in simple 

situations in which a single effect is being compared across two studies.   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Figure 1. Possible relationships between effects found in a study and a replication attempt.  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Testing for Differing Results. A somewhat more sophisticated attempt to compare two 

results might be to examine the confidence intervals of their respective effects. Essentially, if the 

intervals overlap, one would conclude that they are consistent with one another (and hence that 

the original study is replicated), and if the intervals don’t overlap, or perhaps overlap only 

minimally, one would conclude that there was a failure to replicate. This procedure is tantamount 

to performing a significance test to see if the effects in the two studies differ. 

Such an approach is problematic for two reasons: First, given the usual tenets of 

significance testing, one should not in principle draw any conclusions from a failure to find a 

significant difference between the two experiments. Consequently, there would be no procedure 

for finding evidence for replication; testing for a significant difference can only yield evidence 

against replication. Second, it may be very difficult to identify evidence for a failure to replicate 

if the original effect was small. Consider the situation in Panel 3 of Figure 1. In this scenario, the 

initial result has a confidence interval for the effect that extends nearly to (but does not include) 

zero. If the actual effect really is zero, then one might need to have a great deal of power in order 

to have a confidence interval centered at zero that does not overlap with that of the original study. 

Thus, according to this criterion, a very large sample size would be needed to demonstrate that a 

weak effect cannot be replicated. 

A related approach is to test whether the results from the replication attempt are 

significantly smaller than the effect size obtained originally, as illustrated in Panel 4 of Figure 1. 

However, it is quite possible to obtain a significantly smaller effect even though the confidence 

intervals from the two studies overlap substantially (as shown in the figure). In other words, there 

could be a large range of effect sizes that are entirely consistent with both experiments. 
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Combining Evidence. Another approach is to combine the evidence from the original 

study and the replication attempt using meta-analysis or related techniques. One might then 

examine the combined evidence for the effect. If the original study found a weak (but significant) 

effect and the replication attempt found a weak (but nonsignificant) result, the combined 

evidence might be moderately in favor of the effect. However, combining this approach with 

significance testing makes it difficult to find evidence against replication because a confidence 

interval that includes zero does not imply that the effect is exactly zero. Moreover, in some cases, 

the motivation for attempting to replicate may be that there are concerns about the manner in 

which the original study was conducted or analyzed. Thus, it might not be appropriate to 

combine the results of the two studies as if they were independent samples from the same 

population. 

Bayesian Approaches. Bayesian approaches to hypothesis testing provide several 

advantages over significance testing with respect to replication. For example, they are generally 

immune to problems involved in using optional stopping principles, so that data collection in a 

replication attempt can proceed until the evidence is clearly for or against replication (cf. Rouder, 

2014). Nevertheless, many of the approaches that have been previously proposed are 

conceptually related to the ideas proposed in the context of significance testing. For example, one 

may use Bayesian hypothesis testing to assess whether there is evidence against the null 

hypothesis in a replication attempt, similar to testing whether the replication attempt produced a 

significant effect. Alternatively, one may compare the effect sizes in the original study and 

replication attempt using Bayesian hypothesis testing (Bayarri & Mayoral, 2002), parallel to 

testing whether two effect sizes are significantly different. A variation on this approach was 

proposed by Verhagen and Wagenmakers (2014) in which the effect size in the replication 
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attempt is compared to the posterior distribution derived from the original result. Finally, it has 

been suggested that the original and replication attempts be combined to assess whether the 

evidence on aggregate favors the null or alternative hypothesis (e.g., Rouder & Morey, 2011), 

similar to evidence combining done in the context of significance testing. The conceptual 

similarities between these approaches and those devised in the context of significance testing 

suggests that such Bayesian replication methods may suffer from the same types of drawbacks 

outlined above. For example, regardless of whether one uses traditional NHST or Bayesian 

analysis methods, it is still the case that a powerful study would be necessary to provide evidence 

against a previously obtained weak result. 

“Small Telescopes.” Simonsohn (2015) described an interesting solution to some of the 

problems with previous approaches. Rather than assessing evidence for or against the obtained 

result, he argued that one should consider the magnitude of the effect one could reasonably be 

expected to find given the design of the original study. In particular, he starts by defining a “small 

effect” as an effect that could be found 20% of the time given the sample size used in the original 

study (described as “d20”). Then, one conducts an analysis to see if the effect obtained in the 

replication attempt is significantly smaller than d20. If the hypothesis is rejected, one could 

conclude that the original result fails to replicate because the effect must be smaller than what the 

original experiment could reasonably be expected to find. In other words, the original experiment 

was “too small a telescope” to see the effect that was obtained. 

This approach makes it easier to find evidence for a failure to replicate, but it might still 

require a relatively large sample to find evidence against a weak effect. Further, the procedure is 

set up essentially as a means to provide evidence that would discredit the original study, and a 

failure to reject the null hypothesis in this case provides only weak evidence for replication. In 
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this sense, we regard it as a “bad-faith” approach in which one begins with the hypothesis that 

the original study was flawed and seeks evidence to support that hypothesis. Moreover, because 

it is based on null hypothesis significance testing, it is susceptible to some of the same issues that 

might have contributed to problems with the original study, such as optimal stopping and file-

drawer issues. 

A Good-Faith Approach

In contrast to the small-telescopes idea, we propose a “good-faith” approach to assessing 

evidence for replication. Although similar in some respects to the Simonsohn approach, it is 

based on the assumption that the original researchers understood the phenomena they were 

investigating and designed a suitably powerful study. We then estimate how large an effect the 

original researchers might have been expecting given the design they used and presume that this 

effect is large enough to be theoretically interesting. Based on this estimate of the expected effect 

size, we can measure the relative evidence for two alternative interpretations of the data from the 

replication attempt: 1) The result is consistent with the estimate based on the original study 

design (i.e., that the anticipated result was replicated); or 2) The effect is zero. Evidence for or 

against replication is the evidence in favor of either one or the other interpretation.

In the present development, we build on the approach to assessing evidence described by 

Glover and Dixon (2004). They suggested using an “adjusted” likelihood ratio to describe the 

evidence for one interpretation relative to another. The likelihood ratio is the likelihood of the 

data given one model (and its best-fitting parameters) divided by the likelihood of the data given 

another model (and its best fitting parameters). Such a ratio will nearly always favor the model 

with more parameters because such a model is more flexible. One way in which one can 
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compensate for this additional flexibility is to adjust the likelihood ratio based on the Akaike 

(1973) Information Criterion. Such an adjusted likelihood ratio is:

� (1)

where X is the vector of observations,  and  are the vectors of parameter estimates, L1 and L2 

are the likelihoods under the two models, and k1 and k2 are the number of parameters. Such an 

adjusted likelihood ratio is tantamount to selecting models based on AIC values. Burnham and 

Anderson (2002) refer to such adjusted likelihood ratios as “evidence ratios.” Often, one is 

interested in comparing a model in which there is an effect of some experimental factor to a null 

model in which there is no such effect, and one may assume that the data are normally 

distributed. In such cases, the adjusted likelihood ratio is:

� (2)

where �  is a measure of effect size (Cohen, 1988), k is the effect degrees of freedom, and n is 

the number of independent observations.

In order to develop an index of evidence for replication, we work backwards from the 

design of the original study. We use the term “anticipated evidence” to refer to the adjusted 

likelihood ratio one would expect given a particular effect size and sample size. The good-faith 

approach to replication evidence is based on the view that the original researchers planned their 

experiment so that the anticipated evidence was reasonably strong. We argue that a plausible 

minimum value for such anticipated evidence would be 8 (corresponding to power of about .7). 

Then, from Equation 2, we can solve for the anticipated effect size as a function of n:

� (3)
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Now, assume that in a replication attempt, an effect size of �  was observed. The evidence for 

replication is a likelihood ratio comparing two models of this observed effect size: a null model 

that assumes that the effect size is 0 and an “anticipated effect” model that assumes that the 

effect size is � . This likelihood ratio is:

�  (4)

In interpreting the results of applying Equation 4, very large values would provide clear 

evidence for replication, very small values would indicate evidence against replication, and 

values near 1 would be indeterminate. The numerator in this formulation corresponds to the error 

under the null model: Essentially, any obtained effect must be counted as error. The denominator 

corresponds to the error under the anticipated effect model: When the obtained effect is smaller 

than that anticipated, the difference must count as error. Of course, it is possible that the observed 

effect in the replication attempt is actually larger than the anticipated effect, but in this case, the 

observed effect will be larger still than an effect of zero, and the likelihood ratio will strongly 

favor replication. One may also express the evidence as the difference in AIC values for the two 

models, effectively changing the likelihood ratio to a log scale:

� (5)

As before, large positive values provide evidence for replication, large negative values provide 

evidence against replication, and values near zero would be indeterminate. 

In the special case where the experiment involves comparing two conditions, the AIC 

adjustment represented by k in Equations 4 and 5 drops out. In this case, the two models being 

compared have the same number of parameters, and the likelihood ratio contrasts two point 

estimates of the effect size, 0 and dae (where dae = 2fae). Thus, for the comparison of two 
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conditions, Equation 4 would not depend on any particular approach to measuring model 

complexity and, for example, a Bayesian analysis using BIC would yield the same result. 

Equation 5 could then be described either as a difference in AIC values or a difference in BIC 

values.

As a numerical example, suppose that the original researcher used a design with two 

independent groups of 20 subjects each, and found a significant effect of F(1, 38) = 5.08. This 

corresponds to an effect size of f2 = 0.1337. If this result were described using an adjusted 

likelihood ratio following the approach of Glover and Dixon (2004), we would obtain: 

�

This provides some evidence for a difference between groups but is rather smaller than the 

minimum anticipated evidence of 8 that we noted earlier. One might conclude either that the 

researcher was either wrong about the size of the effect being investigated or that the observed 

effect was relatively small just by chance. In any event, what is important for the present 

approach to replication is the size of the study, consisting of 20 subjects in two groups. From 

Equation 3, the anticipated effect size is inferred to be: 

!  

Suppose a second researcher attempted to replicate the result using a somewhat larger design 

with two groups of 30 subjects. If the observed effect size in the replication attempt was  f2 = 

0.1220, by Equation 4 the evidence for replication would be:

�
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This provides clear evidence for replication. Alternatively, if the obtained effect size was half 

that size, f2 = 0.0642, the evidence for replication would be:

�

This provides some support for replication. Note, however, that this effect size corresponds to an 

F(1, 58) = 3.72, which would not quite be statistically significant. Finally, if only a small effect 

of 0.0161 is observed, the replication evidence would be:

�

Or, inversely, 1/0.16 = 6.06 in favor of failing to replicate.

Although this technique provides a straightforward way to describe the evidence for and 

against replication, “failure to replicate” has a somewhat specialized meaning in this context: It 

means that the effect is smaller than what one might infer the original authors expected and is 

better described as 0. Even if there is substantial evidence against replication in this sense, it is 

still possible that the effect is nonzero but small. Indeed, a small effect that is difficult to detect is 

always a possibility on any approach to replication. If there is substantial evidence against 

replication using this procedure, it might mean that more consideration needs to be given to the 

question of how large an interesting effect would be, and perhaps more powerful studies would 

need to be designed to detect such an effect.

Application to the Reproducibility Project

As an illustration of the good-faith approach, we applied it to results from the 

Reproducibility Project (2015).  The project reported the results of 100 attempts to replicate 

quasi-randomly selected research results from across a broad range of psychology journals. Their 
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results are important because they provide an independent assessment of the extent to which 

results in psychology can be replicated. For simplicity, we considered studies for which the 

relevant test statistic was either t or F (although the current approach could be extended to other 

analyses). We also did not use studies for which the original or the replication attempt had a 

sample size greater than 1,000 because these would be atypical of replication attempts in 

experimental psychology. This resulted in a total of 84 pairs of studies. For each pair, we 

calculated the anticipated effect size for the original design using Equation 3, and the replication 

effect size from the reported test statistic (i.e., f2= (df1 / df2)F or f2= t2 / df ). Equation 5 was then 

used to calculate the evidence (expressed as the difference in AIC values) for or against 

replication. 

The results are shown in Figure 2. A value of 3 for ΔAIC might be considered “large” in 

this case. (For example, in some prototypical hypothesis testing situations, an obtained p value of 

.05 corresponds to a ΔAIC of 2.2.) By this criterion, 35.7% of the results demonstrated clear 

evidence for replication, and 42.8% demonstrated clear evidence against replication. The 

remaining 11.5% of cases were indeterminate. Of course, as noted above, it is quite possible that 

many of the failures to replicate (and many of the indeterminate results) represent real effects 

that are smaller than what one might infer the original authors expected.
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Figure 2. Results of applying the “good-faith” approach to studies in the Reproducibility Project 

(Open Science Collaboration, 2015). Gray areas indicate the frequency of ΔAIC 

(difference in AIC values; see Equation 5), and dotted vertical lines indicate the criteria of 

a -3 and +3 ΔAIC. Black hatched areas on the left indicate replication effect sizes 

significantly smaller than that in the original study; white hatched areas on the right 

indicate significant replication effects.  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As a comparison to other indices of replication, two other measures are shown in Figure 

2. The first was whether or not the result in the replication attempt was statistically significant. 

Significant replication attempts are indicated by the white hatched areas on the right in Figure 2. 

As can be seen, nearly all of the cases in which the good-faith assessment yielded clear evidence 

for replication were also statistically significant by this criterion. However, there were a few 

instances in which a significant effect was found but there was only weak evidence for 

replication. This can occur when the replication attempt has substantially higher power than the 

original study. Under such circumstances, the replication attempt may find a small, significant 

effect that is actually closer to zero than to the anticipated effect size estimated from the design 

of the original study. Note as well that a failure to find a statistically significant effect using 

standard significance testing does not always correspond to evidence for a failure to replicate 

using our good-faith approach.

In the second comparison, the effect size of the replication attempts was compared to 

those in the original studies directly. As an approximate index of whether the effect size in the 

replication attempt was smaller than that in the original study, both effect sizes were expressed as 

r and then transformed into Z scores using the Fisher transform. The difference in these Z scores 

would then be approximately normally distributed with a standard deviation, 

� . The black hatched areas on the left of Figure 2 represent those 

studies for which this difference was larger than the 95th percentile. As one might expect, when 

there was difference this large between the confidence intervals from the original and the 

replication study, there was generally clear evidence against replication. However, it is also 

apparent from Figure 2 that there were quite a number of studies for which there was substantial 

evidence against replication even though there was not compelling evidence for a difference in 
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effect sizes. This follows from the argument made in the introduction that it can difficult to find a 

difference between a replication attempt and an original result with a confidence interval that 

extends nearly to zero. In such instances, the present technique is useful in demonstrating that the 

replication effect is smaller than what the original researchers might have expected. There are 

also a few cases in which there was a significant difference in effect sizes but not strong evidence 

against replication. This can happen if the effect size in the original study was substantially larger 

than one might expect based on the design, but the replication suggests an effect size more in 

keeping with the original design.

It is notable that using our good-faith replication assessment, there was evidence against 

replication in a large portion of the results. In this sense, the present approach does not change 

the broad conclusions from the Reproducibility Project, although we believe that these 

calculations provide a more precise index of the problem. Although we do not have a simple 

interpretation of the nature of the replication problem, two issues occur to us. One is the extent to 

which the replication attempt matched the methods of the original study. This might be a 

problem in some portion of the studies; for example, the original authors approved the 

replication attempt in only 67.8% of the cases. When we consider only these replication attempts, 

the percentage of failures to replicate by our index is somewhat lower, 38.6%. Another issue is 

the strength of the evidence in the original study. For example, it is common practice in 

psychology to regard a p value of .05 as “significant” even though the evidence provided by such 

results is fairly weak. At least part of the lack of reproducibility may thus be a willingness to 

accept weak evidence for a conclusion. Indeed, the correlation between evidence for replication 

(as calculated here) and the adjusted likelihood ratio calculated from the original result is .677. A 

similar relationship was also noted by the Reproducibility Project (2015). However, in our case, 
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evidence for replication is independent of the results actually obtained in the original study 

because our estimate is based only on the original study size. One part of the solution to the 

replication problem may thus be to insist on more compelling evidence. 

Concluding Comments

Our good-faith approach to replication has several clear advantages over previous 

methods. First, it makes the (in our view) reasonable assumption that the original researchers 

competently designed their study to have sufficient power to detect a theoretically interesting 

effect. It then infers the expected effect size based on their design. Second, it poses the question 

of replication symmetrically, so that evidence can be found either for or against replication. This 

is in contrast to other methods which generally can only answer one or the other side of the 

question. Third, it allows for a graded and intuitive description of the evidence. This avoids some 

of the problems with null hypothesis significance testing that derive from the use of an arbitrary 

decision-making criterion. 

Although we have developed and applied this technique in terms of adjusted likelihood 

ratios, the same concepts could be used regardless of one’s approach to hypothesis testing. In 

particular, using the design of the original experiment to perform a good-faith assessment of the 

original research aims does not depend on any assumptions about how competing hypotheses 

should be compared. For example, the same approach could be used by starting with the 

significance-testing concept of power and then developing mutually exclusive point hypotheses. 

As another example, a Bayesian version of the procedure could be developed by using the 

Bayesian model comparison statistic BIC instead of AIC in all of the present developments. 

Although these alternative approaches would, in general, be numerically different when applied 

to specific cases, the conclusions would typically be quite similar.
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Understanding why results cannot be reproduced is a critical issue in psychology and 

other sciences, but assessing reproducibility is equally crucial, for without an accurate evaluation 

of the problem one cannot formulate suitable solutions. Our approach is to focus on the central 

question, “Does the data provide evidence for a theoretically interesting effect?”, and to frame 

this question in a symmetrical fashion. This “good faith” approach provides a graded and more 

principled means of assessing replication than many extant methods. 
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Figure Captions

Figure 1. Possible relationships between effects found in a study and a replication attempt. 

Figure 2. Results of applying the “good-faith” approach to studies in the Reproducibility Project 

(Open Science Collaboration, 2015). Gray areas indicate the frequency of ΔAIC 

(difference in AIC values; see Equation 5), and dotted vertical lines indicate the criteria of 

a -3 and +3 ΔAIC. Black hatched areas on the left indicate replication effect sizes 

significantly smaller than that in the original study; white hatched areas on the right 

indicate significant replication effects. 


