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Abstract

Accuracy is often analyzed using analysis of variance techniques in which the data are assumed to be normally dis-
tributed. However, accuracy data are discrete rather than continuous, and proportion correct are constrained to the
range 0–1. Monte Carlo simulations are presented illustrating how this can lead to distortions in the pattern of means.
An alternative is to analyze accuracy using logistic regression. In this technique, the log odds (or logit) of proportion
correct is modeled as a linear function of the factors in the design. In effect, accuracy is rescaled in terms of a logit
‘‘response-strength’’ measure. Because the logit scale is unbounded, it is not susceptible to the same scaling artifacts
as proportion correct. However, repeated-measures designs are not readily handled in standard logistic regression. I
consider two approaches to analyzing such designs: conditional logistic regression, in which a Rasch model is assumed
for the data, and generalized linear mixed-effect analysis, in which quasi-maximum likelihood techniques are used to
estimate model parameters. Monte Carlo simulations demonstrate that the latter is superior when effect size varies over
subjects.
� 2007 Elsevier Inc. All rights reserved.
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Introduction

In research on language and many other areas in
psychology, accuracy is often analyzed using analysis
of variance techniques in which the data are assumed
to be normally distributed. For example, in volume
26 of Journal of Memory and Language, 29 of 31 arti-
cles reported accuracy or similar categorical data. Of
these, 23 or 79% used analysis of variance on untrans-
formed response proportions. However, accuracy data
are discrete rather than continuous, and proportion
correct are constrained to the range 0–1. This can lead
to averaging artifacts and distortions in the means,
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standard errors, and other statistics. An alternative is
to analyze accuracy using logistic regression. In this
technique, the log odds (or logit) of being correct is
modeled as a linear function of the factors in the
design. In effect, accuracy is rescaled in terms of a logit
‘‘response-strength’’ measure. In logistic regression, it is
assumed that the underlying data are binomial, and
because the logit scale is unbounded, it is not suscepti-
ble to the same scaling artifacts as proportion correct.
However, special considerations apply to the use of
logistic regression in repeated-measures designs. In the
present paper, I first summarize some of the difficulties
in using the normal model for analyzing accuracy and
provide several arguments for using logistic regression
instead. Possible distortions that arise from using the
normal model are illustrated using Monte Carlo simula-
tions. I then describe two ways of approaching
ed.
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repeated-measures designs: conditional logistic regres-
sion and generalized linear mixed-effects models. Monte
Carlo simulations suggest that the latter approach is
superior when the magnitude of the effects of interest
varies over subjects.

Problems with the normal model of accuracy

It is readily apparent that accuracy data do not con-
form to the assumptions of the analysis of variance and
related techniques (i.e., the ‘‘normal model’’). To begin
with, the response on each trial is dichotomous rather
being continuous. Commonly, this is addressed by con-
struing the data as the proportion correct in each condi-
tion. In some settings, though, there may be relatively
few observations in each condition, and proportion cor-
rect will not come close to approximating a continuous
distribution. Moreover, it is still the case that perfor-
mance is constrained to be the range of 0–1. This leads
to ceiling (or floor) effects when performance is very
good (or very poor). Because of the constrained range,
the variance across conditions will not be equal and
instead will vary systematically with overall perfor-
mance. For example, if observations in each condition
are binomial, the variance in a condition with an accu-
racy rate of .80 will be proportional to (.80)(.20) = .16,
while that in a condition with an accuracy of .60 will
be proportional to (.60)(.40) = .24, an increase of 50%.
This heteroscedasticity becomes even more pronounced
as the accuracy level increases.

Because the normal model does not take into account
the constrained range of proportions, one can sometimes
derive statistical estimates that are nonsensical. For
example, it is quite possible to find confidence interval
limits that are larger than 1 (or smaller than 0). More
generally, the conditions that make the least-squares
solutions to linear models optimal under assumptions
of normality do not apply to proportions. For example,
the theoretical sampling distributions of estimates will
not correspond to the actual distributions, and standard
errors of estimates derived from the normal model will
be incorrect. Averaging artifacts can also arise when
the number of observations varies across conditions or
subjects. In Simpson’s paradox (Simpson, 1951), for
example, the pattern of overall means may not reflect
the pattern observed in individual conditions or with
individual subjects. All of these issues suggest that accu-
racy would be better analyzed using tools that more clo-
sely match the nature of the data.

Logistic regression as an alternative

Many textbooks recommend logistic regression for
dichotomous data with properties such as those of accu-
racy (e.g., Allison, 1999; Everitt, 2001). In logistic
regression, the logit or log odds of being correct are
assumed to be a linear function of the variables in the
design:

ln
PðCÞ

1� P ðCÞ

� �
¼ logitðP ðCÞÞ ¼ aþ b1x1 þ b2x2 þ � � �

where the xi are, for example, dummy variables coding
the main effects and interactions in a factorial design.
There is no closed form for estimating the regression
coefficients, and these are instead estimated using incre-
mental search procedures that maximize the likelihood
of the data. Logistic regression is described as appro-
priate for the analysis of dichotomous data when there
are two possible responses and several continuous or
categorical predictors, and McCullagh (1980) suggests
that logistic regression models are appropriate when
the categorical responses can be construed as contigu-
ous intervals on a continuous scale. It solves the prob-
lems of constrained range and heteroscedasticity
described above, and it is immune to Simpson’s para-
dox and related averaging artifacts. It is more mathe-
matically tractable than some other alternatives and
provides parameter estimates that are readily
interpreted.

In addition to these convenience arguments favoring
the use of logistic regression, one can also make fairly
general theoretical arguments for the suitability of the
approach for accuracy. One such argument is based on
Luce (1963) choice theory (cf. McClelland, 1991).

Here, it is assumed that the correct and incorrect
responses are associated with response strengths, sC

and sE, and that the probability of selecting the correct
response is given by the ratio of the correct response
strength to the sum of the response strengths:

P ðCÞ ¼ sC

sC þ sE

Further, under some circumstances it may make sense to
assume that processing variables have multiplicative ef-
fects on response strength (e.g., Luce, 1959; Townsend,
1971). Thus, one could write:

sC ¼
Y

i

wC;i

where the w values indicate the various processes that af-
fect response strength. With some rearrangement, the lo-
git can then be written as:

logitðP ðCÞÞ ¼ ln
sC

sE

� �
¼
X

i

w0i

where w0i ¼ lnðwC;i=wE;iÞ. Thus, the logit is a linear func-
tion of the processing components that determine the
relative response strength. Logistic regression provides
a tool for understanding these contributions. For exam-
ple, experimental factors that affect components selec-
tively will thus have additive effects in a logistic
regression equation.
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One may also make a related argument based on an
analogy with signal detection theory. In this case, one
might assume a distribution of response strengths for
the correct response and the incorrect response. Each
trial would then in effect be a two-alternative forced
choice between the correct and the incorrect response,
with subjects selecting the response with more potent
strength. If the underlying strength distributions are
normal, the probability of a correct response is:

P ðCÞ ¼ P ðX C > X EÞ ¼ F
lC � lEffiffiffi

2
p

r

� �

where F is the cumulative standard normal distribution.
A z-score corresponding to the probability correct thus
provides an index of the separation of the two strength
distributions. Given these assumptions, it would be
appropriate to use probit regression to analyze the effects
of experimental factors on this separation. Probit regres-
sion is similar to logistic regression except that the inverse
cumulative normal, or probit, function replaces the logit
function. Thus, the probit of the probability of correct is
assumed to be a linear function of the predictor variables.
However, the logistic and normal distributions have a
very similar shape and differ significantly only in the tails.
Consequently, logistic regression can be used to provide
an (approximate) insight into the variables that deter-
mine relative response strength here as well.

There are also circumstances in which the logit trans-
formation is closely related to substantive theories in a
given domain. For example, Dixon and Twilley (1999)
proposed a model of meaning resolution with ambigu-
ous words in which meaning activation was a logistic
function of perceptual and contextual input. Conse-
quently, in this theory, logistic regression provides a
suitable, theoretically guided analysis of meaning selec-
tion data (e.g., Twilley & Dixon, 2000). Similarly, McC-
lelland (1991) described a related neural network model
of speech perception in which the logistic was used as the
activation function for individual units. Although his
analysis was used to make somewhat different points,
it does raise the possibility of applying logistic regression
in that context as well.
Detecting interactions

In this section, I illustrate one of the problems in
using the normal model in complex designs: distortions
in the pattern of means. Because the accuracy scale is
bounded, the pattern of means may not provide an
informative reflection of the underlying processes if the
levels of accuracy approach those bounds. In particular,
as the level of accuracy increases, effects that are in prin-
ciple additive may appear to exhibit an underadditive
interaction, while data that derive from an overadditive
interaction may appear to be additive.
Artifactual evidence for interactions

These distortions are illustrated with Monte Carlo
simulations. A 2 · 2 design with 100 independent obser-
vations in each cell was simulated. Using a logistic
regression model to generate the data, the probability
of a correct response for factor levels Ai and Bj was:

pij ¼ logit�1ðlþ ai þ bj þ cijÞ

For all of the simulations, l was set at 1.5; thus, in the
absence of any effects, accuracy would be .818. In the
first set of simulations, I was interested in evaluating
the tendency for a normal model to provide evidence
for an interaction where none exists. Consequently, c
was set to 0, and I considered a range of main effect
magnitudes, m, from .2 to .8. In each case,
a1 = b1 = m and a2 = b2 = �m. To quantify the evi-
dence for the interaction, I used the Akaike Information
Criterion (AIC; Akaike, 1973). The AIC value provides
a succinct description of the fit of a model relative to the
number of degrees of freedom. Thus, it provides an in-
dex of the model’s parsimony. For each set of simulated
data, I computed the difference in the AIC value for a
model with only main effects and a model that included
an interaction. In this simple situation, the difference in
AIC values is closely related to the obtained p value used
in null hypothesis significance testing, and circumstances
that lead to rejecting the null hypothesis would corre-
spond to an AIC difference of about 2.

Programs that fit logistic regression models are
widely available. In the present simulations, I used a
generalized linear model approach to estimate the logis-
tic regression parameters. In this technique, one identi-
fies a link function that maps the parameters of any
distribution in the exponential family to the parameters
of the normal distribution. Iterative methods are then
used to estimate the parameter values that maximize
the likelihood of the data. The binomial distribution
that forms the basis of logistic regression is a member
of the exponential family, and as a consequence, logistic
regression can be performed by using the logit function
as the link function. It is worth noting that accuracy or
similar data can be handled in a variety of ways in the
context of generalized linear models. For example, if
the identity is used as the link function, the approach
provides another means of estimating the parameters
of the normal model; if the probit function is used as
the link function, the approach provides the fit of a pro-
bit regression model. However, the goal here was simply
to use generalized linear models as a means to perform
logistic regression; comparable results would be
obtained with any of a wide range of other logistic
regression tools.

In detail, the simulated data were fit with the R sta-
tistical language (R Development Core Team, 2006)
using the generalized linear modeling program, glm. In



Fig. 1. Evidence provided for an interaction by normal and
logistic regression models of additive data as a function of main
effect size. Points indicate the median difference between AIC
values for additive and interactive models in 100 Monte Carlo
simulations, and the error bars indicate the interquartile range.
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glm and other R model-fitting programs, models are
specified with a ‘‘formula’’ that describes the indepen-
dent and dependent variables. For example, to fit a
model in which the factors A and B are additive, one
would use the command:

glmðObs � Aþ B; family ¼ binomialÞ

where Obs, A, and B are R vectors that hold the (binary)
observations and the predictor variables for the A and B
factors, and ‘‘family = binomial’’ indicates that the data
are binomial and that the logistic link function should be
used. To fit a model that includes the interaction, one
would add the interaction to the formula, as in:

glmðObs � Aþ BþA : B; family ¼ binomialÞ

where the notation ‘‘A:B’’ indicates the interaction of
the two factors. To assess the evidence for the interac-
tion, one would compare the two model fits. In R, the
results of two fits can be saved using the assignment
operator, ‘‘‹’’, and the AIC values can be subsequently
extracted using the function ‘‘AIC’’:

additiveFit glmðObs�AþB; family¼binomialÞ
interactiveFit glmðObs�AþBþA : B; family¼ binomialÞ
interactionEvidence AICðadditiveFitÞ�AICðinteractiveFitÞ

More detailed information about using the R language
can be found in a variety of textbooks (e.g., Dalgaard,
2002; Everitt & Hothorn, 2006) and in sources listed
on the R website (www.r-project.org).

The median AIC value and the interquartile range for
the simulations is shown in Fig. 1. As can be seen, the
normal model provides increasingly stronger evidence
for the interaction as the magnitude of the main effects
increases. This is because of ceiling effects that occur
when the spread in the data is increased, which in turn
produces an apparent underadditive interaction. No
such effect is found with the logistic model since it
matches the model used to produce the simulated data.
Indeed, for the logistic model the difference in AIC val-
ues are negative, providing evidence for the (correct)
additive interpretation.

Weak evidence for real interactions

Related to the tendency to produce evidence for an
interaction where none exists is the tendency to obscure
evidence for a real interaction. In particular, if the inter-
action is overadditive, the pattern of means will be dis-
torted as observations approach the ceiling, and an
analysis based on the normal model may suggest an
additive interpretation. To demonstrate this tendency,
m was fixed at .5, and an overadditive interaction of var-
ious magnitudes was added. In particular, c11 = c22 = u,
c12 = c21 = �u, and u varied from .1 to .4. As before, 100
simulations were run at each value. In Fig. 2, the results
are depicted in terms of the median and interquartile
range of the difference in AIC values for the additive
and interaction models. While the logistic model usually
provided evidence for an interaction even with a magni-
tude of .3, the normal model failed to do so even with
larger interactions. The culprit in these cases is that
the normal model fails to account for the limited range
of the accuracy data, and as consequence was more
likely to suggest an additive interpretation when the
overadditive interaction was constrained by the upper
limit.

Discussion

The simulation results demonstrate that at least
under some circumstances, evidence for an interaction
is distorted by the normal model. As performance
approaches the upper bound, the effects of any given
variable become smaller when compared to those effects
when performance is more moderate. As a consequence,
an artifactual underadditive interaction may be appar-
ent. Similarly, an underlying overadditive interaction
may display a pattern of means that seems additive

http://www.r-project.org


Fig. 2. Evidence provided for an interaction by normal and
logistic regression models as a function of interaction magni-
tude. Points indicate the median difference between AIC values
for additive and interactive models in 100 Monte Carlo
simulations, and the error bars indicate the interquartile range.
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because the highest levels of performance are con-
strained by the upper bound. Logistic regression elimi-
nates these issues because, in effect, the data are
recoded in terms of a response-strength measure that
has no such constraints.

Of course, these scaling artifacts are well known, and
a variety of techniques can be used to guard against
them. For example, one may design experiments so that
the accuracy does not approach the extremes and stays
within a range of .25–.75 or so. This can be done by pilot
testing materials and manipulations, and/or discarding
subjects with performance outside of that range. How-
ever, this approach can be time consuming (because
manipulations have to be carefully designed and tested)
and inefficient (because data must be discarded). More-
over, this approach may not be feasible in some situa-
tions because the range of performance is determined
by other considerations. For example, one may wish to
analyze accuracy in a speeded choice task in which
response time is the main dependent variable. Such tasks
generally have to be designed so that accuracy is very
high in order to make the response time analyses
meaningful.
Another approach is to transform the accuracy data
using an arcsine transformation to increase normality
(e.g., Cohen & Cohen, 1983). While this reduces the ten-
dency to provide artifactual evidence for interactions, it
does not eliminate it. For example, in the simulations
with main effects of .8 (i.e., the rightmost point in
Fig. 1), the magnitude of apparent underadditive interac-
tion was 42% of the size of the main effects. Applying an
arcsine transformation to the means reduces this value to
about 23%, but misleading interpretations would still be
possible. Moreover, transformations of this general sort
have other drawbacks. For example, unlike logits (or
even proportion correct) the transformed means do not
necessarily have a simple interpretation in terms of the
underlying mechanisms. Moreover, because the choice
of transformation is ad hoc, it may be difficult to defend
that choice if it has a large effect on the pattern of means.
Logistic regression is less susceptible to these concerns
because it can be viewed as a theoretically justified trans-
formation of proportion correct into a type of response-
strength measure.

The present demonstrations used simulated data for
which the logistic model was correct. Of course, it is pos-
sible to generate data using other models, and in these
cases, logistic regression would not necessarily perform
as well. In any given experimental context, there may
be compelling theoretical reasons for assuming a model
other than the logistic for the data. For example, multi-
nomial modeling of various forms can be used when
there are strong hypotheses concerning the component
processes that determine performance and how they
are combined (e.g., Batchelder & Riefer, 1999). Logistic
regression would generally not provide precise informa-
tion about those component processes. However, the
normal model would be at least as inappropriate as an
analysis tool in such situations. In the absence of strong
claims about the determinants of accuracy, I argue that
there are defensible theoretical analyses that would lead
to the use of the logistic model in a wide range of cir-
cumstances. Thus, as a default assumption in the
absence of more theoretically guided choices, the logistic
model is superior to the normal model.

Distortion effects analogous to those illustrated here
can arise even if condition means do not approach ceil-
ing performance. For example, rather than independent
observations in each condition, a design might include
some number of observations from each of several sub-
jects. In such a design, the performance of some subjects
may be very high (or very low) and as a consequence,
would be susceptible to the kinds of distortions investi-
gated in Figs. 1 and 2. Thus, when averaged across sub-
jects, the same distorted pattern might be apparent, even
though the overall accuracy in a condition may be mod-
erate. Techniques related to those described below
would provide an approach that would be immune to
these sorts of artifacts.
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Repeated measures

Although logistic regression provides a reasonable
approach to the analysis of accuracy data, it cannot be
readily applied to data from repeated-measures designs.
In particular, in standard logistic regression it is
assumed that all of the observations in the design are
independent. In repeated-measures designs, this assump-
tion is violated because the performance of a given sub-
ject in one condition is typically correlated with that
subject’s performance in other conditions. Here, I con-
sider two strategies for addressing this issue. In one, I
use conditional logistic regression, inspired by the treat-
ment of random person effects in item-response theory
and Rasch models. In the second, I use generalized lin-
ear mixed-effects models. In this case, generalized linear
models are extended to include an explicit specification
of the random effects, and maximum likelihood methods
are then used to estimate both the fixed and random
effects.

Conditional logistic model

The Rasch model (1960/1980) is a development in
item-response theory that provides a straightforward
approach to analyzing random subject variation. As
originally conceived, it provides a description of how
different people perform with different items on (e.g.)
an ability test. In particular, the probability of person i

responding correctly to item j is assumed to be an
inverse logistic function of a person parameter and an
item difficulty parameter: P(C) = logit�1(hi � bj). To
apply this development in the present context, one can
construe the item parameter as a linear function of the
experimental factors: P(C) = logit�1 (hi � (l + aj +
bk + � � �)). In that case, the Rasch model is identical to
the logistic regression model but with the addition of a
random subject term. Fischer and Molenaar (1995) dis-
cuss a variety of techniques for estimating the item and
person parameters, including conditionalizing on the
obtained performance of the subjects. A number of sta-
tistical packages perform the relevant conditional logis-
tic regression; one example is the clogit program in the
survival package in R (R Development Core Team,
2006). However, in many cases, a close approximation
can obtained by using standard, unconditional logistic
regression (with subjects included as a fixed effect) and
then adjusting the parameter estimates by the factor
(n � 1)/n, where n is the number of observations per sub-
ject (Fischer & Molenaar, 1995). The critical assumption
in using conditional logistic regression model is that the
random effect of subjects is limited to an overall varia-
tion in performance and does not interact with the
effects of interest. Thus, after conditionalizing on the
(random) contribution of subjects, each of the observa-
tions can be assumed to be independent, and the inter-
pretation of the logistic regression parameters can
proceed as before.

There is a close parallel between this approach and
the sphericity assumption in traditional repeated-mea-
sures analysis of variance. If the sphericity assumption
is correct, one may model the data from a single-factor
design as:

X ij ¼ lþ ai þ Sj þ eij

where Sj is the random contribution of subject j and e is
the independent error. Observations from such a model
are not all independent because the presence of the Sj

term introduces a correlation between pairs of observa-
tions from the same subject. However, just as in the Ras-
ch model, conditionalizing on the overall performance
of subjects eliminates this correlation and leads to a
set of independent observations. The sphericity assump-
tion is reasonably accurate in many experimental set-
tings, and, by extension, one might conjecture that
applying the Rasch model to accuracy data would be
similarly appropriate in many cases. Of course, there
are also situations in which the sphericity assumption
is clearly incorrect, and I consider the implications of
comparable violations for the conditional logistic regres-
sion below.

Generalized linear mixed-effects models

Although the conditional logistic model incorpo-
rates the assumption that subjects are randomly sam-
pled, the approach fails to address situations in which
the magnitude of an effect varies over subjects. This
shortcoming can be addressed by using mixed-effects,
or multi-level, models. In a mixed-effects model, one
specifies not only the fixed effects, but also effects that
vary randomly. In a repeated-measures design, the level
of performance for subjects varies randomly, and
potentially the magnitude of the effects of interest
may vary across subjects as well. The magnitude of
both of these sources of variation would be estimated.
Mixed-effects models can be used in the context of gen-
eralized linear models, allowing one to fit logistic
regression models with random effects. I use the term
‘‘linear mixed-effects models’’ to refer to this approach
in the present context.

Random subject effects

In this section, I compare the two approaches to
logistic regression in repeated-measures designs. In the
first set of simulations, I evaluate how they are affected
by subject variability and compare their performance
to that of the normal model. The simulated data con-
sisted of 12 subjects, each of which made 50 responses
in each of two conditions. The probability of a correct
response was given by:



Fig. 3. Bias in the estimate of the effect size as a function of the
variability in subjects’ performance. Error bars depict the
standard deviation in 100 Monte Carlo simulations.
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pij ¼ logit�1ðlþ ai þ Sj þ AijÞ

where S and A are, respectively, the random overall ef-
fect of subjects and the random variation in the effect
magnitude over subjects. The random effects were nor-
mally distributed with zero mean and standard devia-
tions rS and rA, respectively. The linear mixed-effects
model was fit using the program lmer in the R package
Ime4 (Bates & Sarkar, 2006) using the default penalized
quasi-likelihood method for estimating the parameters.

In using the lmer program in R, one specifies a model
for the data using a formula much like that for glm.
However, the formula must also include a specification
of the random effects. For example, if one assumed that
subjects varied randomly in their overall performance
but that the effect of the factor of interest was constant,
one would use the following:

lmerðObs � Aþ ð1jSÞ; family ¼ binomialÞ

The term ‘‘(1|S)’’ indicates that there is a random con-
stant term that should be estimated given each value
of S. These terms are constrained to sum to zero and
in effect are estimates of the Sj terms in the model spec-
ified above. If one assumed that the magnitude of factor
A could also vary randomly across subjects, the model
would be fit as:

lmerðObs � Aþ ð1þAjSÞ; family ¼ binomialÞ

This adds an additional term (the random variation in A)
for each subject, which again are constrained to sum to
zero. Importantly, the choice of random effects structure
need not be done a priori, and one could select one or the
other based on how well they account for the data. Baa-
yen (in press), for example, provides further details con-
cerning the use of lmer for repeated-measures designs.

For the first set of simulations, I was interested in the
effect of variability in overall performance across sub-
jects. In this case, l was set to zero, a1 = �a2 = 1, and
rA was assumed to be 0 (i.e., A was identically zero).
Two indices of the behavior of the model were assessed:
bias in the estimate of the effect and bias in the estimated
standard error. The first reflects how accurate the model
estimation procedures are, and the second whether the
estimation procedures provide an accurate measure of
the variability. To compute bias in the estimate, 100 sim-
ulations were performed, and a ratio was formed
between the mean estimate and the actual value used
to generate the data. To compute bias in the estimated
standard error, the mean (across the 100 simulations)
of the standard error provided by the model fitting pro-
cedure was compared to the actual standard deviation of
those estimates in the sample. The estimates and stan-
dard errors produced by conditional logistic regression
and linear mixed-effects are in logits. To provide a fair
comparison, the estimates and standard errors for the
normal model were converted to logits as well.
Figs. 3 and 4 depict the simulation results for values
of rS ranging from .0 to 2.0. The results demonstrate
that both conditional logistic regression and linear
mixed-effects analysis provide an improvement over
the normal model. As subject variability increases, the
normal model tends to underestimate the magnitude of
the effect. This is because with increasing variability,
the likelihood that some subjects run up against the ceil-
ing or floor increases, and the effect size for those sub-
jects will be smaller because of the constrained range.
The normal model fails to account for this scaling arti-
fact, and as a consequence the estimate of the effect
(averaged across subjects) will also be smaller. For the
same reason, the normal model overestimates the stan-
dard error of the estimate: for the normal model, the
effect size will vary not only because of the inherent var-
iability in the data, but also because of the scaling arti-
facts that vary with subjects’ overall performance.
These results suggest that the normal model will lack
power unless the variability in subjects’ performance is
small. Neither of the two alternative models are affected
in this way because the data of subjects high or low in
overall accuracy are rescaled appropriately in terms of
logits. However, the conditional logistic seems to pro-
vide somewhat more precise measures of the effect when



Fig. 4. Bias in the estimate of the effect size standard error as a
function of the variability in subjects’ performance. Error bars
depict the standard deviation in 100 Monte Carlo simulations.

Fig. 5. Bias in the estimate of the effect size as a function of the
variability in effect size over subjects. Error bars depict the
standard deviation in 100 Monte Carlo simulations.
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variability is high: with rS = 2.0, the (actual) standard
error of the estimate was .08 for conditional logistic
regression compared to .11 for the linear mixed-effects
model.

Random subject interactions

The most serious test of the conditional logistic
model is the assessment of its behavior when the
assumption of no random variation in effect size is
relaxed. To evaluate the models under such circum-
stances, rS was fixed at 1.0, and rA was varied from .0
to 2.0. The results for bias in the estimate of effect size
is shown in Fig. 5. Both conditional logistic regression
and the normal model tend to underestimate the effect
size in the face of large variations in effect size. The
behavior of the linear mixed-effects model also becomes
more variable, but there is less evidence of bias.

Bias in the standard error of the estimate is shown in
Fig. 6. In this case, the conditional logistic model dras-
tically underestimates the standard error of the estimate
as the effect size becomes more variable. This is an intu-
itive result: As the magnitude of the subject · effect
interaction increases, the size of the effect in any given
sample becomes more variable, and as a consequence,
the estimate of the population effect size becomes less
stable. However, there is no subject · effect term in the
conditional logistic model, and consequently, there is
no means for incorporating this source of variability
into its estimates. Thus, with increasing values of rA,
the estimated standard error remains the same even
though the actual variability of the estimate increases
substantially. Although the magnitude of the estimate
becomes somewhat smaller (as shown in Fig. 5), this
does not compensate for the large underestimation of
the standard error. It is clear that conditional logistic
regression is not an appropriate approach when the
effect can be assumed to vary across subjects.

Generalized estimating equations (GEEs) provide
another approach to fitting models with random effects
(Liang & Zeger, 1986). In the GEE approach, one
directly estimates the marginal means, averaged over
subjects, without considering the likelihood of the origi-
nal scores. One advantage of the approach is that one
need not specify the structure of the random effects,
and only minimal assumptions are needed to produce
consistent parameter estimates. In the simple situation
used in the simulations presented here, the GEE
approach performs similarly to the linear mixed-effects
approach. However, GEEs have some disadvantages.



Fig. 6. Bias in the estimate of the effect size standard error as a
function of the variability in effect size over subjects. Error bars
depict the standard deviation in 100 Monte Carlo simulations.
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Because they are not based on the likelihood of the data,
one cannot derive measures of model parsimony such as
the AIC. This means that it may be difficult to compare
different models, particularly if those models are not
nested. Because they are based on the marginal means,
GEE model fits are also susceptible to averaging arti-
facts such as Simpson’s paradox when the data are
unbalanced. Lindsey and Lambert (1998) argue that
the apparently minimal assumptions in the approach
hides important constraints on the form of the underly-
ing probability model. Thus, GEEs may not form a gen-
eral solution to the analysis of accuracy or similar data.
General discussion

In this paper, I have argued that using the normal
model to analyze accuracy data (or similar dichotomous
data) is inappropriate. Many authors have noted a vari-
ety of defects in this approach (e.g., Allison, 1999; Eve-
ritt, 2001). Here, I illustrated how the normal model can
distort the pattern of means, so that (for example) evi-
dence for additive and interactive effects may be artifac-
tual. I argued that logistic regression provides an
effective alternative to the use of the normal model.
Logistic regression can be defended on ad hoc grounds
since it provides an appropriate analysis of dichotomous
data. Moreover, a plausible theoretical argument can be
made that logistic regression represents the data in terms
of a more meaningful response-strength measure.

One difficulty with using logistic regression in many
contexts is that standard logistic regression cannot be
applied to repeated-measures designs. I described two
solutions to this problem: applying the Rasch model
commonly used in item-response theory (resulting in a
conditional logistic model), and using a (generalized) lin-
ear mixed-effects model. In the simulations reported
here, both provide reasonable results when the effect size
can be assumed to be constant across subjects, and the
conditional logistic model may have a small advantage
in precision under some circumstances. If the effects of
interest interact with subjects, though, conditional logis-
tic regression can severely underestimate the standard
error of the estimate. Under such circumstances, the lin-
ear mixed-effects approach is preferred.

Using logistic regression in the analysis of real-world
designs requires a distinct analysis strategy from that
commonly used in analysis of variance. Generally, the
estimates of the different effects and interactions in which
one might be interested are not independent, and they will
typically vary depending on what other variables are
included in the analysis. For example, in an additive,
two-factor model, the estimates for the main effects
would be different than they would be in the fit of a model
that included the interaction. Thus, one cannot simply fit
a ‘‘full’’ model that includes all possible effects and inter-
actions and expect that the estimates for any given subset
of effects will be appropriate. Because a full model usually
includes a number of variables that have negligible
effects, the results are overfitted, and, as a consequence,
estimates of even important effects may be distorted. This
is not the case in the normal model with a balanced design
because the estimates of the effects are all independent of
one another. Thus, an appropriate strategy with logistic
regression models is to proceed incrementally by adding
effects one at a time until the most parsimonious fit is
obtained. In this sense, using logistic regression is more
akin to the techniques and methods of inference used in
hierarchical linear regression.

I have framed the issues here in terms of accuracy
since accuracy is likely the single most common form
of dichotomous variable encountered by experimental
psychologists. However, my comments apply to a range
of other comparable variables, such as preference or
choice responses, strategy selection, and other categori-
cally coded behaviors. In many of these situations, it
would be inappropriate to use the normal model as an
analysis technique, and logistic regression provides a
useful alternative. Because logistic regression tools are
readily available, there would seem to be no compelling
reason for the use of the normal model for accuracy or
similar data.
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Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.jml.2007.11.004.
References

Akaike, H. (1973). Information theory and an extension of the
maximum likelihood principle. In B. N. Petrov & F. Csaki
(Eds.), Second international symposium on information the-

ory. Budapest: Academiai Kiado.
Allison, P. D. (1999). Logisitic regression using the SAS system:

Theory and application. Cary, NC: SAS Institute, Inc..
Baayen, R. H. (in press). Analyzing linguistic data: A practical

introduction to statistics using R. Cambridge, UK: Cam-
bridge University.

Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and
empirical review of multinomial process tree modeling.
Psychonomic Bulletin & Review, 6, 57–86.

Bates, D., & Sarkar, D. (2006). lme4: Linear mixed-effects

models using S4 classes. R package version 0.9975-6.
Cohen, J., & Cohen, P. (1983). Applied multiple regression/

correlation analysis for the behavioral sciences (2nd ed.).
Hillsdale, NJ: Erlbaum.

Dalgaard, P. (2002). Introductory statistics with R. New York:
Springer.

Dixon, P., & Twilley, L. C. (1999). Context and homograph
meaning resolution. Canadian Journal of Experimental

Psychology, 53, 335–346.
Everitt, B. S. (2001). Statistics for psychologists: An intermediate

course. Hillsdale, NJ: Erlbaum.
Everitt, B. S., & Hothorn, T. (2006). A handbook of statistical

analyses using R. Boca Raton, FL: Chapman & Hall.
Fischer, G. H., & Molenaar, I. W. (1995). Rasch models:

Foundations, recent developments, and applications. New
York: Springer-Verlag.

Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis
using generalized linear models. Biometrika, 73, 13–22.

Lindsey, J. K., & Lambert, P. (1998). On the appropriateness of
marginal models for repeated measurements in clinical
trials. Statistics in medicine, 17, 447–469.

Luce, R. D. (1959). Individual choice behavior. New York:
Wiley.

Luce, R. D. (1963). Detection and recognition. In R. D. Luce,
R. R. Bush, & E. Galanter (Eds.). Handbook of mathemat-

ical psychology (Vol. I). New York: Wiley.
McCullagh, P. (1980). Regression models for ordinal data.

Journal of the Royal Statistical Society, Series B, 42, 109–142.
McClelland, J. L. (1991). Stochastic interactive processes and

the effect of context on perception. Cognitive Psychology,

23, 1–44.
R Development Core Team (2006). R: A language and

environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. Available from
http://www.R-project.org.

Rasch, G. (1980). Probabilistic models for some intelligence and

attainment tests (Expanded edition). Copenhagen: Danish
Institute of Educational Research, Chicago: University of
Chicago Press (Original work published 1960).

Simpson, E. H. (1951). The interpretation of interaction in
contingency tables. Journal of the Royal Statistical Society,

Series B, 13, 238–241.
Townsend, J. J. (1971). Theoretical analysis of an alphabetic

confusion matrix. Perception & Psychophysics, 9, 40–50.
Twilley, L. C., & Dixon, P. (2000). Meaning resolution

processes for words: A parallel independent model. Psycho-

nomic Bulletin & Review, 7, 49–82.

http://dx.doi.org/10.1016/j.jml.2007.11.004
http://www.R-project.org

	Models of accuracy in repeated-measures designs
	Introduction
	Problems with the normal model of accuracy
	Logistic regression as an alternative

	Detecting interactions
	Artifactual evidence for interactions
	Weak evidence for real interactions
	Discussion

	Repeated measures
	Conditional logistic model
	Generalized linear mixed-effects models
	Random subject effects
	Random subject interactions

	General discussion
	Supplementary data
	References


