Chapter 5 Brief Text Outline


Chapter 5

Theories and Research on Classical Conditioning

Compound Stimuli

Overshadowing

Blocking

 

 

 

Sensory Preconditioning

 

 

Rescorla-Wagner Model of Conditioning

Three Factors in Model

Rescorla-Wagner Equation

DVi = Si(Vmax — Vi — Vsum)

DVi: change in associative strength for CS on one trial

Si: represents salience of CS; a constant (0.0-1.0)

Vmax: maximum associative strength (magnitude of UR)

Vi: associative strength already accrued by CS1

Vsum: associative strength already accrued by other stimuli

 

Acquisition Phase

DVi = Si(Vmax - Vi - Vsum)

DV1 = 0.25(10.0 - 0.0 - 0.0)

= 2.5

Acquisition Phase

(Figures 1 and 2)

Blocking

DVi = 0.25(10.0 - 9.0 - Vsum)

Extinction

DVi = Si (Vmax - Vi - Vsum)

= 0.25(0.0 - 10.0 - 0.0)

= -2.5

Extinction

(Figure 3)

Conditioned Inhibition

Vtone = 100.0, Vlight = 0.0, Si = 0.2, Vmax = 0.0

Vsum = Vtone + Vlight

DVi = Si(Vmax - Vsum)

(Figures 4 and 5)

 

Overexpectation Effect

(Figure 6)

CS Preexposure Effect

 

 

 

CS Preexposure Effect

Vi = 0, Vmax = 0

 

Text Version of Rescorla-Wagner Equation

DVi = Si(Aj - Vsum)

DVi = Si(Vmax - Vi - Vsum)

Biological Constraints in Classical Conditioning

Taste-aversion

 

Explanations?

 

Equipotentiality Premise

 

Biological Preparedness in
Taste-Aversion

(Figure 7)

Explanation

Form of Conditioned Response: Drug Tolerance

 

 

Contextual Stimuli Theory

 

 

 

 

 

Stimulus Substitution Revisited

Conditioned Opponent Theories

Other Conditioned Opponent Theories

 

 

Classical Conditioning: Aplysia

Classical Conditioning: Higher Animals

 

 


Back to Notes Page

URL: www.psych.ualberta.ca/~msnyder/p281/notes/out04.html
Page created: 11 Feb. 2003 --- Last modified: 11 Feb. 2003