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Memories of Travel: Dead Reckoning Within The Cognitive Map

When Herman Melville reveals the dark obsessions of Captain Ahab’s soul, he

does so by having Ahab destroy the ship’s quadrant and revert to a more elemental form

of navigation:

“…Curse thee, thou quadrant!” dashing it to the deck, “no longer

will I guide my earthly way by thee; the level ship's compass, and

the level dead-reckoning, by log and by line; these shall conduct

me, and show me my place on the sea. Aye”

Whatever the allegorical content, the practical consequences of abandoning celestial

navigation were immediately apparent to Ahab’s doomed crew, who were later to rue his

folly and, in the person of Starbuck, ask: “…gropes he not by mere dead reckoning of the

error-abounding log?”

Navigation without fixed references and landmarks has been especially

 intriguing to comparative and cognitive psychologists. The former have tended,

 like Ahab, to emphasize its simple sufficiency, while the latter, as Starbuck did,

 worry about its proneness to error. Our everyday experience would seem to favor the

active processing of landmarks and reference points. Certainly, our visual facility with

objects in spatial frames contrasts sharply with the unease that we feel when we try to

traverse a room in the dark. Yet there are compelling examples of species who have

somehow managed to beat the odds of the “error-abounding log” and who rely upon

navigation systems that apparently mirror the computational steps of the mariner’s dead
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reckoning. It is apparent that there exist many different systems for navigation both

within and across species that may be related to the geometry and ecology of the animal’s

navigational requirements (Dyer, 1998). In this chapter, we examine the relevance of

these systems for human way finding and their implications for the processing of

memories of travel.

Definition of the Problem

There are many types of tasks and problems that require spatial information

processing, such as the recall of spatial locations, route-planning, and rotation of frames

of reference. Our particular concerns in this chapter are those modes of spatial processing

that allow an organism to move from a current location to a target or goal. Dyer (1998)

has suggested that navigational systems in species are tightly bound to the geometry of

the goal. There are, for example, some animals for which the goal may be a shoreline, as

in the case of sea turtles that hatch on land but which must reach the ocean before they

are captured by predators. Navigation in this case is directed towards a linear feature

extended across a two-dimensional surface. There are other cases of navigation in which

the space within which navigation occurs is likewise two-dimensional, but the goal is

punctate. This latter case differs from the first in that the system must be sufficiently

robust to error that the navigator can get within the immediate vicinity of the goal. The

cone of headings that will accomplish this task is often quite narrow. For the linear

feature geometry, the amount of error that can be tolerated is much larger, since any

bearing that is half-plane bounded by the feature will work.
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Our emphasis will be on navigational systems that allow an organism to move to

or predict the location of a point on a two-dimensional surface. Defined in this way,

navigation tasks differ in the way spatial information is made available to the organism.

There are generally two elements common to most navigation tasks. First, the organism

must perceive a fixed environmental feature. This may be its current location (for

example, when a configuration of landmarks is recognized) or it may be the goal itself

(for example, when a distant food source produces an odor plume). Establishing the

location of a fixed referent point calibrates the organism’s representation of its current

position; it may also establish the nodes of an organism’s cognitive map (Biegler, 2000).

That is, for some animals, distinct neural systems represent episodic memories of places

within a spatial framework (O’Keefe & Nadel, 1978). Second, the organism is moved to

the current location, either under its own power or otherwise, and thereby received

information relevant to computing its current displacement. This second process is

dynamic and requires that the organism update its current representation of position.

There is an analogy with the way shipboard navigators update positional references on a

chart on occasions when movement information is logged. However, the mariner’s

plotting is intermittent and the last estimate of position is represented as the endpoint of a

configuration of paths. In contrast, some animals use feedback from motion to calculate

position continuously; the history of movements may not be preserved when position is

always up-to-date.

In some navigation tasks plotting and calibration are tightly coupled, in a process
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known as “piloting” (Gallistel, 1990). Piloting describes the way mariners use sightings

of landmarks with known coordinates as they traverse coastal waters (Hutchins, 1995).

Piloting provides immediate feedback of movements on calibrated positions through a

series of positional fixes. It requires a map with many known reference points, or with

frequent positional fixes to interpolate between reference points.

Although piloting might appear to be the predominant type of navigation used by

humans, we suggest that it must often be supplemented by other forms. People commonly

venture into novel territory, and their frequent shifts of attention might disrupt the cycle

of positional fixes that underlie piloting. A good example is children who are expanding

their home range (Cornell, Hadley, Sterling, Chan & Boechler, 2001). As they explore

new places, they encounter large gaps in their knowledge of landmarks, sometimes under

conditions in which other factors (e.g., city traffic) place strong demands on their

attention. In such cases, knowledge of position must be estimated through other forms of

navigation. Two such methods are known as dead reckoning and path integration. In

each of these modes, sensations of movements may be monitored for long periods

without calibration against known landmarks. Because they stand in contradistinction to

piloting, dead reckoning and path integration have usually been treated as synonymous.

However, we feel that it is useful to consider them as different forms of non-piloting

navigation.

Dead Reckoning and Path Integration

Melville may have delighted in the use of “dead” reckoning as a metaphor for
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Ahab’s decision, but, as many authors have pointed out, the term may derive from

“deduced reckoning”—the steps by which a navigator can calculate direction and

distance from experiences and observations along the route. Although now superceded by

modern modes of navigation, it is a skill still useful to mariners and aircraft pilots. Burch

(1986) provides a modern and readable account of the techniques that dead reckoning

comprises. At heart, the navigator must be able to calculate speed, time, and direction of

travel and, Burch stresses, be able to estimate the error associated with each of these. The

latter is especially important, because navigation by dead reckoning is inherently error-

prone and must be appropriately recalibrated. Estimates of positional error guide the

navigator in determining when other means are necessary to fix a location, or when other

heuristics for finding the goal must be used.

For example, a mariner using dead reckoning will need to estimate distance. On

the open sea, the mariner cannot directly measure the distance from a location in the

morning to a location at day’s end. Consequently, estimates of distance are normally

performed by sampling speed. Traditionally, a line is knotted at regular intervals,

attached to a chip of wood, and cast overboard. As the line plays out, the mariner counts

the number of knots passing into the water during a specified period of time. These

observations are combined to obtain speed. At the end of the day, the navigator must

decide how this estimate characterizes the vessel’s speed during the day. If, for example,

wind and current are judged to have yielded steady progress for a twelve-hour period, the

obtained speed is multiplied by twelve hours to provide an estimate of distance during
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that interval.

Notice in this example that daily distance is derived from two estimates, each of

which can contain error. There is the risk that the measurement operation was performed

during unique circumstances of travel, resulting in sampling error of daily speed. In

addition, the speed obtained during the sampled period may itself reflect two sources of

measurement error: the knots along the line might not have the right spacing, or the

interval of time during which they’re counted might be wrong. The astute navigator will

sample speed regularly in uneven seas and factor variability into the final estimate. Error

in the final estimate of speed is equal to the square root of the sum of the sampled

estimates squared. The art of dead reckoning therefore consists of not only of procedural

expertise, but also of judgment concerning relative contributions to error.

Closely related to the procedure of dead reckoning is path integration. In

principle, it is possible to compute a location by integrating directed velocity over time

(Mittelstaedt & Mittelstaedt, 1982). A navigator may sense velocity by the flow of visual

patterns, the feel of the wind, the fading of sounds, or other means, especially vestibular

sensations of acceleration; the resulting changes in position cumulate in a process similar

to the mathematical operation of integration. When the information for path integration

comes from internal sensations of movement (proprioception), the process is called

inertial path integration. When the information comes from the changes in flow of

external events, such as textures, the process is called noninertial path integration.

The result of path integration is conceptualized to be a probabilistic variable that
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encodes both distance and direction to some reference point. A good example of this

approach is the model proposed by Fujita, Loomis, Klatzky, and Golledge (1990), in

which movements by an organism produce changes to a vector in a history-free manner.

Specifically, location along a path is represented by the instantaneous value of this

vector, without reference to its previous values. Direction and distance from the last point

of calibration are given by direct readout of the vector. Trowbridge (1913) described a

similar idea in describing how an animal, having no knowledge of the points of the

compass or of the extent of the world, could find its way home:

In the case of insects, birds, mammals, etc., which orient themselves domi-

centrically, it is as if the living creature were attached to its home by one very

strong elastic thread of definite length. Hence, in this case, all changes of position

of the creatures can be referred at any moment, to definite distances and angles,

forming a simple trigonometric figure which gives the direction to home. (p. 890,

Trowbridge, 1913).

A key feature of path integration is that calibration in reference to external

landmarks does not occur continuously as in the case of piloting. Instead, calibration

typically occurs after significant events along a path. For example, Collett and Collett

(2000) trained desert ants of the species Cataglyphis fortis to walk along a channel to a

feeder, after which they were shifted to a new location such that the return bearing was

clockwise of the outward path. Ants were later tested by being displaced from the feeder

to a novel location. Their attempted return path was still shifted clockwise of the outward
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bearing; more tellingly, the return path was generally a straight line. Collett and Collett’s

interpretation of these data is that the ants’ representation of where it was located was

calibrated only at the feeder and not during travel back to the nest.

Dead reckoning is likewise a navigation process where calibration usually occurs

at significant path nodes. However, the etymology of the term suggests a useful

distinction from path integration. In contrast to the latter, dead reckoning is retrospective,

implying processes that depend upon representations of previous segments of the path. In

humans, this might be apparent in deductive inferences about location based upon

remembered configurations of the path. According to this taxonomy, path integration

would refer to those models for which information about velocity and acceleration is

processed continuously and ahistorically, and represented by state variables of low

dimension (e.g., a two-dimensional vector; Loomis, Klatzky, Golledge, Cicinelli,

Pellegrino, & Fry, 1993). Dead reckoning, however, would refer to models of navigation

in which velocity and time estimates are used retrospectively and at punctate occasions to

alter a multidimensional representation of a route or journey (but cf. Loomis, Klatzky,

Golledge, & Philbeck. 1999, p. 129). An important part of the representation might be the

error associated with specific segments of the route.

The navigation system of C. fortis would appear to be one where path integration

is an appropriate description. When C. fortis foragers are displaced from an outbound

path, they are able to establish a return bearing. The accuracy of this bearing does not

seem to be affected by where in the outbound journey the displacement occurs (Collett &
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Collett, 2000). This would imply a history-free updating characteristic of path integration.

In contrast, human navigation seems to fit with models of dead reckoning, because

people produce organized memories of their travel.

The Cognitive Mapping of Spatial Memories

Kitchin and Freundshuh (2000) present a good historical review of the uses of the

terms ‘cognitive map’ and ‘cognitive mapping’. Our use is based on revival of the terms

by behavioral geographers:

Cognitive mapping is a process composed of a series of psychological

transformations by which an individual acquires, stores, recalls, and decodes

information about the relative locations and attributes of the phenomena in his

everyday spatial environment (p. 9, Downs & Stea, 1973).

Information extracted from large-scale external environments and stored

in human memory exists in some type of psychological space whose metricity

may be unknown (p. 7, Golledge, 1999)

The first statement suggests that cognitive mapping is not an unusual method of

processing memories in to and out of a knowledge base, but the information processed is

spatial. The second statement reflects that knowledge of the environment may not be

uniform; a metric representation of space satisfies certain mathematical axioms, for

example, that the quantitative distance between two locations does not depend on the

direction of measurement between the two locations. In contrast, people’s sketch maps,

distance estimates, proximity rankings and directional judgments indicate an incomplete,
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distorted, torn or folded geometry of space, although some well-known areas may be

locally Euclidean (Montello, 1989).

The core issues concerning the form and function of cognitive maps have been

recently reviewed by Kitchin and Blades (2002). We now know that cognitive maps

represent global and local environmental features in a network structure with hierarchical

properties. Places may be represented as schemas, such as what comes to mind when told

that the village of Rosarita is a beach resort. Spatial information may be encoded as

image-like units, conceptual propositions, or both, depending upon task demands and

individual differences. The survey representations that characterize cartography are a

special product of this knowledge base. Survey maps preserve the angle of bearings and

the scale of distances between environmental features; the arrangement of symbols for

the environmental features is as seen from the overhead perspective.

To summarize, the term ‘cognitive map’ is theoretically akin to other terms

describing the structure of memories, such as ‘semantic network’, ‘mental lexicon’ or

‘number fact retrieval table’. There are some properties that are particular to the

information in the cognitive map, for instance spatial primitives such as distance relations

between events (Golledge, 1995). Nevertheless, because it is the product of normal

memorial processes, we assume that the cognitive map is derived from associative,

sequential, or configural memories. All of these forms of representation may be useful

during way finding.
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Could we make it back home?

On Trowbridge’s account, pulled by its elastic thread, the homeward-bound

animal would eventually encounter a familiar region containing “minor reference points”,

or objects that give a “definite reaction” to the home (p. 890, Trowbridge, 1913). It is

easy to see the prescience of this two-process description. The elastic thread is the line

given by path integration, and the definite reaction is calibration of its location vector

based on landmarks whose positions are known relative to home.

Of course, the story is more developed now. Some animals may not navigate in

the territory close to home by knowing a configuration of several landmarks. There can

be recognition of an environment feature that emanates from a unitary site. For example,

home may be distinguished by a particular odor. The dispersion of the odorant follows

the topography near its source and the prevailing wind. Sensing the concentration of the

odorant thus allows for beacon homing, with minimal need to represent the location of

objects in the neighborhood (Gallistel, 1990).

The foremost path integrator, C. fortis, shows limited knowledge of the features

around its nest (Burkhalter, 1972). If an ant is trapped immediately after emerging from

its nest and placed on the terrain a short distance away, it searches for home in all

directions and wanders for an extraordinary amount of time. Yet, the ants return directly

from much farther distances when they themselves have traveled away from the nest

(Wehner & Srinivasan, 1981).

When researchers move foraging ants after they have traveled to a distant feeding
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station, the ants return as if they are heading for home from their last self-determined

location. Their return is linear up to a distance where they should have encountered their

nest, then their path changes to a loopy search. Wehner and Srinivisan (1981) show that

the onset and pattern for the search for home are the result of the ant’s mechanisms for

computing its displacement. There is little evidence that the ant recognizes its

neighborhood, but presumably it recognizes its doorstep.

Given the remarkable path integration by the desert ant, could humans do as well?

Blindfolded, ears covered, nose clothespinned and led on a distant foraging expedition,

could we return to our doorstep via the most direct possible route? Although our

intuitions say no, we shall consider that people may use different cognitive processes to

find their way when normal environmental input is restricted. We believe most human

solutions are best described as dead reckoning. As we noted above, the term suggests that

problems in orientation and navigation can be solved by a variety of methods. Some

heuristics for dead reckoning may not involve computation of metric information

whereas path integration is associated with the sensing and continuous mathematical

integration of linear and rotary velocities or the double integration of accelerations.

In humans, the proprioceptive system provides a variety of information that could

be integrated to provide a record of translation and rotation relative to the start of a path.

The proprioceptive system can be considered to include the vestibular and kinesthetic

sense systems as well as representations of efferent commands (Geldard, 1972; Klatzky,

Loomis, Golledge, Cicinelli, Doherty, & Pellegrino, 1990). The vestibular sense system
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includes mechanisms for registering acceleration and position relative to gravity. The

kinesthetic sense system includes mechanisms for registering the movements of joints,

muscle and skin. Efferent commands are represented as intentions or preparation of the

motor system preceding movement.

Path integration and dead reckoning both operate on feedback from

proprioception, although processes of dead reckoning allow for occasional rather than

continuous sampling of feedback. Hence, memories of movement and patterns of

movement are often important for humans to deduce their bearings. To resolve questions

about the representation of self-movement and the accuracy of human dead reckoning,

we need to consider what constitutes systematic performance.

Indications of Nonrandom Spatial Performance

Etienne, Berlie, Georgakopoulos and Maurer (1998) summarize evidence that

arthropods and mammals show an intriguing systematic bias when returning from an L-

shaped outbound journey. In the examples they illustrate (see Figure 1), all species made

an inbound error by overcompensating the rotation on the outbound path. Etienne et al.

suggest that the systematic bias is owing to the way path integration is computed.

Specifically, they favor an iterative mathematical algorithm that describes homing

behavior by ants (Müller & Wehner, 1994). The algorithm serves to scale down

successive angular deviations between the ant’s steps as a function of the distance that the

ant has moved away from its nest. Because the computation of mean direction of travel is

differentially weighted by the distance traveled, the algorithm is an approximation of path
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integration by trigonometry. However, there is evidence that human performance may be

more variable (Sholl, 1989; Loomis et al. 1993; Riecke et al.2002, Kearns, Warren,

Duchon, & Tarr, 2002).

Figure 1. Triangle completion performance by arthropods and mammals (redrawn from
Etienne, Berlie, Georgakopoulos & Maurer, 1998). The animal’s point of departure is
illustrated as an open circle and the two legs of its outbound path are illustrated as dashed
lines. The animals returned in the direction illustrated by the darker arrowed line.

Although the algorithm describes the systematic biases illustrated in Figure 1,

there may be a variety of mechanisms that produce the same behavior. Notice that

overcompensation, or more turning inbound than was done on the outbound travel, results

in an inbound path that intercepts the earlier portion of the outbound path. The bias

returns the animal to territory that it may be familiar with. For example, children are

known to remember the beginning better than the middle portions of new outdoor routes

(primacy effects; Cornell, Heth, Kneubuhler & Sehgal, 1996). If children encounter

portions of a route after taking a shortcut, they are likely to recognize landmarks or paths

that are associated with returning along the route (Cornell, Heth, & Alberts, 1994). They

would be in unfamiliar territory if they miss the outbound route by undershooting their

turn at the onset of their shortcut. Animals who rely on their own scent trails would also

benefit from the bias illustrated in Figure 1. If animals are wandering or searching for

Bees Ants Hamsters Dogs HumansSpiders

0.2 m 2.86 m 1 m 20 m5 m 5 m
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familiar ground, they present more opportunities for predation, meteorological buffeting,

or exhaustion. Hence, we would expect that evolutionary factors would act so as to select

any mechanism that allows the returning animal to intersect familiar territory.

Innate Representation of Space

Systematic performance in dead reckoning is philosophically interesting. Many

modern nativists believe that humans have innately-specified domain-specific

representations. They use findings from developmental psychology or neuropsychology and

arguments from evolutionary psychology to assert that the human brain is not only innately

prespecified for perceptual processes such as registering haptic-kinesthetic flow during

movement, but also for higher-level spatial representations such as Euclidean mental maps

(Landau, Spelke, & Gleitman, 1984; see Karmiloff-Smith, 2000, for a critique). For

example, the study of object localization by a blind girl has led to the interpretation that our

spatial knowledge system is structured early in life and is independent of the modality of

experience of space (Landau & Spelke, 1985). Her spatial knowledge system was inferred

to be a geometric mental map, because after being led along specific paths between objects

in a small room, the 34-month-old girl could generate new paths among those same objects.

The researchers reported that the girl’s movements during these new paths were imperfect;

3 of her 12 test paths ended when she lost her bearings and three of her remaining 9 test

paths curved toward the wrong object and then curved back toward the correct target.

Despite these missteps, the researchers considered her localization to be better than chance,

because on most test paths her initial orientation was in the correct direction and the end of
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her path fell within a 40° range subtending the target object. However, these criteria for

reaching targets 1 to 2 meters away seem liberal. Moreover, the girl’s failure to walk direct

lines suggests that path integration was not controlling locomotion. Liben (1988) questions

whether the methods allow the strong conclusion that the young blind girl knew the angular

and distance relations between the objects in the room.

Veering

There may be an important distinction between turning accurately toward an

invisible target and walking a straight-line path to that target. People generally veer when

they walk, and direct paths may be seen as a performance requirement that leads

researchers to underestimate human competence in path integration tasks. The

asymmetries of veering and the extent of veering were early issues in the study of

geographical orientation, but the study of veer did not reveal much about the role of

kinesthetic and vestibular mechanisms in registering movement (Howard & Templeton,

1966). Extrapolations from a recent careful study indicated that blindfolded adults on

average veer about 22° when attempting to walk a straight line for 30 meters at normal

speed (Klatzky, et al. 1990). Individuals tended to veer in the same direction over

successive walks, but veering to right and left occurred equally often over all individuals.

Hence, performance deficits owing to veer suggest that humans cannot solely use inertial

cues to maintain straight paths across distances we typically travel outdoors (see Figure

2; see also Guth &LaDuke, 1994; 1995).
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Figure 2. Tracings of return paths by three individuals in triangle completion tasks
conducted in a 12 m X 12 m room (redrawn from Loomis, et al. 1993). The person’s point
of departure for 27 two-legged outbound routes is illustrated as an open circle. The closed
circles indicate the ends of the outbound routes and the squiggly lines indicate paths
walked during attempted returns to the point of departure. The panels represent
performance by the fifth participants within three groups who were deprived of vision.

There are a variety of prospective strategies for correcting error owing to veer. If

several travelers are aligned one behind the other, the person at the back of the group can

judge the linearity of the column and call forward to the leader to correct to the right or

left. The strategy is traditionally used in featureless expanses, as when mushers on

snowfields check their line of dogs or camel drivers on deserts shout to the head of the

train. Another strategy comes from the sport of orienteering, where runners seek to

maintain the most direct line between outdoor check stations. To prevent veer in territory

where landmarks can not be identified, runners will alternate the direction taken when

encountering barriers, so that if they circumvent a first large boulder by going left, they

will circumvent the next large boulder by going right. Perhaps the most mentalistic

strategy occurs when experienced hikers imagine a straight-line bearing to their

destination at the start of their journey (Jonsson, 2002). Even when distant cues are

hidden, the hikers may “steer a course”, or make adjustments to return to the imagined

bearing after deviations through travel corridors. Despite these strategies for correcting

veer, navigators and way finders seize opportunities to update their position by reference
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to geography and landmarks. These observations affirm that people are aware of error

and the need to calibrate their movement-based representations.

Tasks in Rooms

Most tasks used to assess path integration abilities are conducted in rooms.

Researchers assume that the mechanisms used are the same as those used in larger scale

spaces, although a view of a room prior to blindfolding can suggest a geometric shape or

regularized framework to situate movement (Werner, 2002). Results indicate that small

rooms may be restrictive. A “wall effect” limits the range of errors of some participants

(Liben, 1988); they may stop because they are apprehensive of collisions or researchers

may interrupt their paths before they encounter a wall. In addition, test rooms are clear of

furniture; floor, walls, and ceiling typically provide large, flat surfaces. These are good

conditions for echolocation and tactile sensing of reflected ventilation. Researchers have

prevented use of auditory cues by fitting participants with occluding headphones.

However, studies of visually deprived individuals indicate that participants may also be

sensitive to olfactory and tactile cues; these may divert attention from the internal

proprioceptive cues that are the basis of inertial path integration. Finally, performance on

path integration tasks in rooms is often extrapolated without actually testing whether the

obtained error is cumulative over greater distances or determining the conditions that

precipitate self-correcting mechanisms while way finding in the greater outdoors.

The scale of the test space is important when considering interpretations of path

integration abilities. Typically, adults are asked to reproduce a sequence of path segments
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they have walked with guidance, or they are asked to directly walk from the end of their

last path segment to the beginning of their walk. Although researchers have devised a

variety of revealing path configurations (Klatzky et al. 1990; May & Klatzky, 2000),

triangle completion tasks are common. After walking a path segment (leg), turning, then

walking a second leg and stopping, a direct return to the origin of the walk is presumed to

indicate a form of survey representation of the relations between the legs. Assuming

certain criteria for accuracy, performance in the triangle completion task is taken as

evidence for a Euclidean representation of metric values of distance and bearing

relations. Hence, the length of path segments may determine accuracy of performance

and inferences about mechanisms of path integration and the nature of mental

representation of space.

For example, the encoding-error model of pathway completion without vision

(Fujita, Klatzky, Loomis, Golledge, 1993) assumes that uncertainty about the distances of

paths is resolved with a working solution. The distance of a path segment is encoded as a

compromise between an uncertain actual value and the mean of presented values. The

encoding results in people overestimating small distances and underestimating large ones,

an error of regression to the mean (Stevens & Greenbaum, 1966). Notice that calculation

of the mean of experienced values requires that people have memories of the distances of

path segments they have completed at the time they encode the distance of the most

recent path segment. In rooms, people may easily retrieve and summarize path memories

after being led through a short series of segments of 2, 4, or 6 meters length. However,
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paths in large-scale natural environments typically take more time to traverse and do not

include systematic variation in lengths. Estimation may be biased toward memories of

early path segments (Anderson, 1981). Under natural conditions, people may use a

variety of heuristics to estimate distances that do not rely on a mean value (Hirtle &

Mascolo, 1991).

As we shall see, studies with path segments of 2 to 18 meters length indicate that

humans can be systematic in processing feedback from locomotion to solve pathway

completion tasks. However, these studies indicate a mechanism different than homing

based on continuous metric calculations.

Homing

Homing is travel that follows a vector to the point of origin of travel. Homing can

be accomplished by piloting or nonpiloting navigation. After finding a morsel, the desert

ant provides evidence of a homing vector when it turns and attempts a straight-line return

to its nest. Several analyses suggest that the homing vector can be the result of automatic

processing of locomotor feedback. Self-velocity and turning can provide input for

trigonometric calculation of the distance and bearing of the point of origin (Mittelstaedt

& Mittelstaedt, 1982; Fujita, et al. 1993; Biegler, 2000). Bearing within this framework is

the angular deviation between the traveler’s current heading, or forward direction of

travel, and the location of the start of the path. One of the most interesting features of

navigation by many animals is that they maintain a vector representation of their way

home at all points along their outbound path of travel, yet may be unable to retrace the
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paths they have taken from home (Gallistel, 1990; Healy, 1998). Because the homing

vector is evident at any place along the animal’s outbound path, the process for

calculating it must be continuous, or at least occur at distances as short as a footstep. A

homing vector is considered by some to be a minimal form of survey representation of

space (Loomis et al. 1993), although it is not clear that a homing animal has knowledge

of the geometric configuration of its paths as seen from an overhead perspective. Because

the animal may show no evidence of memories of its outbound path or landmarks in the

neighborhood of its home, the representation of the homing vector in these cases is

history free.

There is accumulating evidence that humans do not accomplish path integration

by continuous calculation of a homing vector. It can first be noted that sighted people

who are blindfolded are not very accurate at returning to the origin of even very simple

paths. For example, Klatzky et al. (1990) tested the path completion abilities of

blindfolded people after a walk contained within a 10 meter diameter circle. Their mean

absolute error turning toward the origin of the walk increased from 22° to 35° as the

number of outbound path segments increased from 1 to 3. Mean absolute distance

between the endpoint of the participant’s return and the origin of the walk also increased

as the number of path segments increased from 1 to 3. Klatzky and her colleagues

suggested that the increase in errors with path complexity indicated that each segment

increased the processing load. This was an interesting interpretation, because there were

only preliminary indications that accuracy was related to the representation of segments.
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Error could accumulate within a history free mechanism, such as an inexact

computational algorithm that discards feedback from locomotion as the homing vector is

updated (e.g., Müller & Wehner, 1994).

The cumulative effect of error when sighted humans navigate a large-scale

environment without vision is indicated in a recent study by Greidanus (2002). University

students were led along a sequence of five connected paths in an unfamiliar suburban

neighborhood. The paths ranged between 380-580 meters in length and included 2 to 4

turns. At the end of a path, students were stopped and asked to point to the origin of that

path. Students who had walked the paths with total restriction of their vision (occluding

goggles) pointed with a mean absolute error of 52° deviation from the actual origin.

Students who had walked the paths with normal sight pointed with a mean absolute error

of 29°. Students who had walked the paths with their vision restricted to 1 meter around

their feet pointed with a mean absolute error of 41°. The performance of the latter group

is interesting because they could not see landmarks off the path during their walks. They

could see the flow of texture of sidewalks and curbs.

There are now several indications that humans without vision use memories of the

outbound path to estimate distance and direction to the origin. Loomis et al. (1993) found

that the latency to initiate a return to the origin of a 2- or 3-segment path increased with

the complexity of the path. If a homing vector had been continuously updated during the

outbound travel, calculation of the vector at the point of return should have required the

same time regardless of the path taken to reach that point. The fact that more path
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complexity increases latency suggests that subjects are estimating from memories of their

travel. The memories may preserve some spatial relations or may be primitives for

constructing a representation of the configuration of path segments and turns (Golledge,

1995). The memories are readily available, because Loomis et al. found that human

participants could retrace their outbound path on demand, even when the task might have

called for a shortcut back to the origin. However, the memories of positional and

directional change are not accurate, and as we shall discuss later, are probably encoded

with bias toward categorical divisions of space.

Human Travel is a Segmented History

People can easily recall aspects of their movements along paths. Proprioception

provides us memories of velocity, acceleration and rotation and our physiology provides

us concomitant memories of effort and duration. Several internal events are caused by

external events so, for example, walking from a straight to a curved path results in an

asymmetry in the efforts of the separate legs and causes a bending of the cupula within

the semicircular canals of the inner ear. The perceived changes in the stream of these

internal phenomena allow us to segment a sequence of movement, which may be encoded

verbally for example as “a few forward steps followed by a hard right”. Whether

translated into a verbal code or not, the segmented memories can be the basis of an

estimation of the origin of travel (Potegal, 1982; Péruch, Borel, Gaunet, Thinus-Blanc,

Magnun & Lacour, 1999; von der Heyde, Riecke, Cunningham, & Bultoff, 2000).

 An important experimental approach to understanding the processes humans use
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for path integration involves psychophysics and computational modeling (Fujita, Klatzky,

Loomis & Golledge, 1993). Psychophysical methods are first used to determine human

performance when estimating and reproducing distances and turns (Klatzky, et al. 1990).

For example, guided by sliding a hand along a rope, blindfolded participants walked a

straight line for 4, 6, 8, 10, or 12 meters. They then estimated the length of the path

according to a 2-m standard and reproduced it by walking what they felt to be an

equivalent distance from a new starting point. To suppress counting of footsteps, the

participant was required to repeat a phrase out loud while following the path. Signed

errors indicate under- or overestimation and were calculated by the participant’s estimate

minus the actual distance. Absolute errors were the magnitude value of the signed error.

A hand-held guide was also used to assess turn estimation and reproduction. The

participants stood then rotated while sliding their hands along a ring of aluminum with an

outside diameter of 94 cm. Clamps were placed on the ring to stop rotation at 60 to 300°

on different trials. The participant estimated the amount of turning in terms of a clock

face. The researcher then removed the end clamp and the participant attempted to

reproduce the rotation. Signed and absolute errors were analyzed.

Performance in these tasks and similar observations by Loomis et al. (1993)

served as data to evaluate a model. The model accounts for errors by people deprived of

vision who are attempting triangle-completion tasks (Fujita et al. 1993). The model

assumes that people in these circumstances have an internal representation of their

outbound path that satisfies Euclidean axioms; for example, the length of the legs walked
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determines the scale of a triangle that is completed by walking the third leg. In this

model, systematic error arises from poor encoding of components of the outbound path

rather than an inaccurate computation of a homeward trajectory by use of the axioms.

Hence, the success of the model relies on accurate representation of how people encode

their movements during travel.

 As a start, the model is based on evidence that people make a regression error

when they reproduce some turns or distances. That is, the model assumes that people

represent the range of turning and distances experienced within some window of recent

pathways. When people are asked to reproduce some of the larger turns or walk some of

the longer distances, they produce lesser values by ending their movement prematurely.

Conversely, when people are asked to reproduce smaller turns and shorter distances, they

tend to overshoot. Given the assumption that people encode values of their movements

with regression to the mean of recent experiences, the model nicely accounts for data

from triangle-completion tasks (Fujita et al. 1993). The model has also been used to infer

how people may represent more complex pathways (May & Klatzky, 2000).

The Phenomenology of Movement

The success of this model suggests that it is important to know more about how

people perceive and encode movements. For example, both Klatzky et al. (1990) and

Loomis et al. (1993) had blindfolded people estimate and reproduce distances after they

had walked them while repeating a nonsense phrase. While the repeated vocalization was

intended to suppress counting of footsteps, it could have also interfered with other
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processes that are normally used to register the duration or effort of walking. The

requirement to vocalize repeatedly ensures that participants do not update deliberately

during travel and can only estimate when they stop at the end of a path. An estimate at a

juncture that considers the path as a whole may be different than a cumulative estimate

from subjectively determined episodes of processing.

Certainly, subjective categories are known to be important when people are

remembering turns. People are more accurate reproducing turns of 90°, 180° and 270°

than turns of 60°, 120° and 300° (Sadalla & Montello, 1989; Klatzky et al. 1990; Loomis

et al. 1993). Following the analysis by Howard & Templeton (1966), Sadalla and

Montello point out that orthogonal reference axes (e.g., 90°, 180°) are inherent to

egocentric orientation. Humans, like many animals with bilateral symmetry, have a front

and rear, as determined by the position of systems for sensing events in the path of

motion, and arms and legs that can be extended at right angles to the direction of forward

motion. Hence, a history of movement may be encoded with reference to the orthogonal

planes and axes of the human body.

This encoding is likely to be a process of categorization. Categorization or

segmentation is evident when values along a continuous metric dimension, such as the

values between 0° and 360° of rotation, are not perceived, remembered, or spoken about

as if they only differed in magnitude. Instead, some values along the dimension are

special. They are prototypes that serve to organize and represent a category of events. If

information about a spatial event is inexactly encoded or only vaguely remembered,
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estimates of its value along a physical dimension may be weighted toward a prototypical

value (Huttenlocher, Hedges, & Duncan, 1991). For example, using a circular measuring

device, people tended to estimate their own angles of rotation as more like 90° than they

actually were; turns between 0° and 90° were overestimated and turns between 90° and

180° were underestimated (Sadalla & Montello, 1989). These results suggest that process

models of how people reproduce and complete pathways might benefit from an

assumption that encoding errors involve regression to prototypes.

 In general, we will need to know more about the phenomenology of turning and

distance traversal to provide an account of dead reckoning by humans. For example,

psychophysical studies of turning have been limited. Early methods sought to isolate how

a rotation is perceived and produced from a stand-still, but errors in reproducing turns are

different when people experience those turns while walking (Loomis et al. 1993). In

addition, we know little of how turns of different radii are estimated or reproduced. The

presence of veering suggests that some gradual turns (large radii) are not even perceived

as turns. It is possible that when errors and categories of representation of movement are

known, the components of human path experience will not be useful for trigonometric

calculations. People might use other heuristics to solve the problem of how to head home:

Successful computation might be achieved by an internal scanning

process, performed on a spatial image, that derives the direction and distance of

the origin. Alternatively, the computation might be a more abstract process that

takes as its input nonspatial, even symbolic values of segment lengths and turn
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extents (p. 311, Fujita et al. 1993). 

Configural Representation of Paths

Memories of human locomotion may be organized to represent both the order of

actions and the direction and extent of actions. Since the demonstrations of cognitive

maps in animals (Tolman, 1948), psychologists have been particularly intrigued with the

notion that the representation of our movements while on the ground is organized to

reflect a survey of the territory as if seen from above. However, when people cannot see

the environment while walking, they may be preoccupied representing what their internal

sensations of movements mean with reference to the horizon. As we shall see, the

imagined flow of events along the horizon can provide a dynamic frame of reference for

making inferences such as a bearing to a landmark or a short cut home (Rieser, 1999).

 An overhead view of the course of travel is a unique perspective. At the least,

such a survey of the course of travel would be a configuration, a line figure consisting of

path segments and their relationships to one another. If the line figure is closed, as it

would be when all of the segments are represented in a triangle completion task, there are

geometric properties associated with its shape. Hence, trigonometric computations of a

bearing may be based on the episodic memories of two path segments and one turn. The

analysis may only have to occur once, when memories are retrieved at the end of the

second segment, rather than occurring as a step-by-step or continuous updating during

travel. Even without metric computations, shortcuts and detours could be estimated when

path segments are remembered and organized as a configuration. A survey representation
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allows the viewer to imagine lines directly connecting to points along the figure

(Kosslyn, 1980).

Figure 3. The left panel depicts tracings of return walks by 12 individuals in a path
completion problem conducted in a 12 m X 12 m room. (redrawn from Klatzky, et al.
1990). The middle panel summarizes the problem. The point of departure is illustrated as
an open circle and the three legs of the outbound path are illustrated as dashed lines. The
closed circle indicates the end of the outbound path and the arrowed solid line is the
vector representing the average return heading and distance of all 12 participants. The left
panel indicates the variability around the average vector in this problem. The right panel
illustrates a problem that does not involve a crossing over of outbound paths, although
the number of legs, total distance walked, and point of return is similar to those in the
middle panel.

One of the first indications that configural properties of paths are important for

dead reckoning performance is illustrated in Figure 3 (Klatzky et al. 1990). The middle

and right panels illustrate a survey view of two of twelve pathway completion problems

conducted within a circular area within a 12 m x 12 m room. The illustrated problems

contained three path segments of approximately equal total length at the same point of

termination. However, the paths in the middle panel crossed over, forming a closed

shape, whereas the paths in the right panel did not. When attempting to return to the

origin of the three paths, some blindfolded participants in the problem depicted in the

middle panel apparently did not register that they had crossed over the earlier path. As

detailed by the tracings in the left panel, they turned at various angles, then walked only

short distances. The difficulties on the problem would not be predicted by abstract

••

11 12

•

11
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computational or homing-vector models (Klatzky et al. 1990). Participant’s difficulties

could reflect a bias not to represent their path memories as a crossover because none of

the other path completion problems included such a topology. This interpretation

presumes that participants were monitoring the types of configurations formed by path

segments.

People may use heuristics for combining memories of separate turns and distances

to estimate a heading. For example, a cumulative record could be that the first turn was

almost a complete turnaround to the right and the second turn was almost a complete

turnaround to the left. Hikers know this pattern of movement as a switchback and sailors

know this pattern as tacking. The opposing turns allow gradual progress forward in the

face of resistance. If a participant were familiar with such a sequence, they may know

that the origin of their travel is always somewhat behind them as they progress. It is not

established that an overhead view of paths of movement is necessary to have this

realization.

However, certain tasks may provide evidence that is consistent with spatial

inference from a survey representation. For example, it would be interesting to determine

the conditions that allow people to draw or recognize a birds-eye view of paths they have

walked while deprived of vision. In one study, after leading blindfolded university

students along paths in an unfamiliar suburban neighborhood, Greidanus (2002)

periodically removed the blindfolds and asked the students to choose a line drawing that

best represented an overhead view of their paths. Figure 4 illustrates the configuration of
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the actual path and five foils. Patterns of avoidance of foils could indicate that the path

had been encoded as a sequence of left-right turns or as having a segment with a gradual

curve to the left or right.

Figure 4. Line drawings representing a possible overhead view of a 458 m walk through
an unfamiliar suburban neighborhood (redrawn from Greidanus, 2002). The dark circles
indicate the start of the walk, where vision was restricted for some adults. The open
circles indicate the end location, where all participants were sighted and asked to select
one of these line drawings as a bird’s-eye view of their route. The correct configuration is
in the upper right.

Blindfolded students chose the configuration representing the actual paths

reliably (29% correct). Sighted students did even better (45% correct). None of the

students immediately recognized the configuration representing the bird's-eye view,

 but typically spent minutes eliminating foils on the basis of memories of particular

path segments and turns. Interestingly, students whose vision was restricted to views

of the path within 1 meter of their feet were also reliably correct (43%). Because during

travel these students could not see landmarks that would be useful at the point where

they had to identify the configuration of their paths, the results indicate the importance

of optic flow for accurate encoding of movements.
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Dead Reckoning on the Basis of Optic Flow

Normally, people monitor their position, heading and movements in relation to

their environmental surround. They can perceive their travel in terms of changes in the

perspective of scenes or the position and faces of objects. There is a natural correlation

between the perceived rates and directions of self-movement and the perceived changes

in environmental perspectives (Gibson, 1979). Moreover, the correlation holds true as

textures of surfaces are seen to flow around and to the sides of the traveler;

environmental feedback does not require the presence of discrete landmarks. Sensitivity

to changes in optic flow seems particularly useful in situations where only the textures

near paths can be seen. For example, a way finder can maintain a straight heading in tall,

dense forest by monitoring both the internal sensations of turning and the relative rate of

movement of environmental textures on the left and right. There are indications that

access to optic flow makes it easier for travelers to structure movements in large-scale

space than if they were limited to proprioceptive feedback and memories of efferent

motor commands (Reicke, van Veen & Bultoff, 2002; Greidanus, 2002).

Extending these observations, Rieser (1999) has suggested that people register

their movements while blindfolded in light of their experience with optic flow under

normal viewing conditions. When people are walking without vision, they typically

describe their paths in terms of external referents that they remember, such as “parallel to

the line of spruce trees”. Evidently, proprioceptive cues associated with self-movement

allow blindfolded travelers to imagine how the visual surround would be changing.
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People are even capable of imagining that they are in remote territory and then correctly

judging their orientation to landmarks in that imagined territory while walking without

vision in the laboratory (Rieser, Garing, & Young, 1994). These observations suggest that

blindfolded people may solve path completion tasks by situating their actual walking

within an imagined familiar environment. They recall memories of scenes. They could,

for example, infer a shortcut to the origin of their walk from the bearings of landmarks

imagined at the point of return. This inference is of course evidence of Euclidean

knowledge of space, but may be principally derived from imagined flow of visual events

along the horizon rather than from a representation of path configuration from overhead.

 The Plurality of Human Dead Reckoning

Intuitively, human navigation seems based on piloting. The conventional model of

human way finding views the way finder as constantly updating positional

representations by coordinating external views of landmarks against a cognitive map.

This may, indeed, be the modal method by which people find their way. However, there

are many cases in which the cognitive map contains important gaps or is absent

altogether. Nonpiloting methods, for example, may be particularly important during

childhood, when expansion of the individual’s home range is dramatic and rapid.

Our review suggests that people do not accomplish nonpiloting navigation by the

continuous metric computations that characterize models of animal path integration.

People have random and systematic bias in their memories of self-movement. While

these errors may be accommodated within models that assume mathematical formalisms
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(Fujita et al. 1993), we suggest that people deprived of vision may use some other

procedures for making inferences from memories.

For example, some people may update a record of turning by occasionally adding

estimates of rotations from their initial heading. Updates could occur at sites where

changes in heading occur, in the manner of “My first turn was a bit to the right of my

direction of walking from the start and this turn is an extreme left, so I am progressing

moderately left of my initial heading.” Updating at the immediate turn would reduce

memory load for turning and provide an anchor point for monitoring the relative amount

of travel along the new bearing.

We suspect that heuristics operate on route-based phenomenology because people

typically describe the environments they walk through as a sequence of events rather than

as a configuration (Linde & Labov, 1975; Levelt, 1982). There is no obvious reason why

language should lead to descriptions such as “Walk forward about10 meters, take a hard

right, then walk forward a few less steps and stop” rather than descriptions such as “It is

an L-shaped route”. As illustrated in the former description, verbal directions and notes

indicate that spaces we move within are represented with both metric and categorical

information (Taylor, 2000).

 Sighted people invariably describe a variety of methods when asked how they

solve orienting and way finding tasks in large-scale environments (Hill, 1997; Cornell &

Heth, 2000; Cornell, Sorenson, & Mio, 2002). The descriptions involve several levels of

analysis of features of landscape, often with clever discernment of details and patterns
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that are unique to particular environmental events. People often report more than one

strategy to devise a response to pointing and way finding tasks and report different

methods for responding at different sites or as tasks progress. Verbal protocols are

consistent with models of executive selection of processes to use readily interpretable

information, to monitor progress, and to react to anomalous outcomes. These descriptions

suggest that normal orienting and way finding, like reading, writing, and many other

complex human performances, involve several interactive and compensatory cognitive

processes. We suggest that human solutions to dead reckoning without visual input will

be found to be similar.

If this is true, group performance on dead reckoning tasks may be an

amalgamation of different individual strategies. Averaged data would make it difficult to

interpret the processing of memories of segments and turns and discover how people

choose certain heuristics to make inferences from these memories (Siegler, 1987).

Protocol analyses and task analyses could help to unravel how information is used during

dead reckoning (Ericsson & Simon, 1996).

When environmental cues are obscure, one solution seems particularly suited to

human cognition. It relies on the ability to recall spatial events to provide a context for

travel (Werner & Schmidt, 1999). With our eyes closed, we can imagine that we are in a

familiar place or we can reconstruct the immediate environment as it surrounded us

before vision was restricted. We slowly begin to walk, and our memories of the patterns

of optic flow that accompany self-movement allow us to envision how the view of
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landmarks would change. In this solution, we are dead reckoning within the cognitive

map.
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