Basic probability theory: Conditional probability

- What if a dice is biased so that it rolls 6 twice as often as every other number? How can we deal with 'uneven' base rates?
- Why should we care?
- Because real life uses biased dice
- eg. the conditional probability of being schizophrenic, given that a person has an appointment with a doctor who specializes in schizophrenia, is quite different from the unconditional probability that a person has schizophrenia (the base rate)

Conditional probability

- Conditional probability arises when one probability $\mathrm{P}(\mathrm{A})$ depends on another probability $\mathrm{P}(\mathrm{B})$ which is defined over the same population of events (VERY IMPORTANT!)
- We say that we want to know $\mathrm{P}(\mathrm{A})$ given $\mathrm{P}(\mathrm{B})$; notationally, P(AIB)
- We can say that the word 'given' defines a subset of the population of events: namely that subset that depends on $\mathrm{P}(\mathrm{B})$
- For example, if we care the incidence of skin cancer in woman only, we might want to know P(skin cancer I female).
- Intuitively, what this is saying is: first, pick out all the females, and second, figure out the probability they will get skin cancer

Conditional Probability:

The Atonement Lecture

Conditional probability

- More formally, what $\mathrm{P}(\mathrm{AlB})$ says is: Pick out the events to which both $\mathrm{P}(\mathrm{A})$ and $\mathrm{P}(\mathrm{B})$ apply, and consider them as part of the subset of events to which only $\mathrm{P}(\mathrm{B})$ applies: hence

Conditional probability

- What we are doing with $\mathrm{P}(\mathrm{AlB})=\mathrm{P}(\mathrm{A}$ and B$) \mid \mathrm{P}(\mathrm{B})$ is selecting out the same subset of the event population in both the numerator and the denominator: in this case, only women

Conditional probability

- What we are doing with $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A}$ and B$) \mid \mathrm{P}(\mathrm{B})$ is selecting out the same subset of the event population in both the numerator and the denominator: in this case, only women
- The reason it is so important to do this is because in some cases $P(A)$ in the selected subset of an event population is very different from $\mathrm{P}(\mathrm{A})$ in the whole event population
- For example, $\mathrm{P}($ Have healthcare I Canadian) is very different from P (Have healthcare)
- Everyone in Canada has healthcare: P(Have healthcare I Canadian) $=1$
- Most people in the world do not have healthcare: P (Have healthcare) <0.01

A generalization: Bayes' theorem

$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A}) / \mathrm{P}(\mathrm{B})$

- Some people find Bayes' Theorem helpful, since in some cases it can clarify the problem being considered
- Some people find it more confusing than helpful,
- The important point to understand is that Bayes' Theorem is just a re-statement of the definition of conditional probability, not a new finding
[Note: More complex versions of Bayes' Theorem are defined which deal with multiple possible outcomes; we don't use them in this class, in which we only consider twopossibility problems.]

A generalization: Bayes' theorem

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A}) / \mathrm{P}(\mathrm{~B})
$$

- Note that all this says is: $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A})$
- eg. The probability of having being a Canadian and having health care is the same as the probability of having health care given that you are Canadian X the probability of being Canadian
- In this example we can easily see that this is true: Since all Canadians have healthcare, the probability of being a Canadian and having health care is the same as the probability that you are Canadian: P (Heath care I Canadian) $=1$

A generalization: Bayes' theorem

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A}) / \mathrm{P}(\mathrm{~B})
$$

- Note that all this says is: $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A})$
- Another intuitive example: The probability of winning the lottery and buying a ticket is dependent both on the probability of winning the lottery when [= given that] you have a ticket and on the probability that you buy a ticket
- A person with a low probability of buying a lottery ticket has a lower probability of holding a winning ticket than a person that buys more tickets: even though
P (WinninglTicket)- the odds of any particular ticket being a winning ticket- is the same for both people

A generalization: Bayes' theorem

$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A}) / \mathrm{P}(\mathrm{B})$

Proof: By definition, (1.) $\mathrm{P}(\mathrm{AlB})=\mathrm{P}(\mathrm{A}, \mathrm{B}) / \mathrm{P}(\mathrm{B})$
(2.) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{A}, \mathrm{B}) / \mathrm{P}(\mathrm{A})$
(3.) $\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A}, \mathrm{B})$ [Multiply (2.) by $\mathrm{P}(\mathrm{A})$]
(4.) $\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A})$ [Substitute (1.) in (3.)]
(5.) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A}) / \mathrm{P}(\mathrm{B})$

Why I am so confused (and how you can avoid it)

- In the last class, I crashed and burned on a simple question in conditional probability: P (Female I Second row)
- My error was a classic error in probabilistic reasoning, \& therefore instructive: I accidentally changed event populations without noticing
- The relevant numbers are something like this:
- \# in class $=35$
- Females in class $=30$
- Number in row 2: 7
- Males in row 2: 2

Why I am so confused (and how you can avoid it)

- The relevant numbers are something like this:
\# in class $=35 \quad$ Females in class $=30$ Number in row $2=7 \quad$ Males in row $2=2$
- I began by noting that $\mathrm{P}($ Female and Row 2$)=5 / 7$. This is not correct since the proper population is the whole class: it should be $5 / 35$!
- With this step I changed the problem and just helped myself to the very answer I was supposed to be computing!
- I failed to correctly calculate because I changed the event population in my head from the whole class (as it should be) to Row 2 alone.
- Properly the solution I intended to show you was:
$\mathrm{P}(\mathrm{F} \mid 2)=\mathrm{P}(\mathrm{F} \& 2) / \mathrm{P}(2)$
$=5 / 35 / 7 / 35$
$=5 / 7$

